【成才之路】2015-2016学年高中数学人教A版选修1-2课件:第2章 推理与证明 2.1.2 演绎推理
- 格式:ppt
- 大小:1.46 MB
- 文档页数:39
第一章 1.6一、选择题1.(2015·广西柳州市模拟)由直线x =-π3,x =π3,y =0与曲线y =cos x 所围成的封闭图形的面积为( )A.12 B .1 C .32D. 3[答案] D[解析] 由题意得,S =2⎠⎜⎛0π3cos x d x =2sin x|π30=3,选D.2.(2013·景德镇市高二质检)若曲线y =x 与直线x =a 、y =0所围成封闭图形的面积为a 2,则正实数a 为( )A.49 B .59C .43D .53[答案] A[解析] 由题意知,⎠⎛0a x d x =a 2,∵(23x 32 )′=x 12,∴⎠⎛0a x d x =23x 32 |a 0=23a 32 , ∴23a 32 =a 2,∴a =49. 3.由曲线y =x 2和直线x =0,x =1,y =t 2,t ∈(0,1)所围成的图形(阴影部分)的面积的最小值为( )A.14 B .13C.12 D .23[答案] A[解析] 由⎩⎪⎨⎪⎧y =x 2y =t 2x >0得,x =t ,故S =⎠⎛0t (t 2-x 2)d x +⎠⎛t 1(x 2-t 2)d x =(t 2x -13x 3)|t 0+(13x 3-t 2x )|1t =43t 3-t 2+13, 令S ′=4t 2-2t =0,∵0<t <1,∴t =12,易知当t =12时,S min =14.4.设f (x )=⎩⎪⎨⎪⎧x 2 (0≤x <1),2-x (1≤x ≤2).则⎠⎛02f (x )d x 等于( )A.34 B .45C .56D .不存在[答案] C[解析] ⎠⎛02f (x )d x =⎠⎛01x 2d x +⎠⎛12(2-x )d x ,取F 1(x )=13x 3,F 2(x )=2x -12x 2,则F ′1(x )=x 2,F ′2(x )=2-x , ∴⎠⎛02f (x )d x =F 1(1)-F 1(0)+F 2(2)-F 2(1)=13-0+2×2-12×22-⎝⎛⎭⎫2×1-12×12=56.故应选C. 5.(2014~2015·河南周口市高二期末)已知函数f (x )=x n +mx 的导函数f ′(x )=2x +2,则⎠⎛13f (-x )d x =( )A .0B .3C .-23D .23[答案] D[解析] ∵f (x )=x n +mx 的导函数f ′(x )=2x +2, ∴nx n -1+m =2x +2, 解得n =2,m =2, ∴f (x )=x 2+2x , ∴f (-x )=x 2-2x ,∴⎠⎛13f (-x )d x =,则⎠⎛13(x 2-2x )d x =(13x 3-x 2)|31=9-9-13+1=23,故选D. 6.⎠⎜⎛0π3⎝⎛⎭⎫1-2sin 2θ2d θ的值为( )A .-32B .-12C .12D .32[答案] D[解析] ∵1-2sin 2θ2=cos θ,∴⎠⎜⎛0 π3⎝⎛⎭⎫1-2sin 2θ2d θ=⎠⎜⎛0π3cos θd θ=sin θ|π30=32,故应选D. 二、填空题 7.计算定积分:①⎠⎛-11x 2d x =________________②⎠⎛23⎝⎛⎭⎫3x -2x 2d x =________________ ③⎠⎛02|x 2-1|d x =________________ ④⎠⎛π20|sin x |d x =________________ [答案] ①23 ②436 ③2 ④1[解析] ①⎠⎛-11x 2d x =13x 3| 1-1=23. ②⎠⎛23⎝⎛⎭⎫3x -2x 2d x =⎝⎛⎭⎫32x 2+2x | 32=436. ③⎠⎛02|x 2-1|d x =⎠⎛01(1-x 2)d x +⎠⎛12(x 2-1)d x =⎝⎛⎭⎫x -13x 3| 10+⎝⎛⎭⎫13x 3-x | 21=2. ④⎠⎛-π20|sin x |d x =⎠⎛-π20 (-sin x )d x =cos x|0-π2=1.8.从如图所示的长方形区域内任取一个点M (x ,y ),则点M 取自阴影部分的概率为________________.[答案] 13[解析] 长方形的面积为S 1=3,S 阴=⎠⎛013x 2d x =x 3| 1=1,则P =S 1S 阴=13. 9.已知f (x )=3x 2+2x +1,若⎠⎛-11f (x )d x =2f (a )成立,则a =________________.[答案] -1或13[解析] 由已知F (x )=x 3+x 2+x ,F (1)=3,F (-1)=-1, ∴⎠⎛-11f (x )d x =F (1)-F (-1)=4,∴2f (a )=4,∴f (a )=2.即3a 2+2a +1=2.解得a =-1或13.三、解答题10.计算下列定积分: (1)⎠⎛2(4-2x )(4-x 2)d x;(2)⎠⎛12x 2+2x -3x d x .[解析] (1)⎠⎛02(4-2x )(4-x 2)d x =⎠⎛02(16-8x -4x 2+2x 3)d x=⎝⎛⎭⎫16x -4x 2-43x 3+12x 4| 20=32-16-323+8=403. (2)⎠⎛12x 2+2x -3x d x =⎠⎛12⎝⎛⎭⎫x +2-3x d x =⎝⎛⎭⎫12x 2+2x -3ln x | 21=72-3ln2.一、选择题11.函数F (x )=⎠⎛0x cos t d t 的导数是( )A .F ′(x )=cos xB .F ′(x )=sin xC .F ′(x )=-cos xD .F ′(x )=-sin x[答案] A[解析] F (x )=⎠⎛0x cos t d t =sin t | x 0=sin x -sin0=sin x .所以F ′(x )=cos x ,故应选A.12.(2015·江西教学质量监测)若直线l 1:x +ay -1=0与l 2:4x -2y +3=0垂直,则积分⎠⎛-aa (x 3+sin x -5)d x 的值为( )A .6+2sin 2B .-6-2cos 2C .20D .-20[答案] D[解析] 由l 1⊥l 2得4-2a =0即a =2,∴原式=⎠⎛-22(x 3+sin x -5)d x =⎠⎛-22(x 3+sin x )d x +⎠⎛-22(-5)d x =0-20=-20.[点评] 若f (x )为奇函数,定义域(-a ,a ),a >0,则⎠⎛-aa f (x )d x =0.13.若S 1=⎠⎛12x 2d x ,S 2=⎠⎛121x d x ,S 3=⎠⎛12e x d x ,则S 1,S 2,S 3的大小关系为( )A .S 1<S 2<S 3B .S 2<S 1<S 3C .S 2<S 3<S 1D .S 3<S 2<S 1[答案] B [解析] S 1=⎠⎛12x 2d x =x 33|21=73. S 2=⎠⎛121x d x =ln x |21=ln2-ln1=ln2. S 3=⎠⎛12e x d x =e x |21=e 2-e =e(e -1).∵e>2.7,∴S 3>3>S 1>S 2.故选B.14.(2015·河南高考适应性测试)定义在R 上的可导函数y =f (x ),如果存在x 0∈[a ,b ],使得f (x 0)=⎠⎛abf (x )d x b -a成立,则称x 0为函数f (x )在区间[a ,b ]上的“平均值点”,那么函数f (x )=x 3-3x 在区间[-2,2]上“平均值点”的个数为( )A .1B .2C .3D .4[答案] C[解析] 由已知得:f (x 0)=⎠⎛-22(x 3-3x )d x 4=⎪⎪⎝⎛⎭⎫14x 4-32x 22-24=0,即x 30-3x 0=0,解得:x 0=0或x 0=±3,∴f (x )的平均值点有3个,故选C.二、填空题15.(2014·绍兴模拟) ⎠⎜⎛π2-π2 (x +cos x )d x =________________.[答案] 2[解析] ⎠⎜⎛π2-π2 (x +cos x )d x =(12x 2+sin x )| π2- π2=2. 16.(2014·山东省菏泽市期中)函数y =x 2与y =kx (k >0)的图象所围成的阴影部分的面积为92,则k =________________. [答案] 3[解析] 由⎩⎪⎨⎪⎧ y =kx ,y =x 2,解得⎩⎪⎨⎪⎧ x =0,y =0,或⎩⎪⎨⎪⎧x =k ,y =k 2.由题意得,⎠⎛0k (kx -x 2)d x =(12kx 2-13x 3)|k 0=12k 3-13k 3=16k 3=92,∴k =3. 三、解答题17.已知f (x )=ax 2+bx +c (a ≠0),且f (-1)=2,f ′(0)=0,⎠⎛01f (x )d x =-2,求a 、b 、c的值.[解析] ∵f (-1)=2,∴a -b +c =2.① 又∵f ′(x )=2ax +b ,∴f ′(0)=b =0② 而⎠⎛01f (x )d x =⎠⎛01(ax 2+bx +c )d x ,取F (x )=13ax 3+12bx 2+cx ,则F ′(x )=ax 2+bx +c ,∴⎠⎛01f (x )d x =F (1)-F (0)=13a +12b +c =-2③解①②③得a =6,b =0,c =-4.18.如图,直线y =kx 分抛物线y =x -x 2与x 轴所围成图形为面积相等的两部分,求k 的值.[解析] 抛物线y =x -x 2与x 轴两交点的横坐标x 1=0,x 2=1,所以,抛物线与x 轴所围图形的面积S =⎠⎛1(x -x 2)d x =(x 22-x 33)|10=12-13=16. 抛物线y =x -x 2与直线y =kx 两交点的横坐标为x ′1=0,x ′2=1-k ,所以S2=⎠⎛01-k (x -x 2-kx )d x =(1-k 2x 2-x 33)|1-k 0=16(1-k )3,又知S =16,所以(1-k )3=12.于是k =1-312=1-342.。