等离子弧粉末熔敷PTA
- 格式:doc
- 大小:645.00 KB
- 文档页数:3
1.等离子转移弧堆焊等离子转移弧堆焊硬面装置是利用电弧电离气体在压缩电弧区形成物质第四态“等离子体”作为热源(负极),合金粉末(堆焊材料)通过等离子弧区输送到工件(正极)表面建立熔池,并快速冷却形成金相组织均一与工件呈冶金结合的合金焊层的先进设备。
等离子转移弧堆焊的优点(1)弧柱区温度高,电流密度、堆焊线能量大;保证在高堆焊速度条件下,能形成与基体呈冶金结合,金相组织均一的焊层。
(2)热影响区小:基体材料机械强度损失少,对高合金基材,焊后残余应力和焊后开裂倾向小。
(3)焊层晶粒细化,呈树枝状:相同堆焊材料,PTA 工艺焊层耐磨性高。
(4)焊层稀释率低:焊层稀释率与氧-乙炔工艺相当,比惰性气体钨极焊TIG (GTA)要低,稀释率的高低对常温硬度、高温硬度和耐磨性都有显著影响。
(5)焊层平整,加工量小(省料、省工)(6)便于自动控制,适于大批量、多品种流水作业。
粉末等离子弧堆焊主要工艺指标(1)熔敷率:熔敷率是指单位试件内熔焊在工件上的合金粉末重量。
计量单位是:kg/h 或g/min 。
熔敷率越高则生产效率越高。
(2)粉末利用率:粉末利用率是指单位时间内,从焊枪送出的合金粉末量和熔敷金属重量之比,用百分数表示。
堆焊时,不可能使焊枪送出的合金粉末全部熔敷在工件上,部分粉末由于飞溅而未落入熔池,或以熔珠的形式而流失,并有少量粉末在堆焊过程中氧化,所以粉末利用率很难达到100%。
(3)冲淡率:冲淡率是指工件(基体金属)熔化后混入堆焊层,对堆焊合金的冲淡程度,即:冲淡率=焊层中基体金属总量/焊层合金总量,由于堆焊层成形较平整,熔深基本一致,因此,冲淡率还可以按下式表示:冲淡率~工件熔深/堆焊层厚度。
(4)堆焊层质量:堆焊层质量包括外观质量和内部质量。
外观质量指成形好坏,宏观上有无明显弧坑、缩孔、裂纹、缺肉等缺陷。
内部质量是指堆焊层内部有无气孔、夹渣、裂纹、未焊透等缺陷,微观组织结构的均匀性。
在冲淡率和堆焊质量符合要求的情况下,堆焊层的物理化学性能,如:硬度、耐磨性、耐蚀性、金相组织等主要取决于粉末合金材料的性能,而工艺规范的控制也会对焊层性能产生一定的影响。
机电信息工程C12A闸板等离子堆焊工艺探析徐晓庆(机械工业苏州高级技工学校,江苏苏州215101)摘要:简要介绍等离子焊接方法、堆焊工艺、堆焊工艺技术要点、关键点;钻基合金堆焊材料的性质及种类、C12A材质焊接性能;等离子堆焊主要焊接工艺参数的选择;焊后热处理工艺简介、闸板焊接的实例分析、产品质量检测、焊补工艺技术要求。
关键词:堆焊;低合金耐热钢1焊接方法选择目前工厂常用的焊接工艺方法中能够实现自动化的焊接方法有鸭极气体保护焊(GTAW)、埋弧焊(SAW)和等离子弧焊(PAW)以及电渣焊等。
由于各种堆焊工艺方法的特点不同,亦产生不同的稀释率,且不同的堆焊材料堆焊在不同的基体母材上,由稀释率所产生的作用也不尽相同。
欲获得低稀释率或无稀释率的表面工作层,首先需要选择低稀释率的焊接方法,再根据堆焊材料和堆焊方法,调整焊接工艺,合理地选择堆焊层数和厚度。
表1几种常见焊接方法在堆焊应用中的性能比较序号堆焊方法稀释率(%)熔敷速度(kg/h)备注1埋弧焊30〜60 4.5〜113单丝2等离子弧堆焊5〜150.5〜68粉末3熔化极气体保护焊10〜400.9〜54自保护4电渣焊10〜1415〜75带极综合上表不难看出,等离子焊属于优选的堆焊焊接方法。
2等离子堆焊简介离子弧粉末堆焊是一种先进的堆焊工艺(亦称等离子喷焊,国外称为PTA工艺),是采用氮气等离子弧作高温热源,粉末状合金作填充材料由送粉器按设定量连续供给,借助送粉气流送入焊枪,并吹入电弧中。
其特点是:(1)等离子弧具有电弧温度高、传热率大、稳定性好,熔深可控性强,通过调节相关的堆焊参数,可对堆焊层的厚度、宽度、硬度在一定范围内自由调整。
(2)等离子粉末堆焊后基体材料和堆焊材料之间形成融合界面,结合强度高;堆焊层组织致密,耐蚀及耐磨性好。
(3)基体材料与堆焊材料的稀释减少,材料特性变化小。
(4)利用粉末作为堆焊材料可提高合金设计的选择性,特别是能够顺利堆焊难熔材料,提高工件的耐磨、耐高温、耐腐蚀性。
等离子弧焊接(WP 15)一、等离子弧焊原理及方法分类1. 等离子弧:是等离子体组成。
自由电弧被强迫压缩后,电流密度增加,导致电弧温度升高,电离度增大,中性气体充分电离,就形成等离子弧。
2.等离子弧产生的三要素(1)机械压缩作用:利用水冷喷嘴孔道限制弧柱直径,提高弧柱的能量密度和温度。
(2)热收缩作用:由于水冷喷嘴,在喷嘴内壁建立一层冷气膜,迫使弧柱导电断面进一步减小,电流密度进一步提高。
这叫热收缩,也叫热压缩。
(3)磁收缩作用:弧柱电流本身产生的磁场对弧柱再压缩作用。
也叫磁收缩效应。
电流密度越大,磁收缩作用越强。
3.等离子弧的特点(1)能量集中(能量密度105~6 W/cm²TIG自由电弧<10 4W/cm²)。
(2)温度高(18000K~24000K)。
图1 自由电弧和等离子弧的比较图4.等离子弧的三种基本形式(1)非转移型等离子弧钨极为负,喷嘴为正,钨极与喷嘴之间产生等离子弧。
(等离子束焊接)图2 非转移型等离子弧示意图(2)转移型等离子弧钨极为负,工件为正,钨极与喷嘴之间先引弧后,转移到钨极与工件之间产生等离子弧。
(等离子弧焊接)图3 转移型等离子弧示意(3)联合型等离子弧非转移型和转移型弧同时并存。
主要用于微束等离子弧焊、粉末堆焊等方面。
图4 联合型等离子弧示意图5.等离子弧焊基本方法(1)小孔型等离子弧焊(穿孔、锁孔、穿透焊)利用能量密度大和等离子流力大的特点,将工件完全熔透并产生一个贯穿工件的小孔,熔化金属被排挤在小孔的周围,沿着电弧周围的熔池壁向熔池后方移动,使小孔跟着等离子弧向前移动,形成完全熔透的焊缝。
一般大电流等离子弧(100~300安培)时采用该方法。
图5 小孔型等离子弧焊焊缝成形原理(2)熔透型等离子弧焊特点:离子气流量小,弧柱压缩程度较弱时,工件只熔化而不产生小孔效应。
用途:薄板单面焊双面成形,厚板多层焊。
图6 熔透型等离子弧焊焊缝成形原理(3)微弧(束)等离子弧焊30安培以下熔透型焊接方法为微弧(束)等离子弧焊。
等离子弧加工等离子弧加工是利用等离子弧的热能对金属或非金属进行切割、焊接和喷涂等的特种加工方法。
1955年,美国首先研究成功等离子弧切割。
产生等离子弧的原理是:让连续通气放电的电弧通过一个喷嘴孔,使其在孔道中产生机械压缩效应;同时,由于弧柱中心比其外围温度高、电离度高、导电性能好,电流自然趋向弧柱中心,产生热收缩效应,同时加上弧柱本身磁场的磁收缩效应。
这3种效应对弧柱进行强烈压缩,在与弧柱内部膨胀压力保持平衡的条件下,使弧柱中心气体达到高度的电离,而构成电子、离子以及部分原子和分子的混合物,即等离子弧。
原理等离子弧切割与焊接是现代科学领域中的一项新技术。
它是利用温度高达15000~30000℃的等离子弧来进行切割和焊接的工艺方法。
这种新的工艺方法不仅能对一般材料进行切割和焊接,而且还能切割和焊接一般工艺方法难以加工的材料。
等离子弧加工流程电弧就是中性气体电离并维持放电的现象。
若使气体完全电离,形成全部由带正电的正离子和带负电的电子所组成的电离气体,就称为等离子体。
一般的焊接电弧是一种自由电弧,弧柱的截面随功率的增加而增大,电弧中的气体电离不充分,其温度被限制在5730~7730℃。
若在提高电弧功率的同时,对自由电弧进行压缩,使其横截面减小,则电弧中的电流密度就大大提高,电离度也随之增大,几乎达到全部等离子状态的电弧叫等离子弧。
对自由电弧进行的压缩作用称为压缩效应。
压缩效应有如下三种形式:1)、机械压缩效应在钨极(负极)和焊件(正极)之间加上一个高电压,使气体电离形成电弧,当弧柱通过特殊孔形的喷嘴的同时,又施以一定压力的工作气体,强迫弧柱通过细孔,由于弧柱受到机械压缩使横截面积缩小,故称为机械压缩效应。
2)、热收缩效应当电弧通过喷嘴时,在电弧的外围不断送入高速冷却气流(氮气或氢气等)使弧柱外围受到强烈冷却,电离度大大降低,迫使电弧电流只能从弧柱中心通过,导致导电截面进一步缩小,这时电弧的电流密度大大增加,这就是热收缩效应。
粉末等离子弧堆焊技术1. 产生背景粉末等离子弧堆焊技术是现代工业生产中能适应各种高合金高性能材料堆焊要求的一种焊接方法,而且稀释率可控制在5%~15%之间。
但如果使用常规的粉末等离子孤堆焊技术,希望得到小于5%稀释率时,所能获得的熔敷速度均在6kg /h以下。
随着现代工业的发展,特别是对大面积高性能耐磨堆焊的需求,国内外开展了先进的高效,低稀释率粉末等离子弧堆焊技术研究。
70年代美国曾研究了“高能等离子孤堆焊技术”,其功率达80kW,后捷克又发展了一种液稳等离子孤堆焊设备,熔敷速度达56kg/h。
但稀释率仍在20%以上,90年代德国成功地研制了熔敷速度高达70kg/h稀释率能控制在10%以下的粉末等离子孤堆焊技术;国内90年代中也开始研究该技术,并已取得熔敷速度达15kg/h,稀释率能控制在l%以下的可喜成果。
2. 技术内容和技术关键传统的粉末等离子孤堆焊技术没能很好地解决熔敷速度和稀释率之间的矛盾,主要由于:第一,对焊接过程熔化粉末和母材的能量来源只注意来自电弧的热能,对其他形式的能量,如粉末飞行的动能注意不够。
其次,以往偏重研究能量的来源而忽视对能量消耗的研究。
国内最近通过对等离子弧的压缩特性、焰流特性及粉末在等离子孤束中的运动和加热规律的研究了解了喷嘴直径、粉末会交点到工件的距离等因素对粉末飞行速度和粉末吸收热量的影响规律(见图1,图2),在此基础上得出了高效低稀释率粉末等离子弧堆焊技术与常规粉末等离子孤堆焊技术的不同点,即它的关键技术参数是:焊枪喷嘴的压缩孔径D和粉末会交点到工件的距离L。
传统的粉末等离子弧堆焊技术为了获得小的稀释率,往往采用喷嘴内径较大,甚至接近自由电弧的直径(4.0~8.0mm),压缩比较小(0.8~0.14)的弱压缩等离子弧。
但如果考虑粉末飞行速度对结合效果的影响,则当粉末具有较高的速度和动能时,母材只须一微层处于熔化状态(即“发汗”状态),以高速飞行的粉末打到母材上,会产生良好的结合,此时母材的稀释率极低。
0引言在实际生产中,机械设备和零件的失效往往是不可避免的。
导致机械设备失效的原因有很多,其中最主要的原因是机械表面的摩擦导致磨损[1]。
摩擦是摩擦副表面在相互滑动中发生能量转换,并产生能量损耗的过程;而磨损则是由摩擦副之间力学、物理、化学作用造成的表面损伤和材料剥落[2]。
据统计,摩擦磨损造成高达数十亿元的直接经济损失[3]。
等离子熔敷技术是以等离子束作为热源,将合金粉末喷涂在基体表面,而使基体表面获得我们需要的特殊性能的新型表面技术。
在高温等离子束的作用下,将送粉器中的合金粉末和工件表层同时熔化,形成熔池[4]。
这是一个快速非平衡凝固过程,当等离子束离开以后熔池在空气中快速冷却,形成冶金结合的涂层[5]。
1试验材料和方法选用Q235钢作为基体材料,其组织是铁素体和珠光体,Q235的屈服强度在235MPa左右,焊接性能良好,综合性能良好且用途广泛,适合作为熔敷的基体材料。
采用天津铸金表面工程材料公司生产的铁粉,粒度为100-270。
熔敷设备采用的是PTA-400E4-ST型数控粉末等离子喷焊机,是由武汉材料保护研究所生产的。
该喷焊机主要由四部分组成,分别是喷焊电源、喷焊控制柜、喷焊操作机和焊枪。
测量试样的维氏硬度采用的是HVS-1000A型数显显微硬度计,该设备的硬度测量范围为5-3000HV,能够测量陶瓷、钢、渗碳层和各种金属的维氏硬度,适用于微小件及超薄件的维氏硬度测量。
对试样进行摩擦磨损试验的设备采用的是UMT-2多功能摩擦磨损试验机,该设备能够加载0-200N,转速在最高可达3000rpm,温度应控制在1000℃以下,湿度控制在5-95%之间,试验选用的是球对盘的摩擦形式,使用的对磨材料是Gr15钢球。
在进行等离子熔敷之前要先对Q235钢材表面进行打磨,去除表面的氧化层、铁锈和杂质;其次,用酒精清洗表面,去除油污。
熔敷前将粉末预先放入电阻炉内进行烘干,防止高温生成的水蒸气进入涂层,形成空洞,从而影响涂层的质量。
等离子粉末熔敷
1.等离子熔敷原理
等离子焊接利用等离子弧作为热源的焊接方法。
气体由电弧加热产生离解,在高速通过水冷喷嘴时受到压缩,增大能量密度和离解度,形成等离子弧。
它的稳定性、发热量和温度都高于一般电弧,因而具有较大的熔透力和焊接速度。
形成等离子弧的气体和它周围的保护气体一般用氩。
根据各种工件的材料性质,也有使用氦或氩氦、氩氢等混合气体的
2.等离子焊接特点
1)电弧能量高,焊接热影响区小,焊接形变很小;
2)弧柱细长,穿透力强,薄的工件无需开坡口,缩短准备时间
3)速度快,是普通氩焊的3-6倍;
4)弧柱刚性大,由于小孔效应,实现了单面焊双面成型;
5)焊缝缺陷少,可焊材料多,焊接质量高;
6)卓越的重复生产性,电极缩在喷嘴内,不易污染和烧损。
3.等离子焊机
离子焊机型号
等离子焊接电流范围:2-250A
等离子焊接电流范围:0.5-30A
焊机组成:电源送粉器冷切系统(水箱)喷枪手推车
4.等离子焊接的优点
安全系数高(无易燃易爆气体)
节能环保(不产生co,co2,只用电)
效率高,稳定性高,(传统焊接温度低,高热辐射,存在危险)
携带方便
5.公司等离子焊机优点
有报警程序,保护机器人
全触摸屏,数控操作,全自动电脑控制
有存储功能
三维数控定位,精准度高,送粉器流量精确
稳定性好,方便搬运
一次堆焊的厚度----------0.5-5mm左右,建议不要超过0.3mm
一次堆焊的宽度----------2-10mm左右
粉末粒度-----------50-300目
熔深平整,稀释率非常低
从图中可以看出我公司的焊接效果几乎没有余量,我司送粉均匀,送粉精准。
等离子焊接宽度:
6.市场运用
不锈钢管道加工特殊化工容器军工装备气氛工业炉染整设备
不锈钢储运罐制药设备阀门堆焊低温气瓶食品机械。