假设检验例题讲解
- 格式:docx
- 大小:189.52 KB
- 文档页数:11
卡方检验例题与解析卡方检验是一种常见的假设检验方法。
它可以用于判断两个分类变量之间是否存在关联。
在实际应用中,卡方检验常常被用于分析调查数据、医学研究以及质量控制等领域。
下面我们就以一个卡方检验的例题来详细讲解该方法的步骤和解析。
例题:某医院调查100名糖尿病患者的主要症状和服药情况,结果如下表所示。
其中0表示未服药,1表示已服药,结果表格中的数值为各种情况下的人数。
| | 服药情况 | 未服药 | 已服药 || :- | :- | :- | :- || 症状 | 无 | 30 | 20 || | 微弱 | 10 | 10 || | 轻度 | 25 | 15 || | 中度 | 20 | 5 || | 重度 | 5 | 0 |问题:主要症状是否与服药情况有关?步骤1:构造假设首先,我们要明确研究的问题是主要症状是否与服药情况有关。
因此,我们要构造如下的假设:- 零假设 H0:主要症状和服药情况之间不存在关联,即服药情况对主要症状没有影响。
- 备择假设 H1:主要症状和服药情况之间存在关联,即服药情况对主要症状有影响。
步骤2:计算期望频数为了进行卡方检验,我们需要先计算期望频数。
期望频数是指在假设零假设 H0 成立的情况下,我们预计每个分类变量的频数应该是多少。
具体地,我们可以用以下公式来计算期望频数:期望频数 = (行总计数× 列总计数) ÷ 样本总计数在本例中,样本总计数为 100,行总计数为 5,列总计数为 2。
因此,我们可以使用如下的表格来计算期望频数:| | 服药情况 | 未服药 | 已服药 | 行总计数 | 期望频数(未服药) | 期望频数(已服药) || :- | :- | :- | :- | :- | :- | :- || 症状 | 无 | 30 | 20 | 50 | 25 | 25 || | 微弱 | 10 | 10 | 20 | 10 | 10 || | 轻度 | 25 | 15 | 40 | 20 | 20 || | 中度 | 20 | 5 | 25 | 12.5 | 12.5 || | 重度 | 5 | 0 | 5 | 2.5 | 2.5 || 列总计数 | 70 | 50 | 100 |步骤3:计算卡方值和自由度计算卡方值的公式如下:X² = ∑ [(观察频数 - 期望频数)² / 期望频数]其中,观察频数是指实际样本中各分类变量的频数,期望频数是指在假设 H0 成立的情况下,我们预计各分类变量的频数。
第七章假设检验实例:一项新的减肥产品在广告中声称:服用该产品的第一周内,参加者的体重平均至少可以减轻8磅。
现随机抽取40位服用该减肥产品的样本,结果显示:样本的体重平均减少7磅,标准差为3.2磅。
假定显著性水平为0.05.问:该广告是否是属实的?消费者该不该信赖它呢?有人说大学中男生的学习成绩比女生好。
现从一个学校中随机抽取了25名男生和16名女生,对他们进行同样题目的测试,测试结果表明,男生的平均成绩为82分,标准差为10分;女生的平均成绩为78分,标准差为7分。
假定显著性水平为0.05,问:调查数据能否支持该人的结论?回答这些问题我们需要进行假设检验!一、假设检验的基本问题(一)假设检验的定义假设检验—也称显著性检验,它是先对总体参数提出某种假设,然后利用样本信息判断假设是否成立的过程。
(二)假设检验的基本思想假设检验的基本思想即小概率事件原理。
小概率事件原理——即小概率事件在一次试验中是几乎不可能发生的。
也就是说,如果提出的总体的某个假设是真实的,那么不利于或不可能支持这一假设的小概率事件A在一次试验中几乎是不可能发生的,要是在一次试验中事件A发生了,我们就有理由怀疑这一假设的真实性,并拒绝这一假设。
(三)假设检验的基本形式假设:1、原假设:通常将研究者想收集证据予以反对的假设,也称为零假设,用H0表示。
2、备择假设:通常将研究者想收集证据予以支持的假设,或称为研究假设,用H1表示。
根据备择假设有无特定的方向,可将假设检验的形式分为双侧检验和单侧检验。
(1)双侧检验——备择假设没有特定的方向性,并含有符号“”的假设检验;(2)单侧检验——备择假设具有特定的方向性,并含有符号“<”或“>”的假设检验; 在单侧检验中,根据研究者感兴趣的方向不同: 左侧检验:研究者感兴趣的备择假设方向为“<”的假设检验;右侧检验:研究者感兴趣的备择假设方向为“>”的假设检验。
单侧检验单侧检验左侧检验右侧检验假设检验的表达式假设原假设备择假设双侧检验00:θθ=H 01:θθ≠H 00:θθ≥H 01:θθ<H 00:θθ≤H 01:θθ>H例1:消费者协会接到消费者投诉,指控某品牌纸包装茶叶存在重量不足,有欺骗消费者之嫌。
假设检验求拒绝域的例题假设检验是统计学中常用的一种方法,用于判断某个假设是否成立。
在进行假设检验时,我们需要确定一个拒绝域,如果样本观测值落在拒绝域内,则拒绝原假设;反之,如果样本观测值落在拒绝域外,则接受原假设。
下面我将给出一个例题来说明如何求解拒绝域。
假设有一家电子公司声称他们生产的电视机平均寿命超过5年,现在我们想要进行假设检验来验证这个说法。
我们采集了一组样本数据,包括10台电视机的寿命(以年为单位),数据如下:4.9,5.2, 5.5, 5.3, 5.8, 4.7, 5.1, 5.4, 5.6, 5.0。
我们的原假设(H0)是,电视机的平均寿命不超过5年,即μ ≤ 5。
备择假设(H1)是,电视机的平均寿命超过5年,即μ > 5。
接下来,我们需要确定拒绝域。
在这个例子中,我们可以使用t 分布进行假设检验。
根据样本数据计算得到样本均值为5.29,样本标准差为0.37。
首先,我们需要确定显著性水平(α),通常取0.05或0.01。
假设我们选择α = 0.05。
接下来,根据样本数据和假设,我们可以计算出 t 统计量的值。
t 统计量的计算公式为:t = (样本均值假设值) / (样本标准差/ √n)。
其中,n为样本容量。
在这个例子中,假设值为5,样本均值为5.29,样本标准差为0.37,样本容量为10。
代入公式计算得到:t = (5.29 5) / (0.37 / √10) ≈ 1.96。
接下来,根据 t 分布表,查找临界值。
对于单侧检验,我们需要找到右侧临界值。
在 t 分布表中,自由度为 n-1 = 9,对应的临界值为t0.05(9) ≈ 1.833。
由于 t 统计量的值1.96大于临界值1.833,落在拒绝域内,因此我们拒绝原假设,即有足够的证据表明这家电子公司声称的电视机平均寿命超过5年是正确的。
在这个例子中,拒绝域是 t > 1.833,即如果 t 统计量的值大于1.833,则拒绝原假设。
假设检验例题引言假设检验是统计学中常用的一种推断方法,用于判断一个统计推断的结论是否可靠。
通常,假设检验的过程包括假设的设定、对样本数据的收集和分析、推断的结论以及结果的解释。
本文将通过一个具体的例子,详细介绍假设检验的步骤和方法。
例题背景假设某家电公司声称他们生产的电视机平均使用寿命超过5年。
我们对该公司的50台电视进行了检测,并记录下每台电视使用的寿命。
现在我们的任务是根据样本数据,判断该公司声称的平均使用寿命是否可信。
假设的设定在进行假设检验之前,我们需要先设定原假设(H0)和备择假设(H1)。
原假设通常是我们需要验证的观点,备择假设则是对原假设的否定。
对于本例,我们的原假设是:该家电公司生产的电视机平均使用寿命超过5年。
备择假设是:该家电公司生产的电视机平均使用寿命不超过5年。
数据收集与分析现在我们已经有了50台电视机的使用寿命数据,下面是样本数据的统计信息:•样本均值(x̄): 5.2年•样本标准差(s): 0.8年接下来,我们需要选择一个适当的假设检验方法。
根据样本数量和总体标准差是否已知,我们可以选择使用t检验或者z检验。
由于总体标准差未知,我们将选择使用t检验。
在进行t检验前,我们还需要设定显著性水平(α),它表示我们能够接受原假设的风险。
常用的显著性水平有0.05和0.01。
在本例中,我们选择α为0.05,意味着我们能够接受5%的错误率。
推断的结论现在我们可以进行假设检验了。
根据样本数据和设定的假设,我们可以计算出t值。
根据t值和t分布的临界值,我们可以判断是否拒绝原假设。
首先,我们计算出t值的公式如下:t值公式t值公式其中,x̄表示样本均值,μ表示总体均值,s表示样本标准差,n表示样本数量。
我们将通过计算得到的t值与t分布的临界值进行比较。
根据t检验的临界值表,当自由度为49(即n-1=50-1)时,对应的双侧检验的临界值约为2.01。
假设计算得到的t值为3.0,显著性水平为0.05。
关于假设检验的详细总结与典型例题假设检验是数一考生普遍反映非常头疼的一块内容,因为它入门较难,其思想在初次复习时理解起来较难。
虽然这一部分在历年真题中考查次数很少,但为了做到万无一失,我们也应该准备充分,何况相对来说这一部分内容的难度和变化并不大。
为了让各位考生对假设检验有一个全面深入的理解和掌握,我们给出如下总结与例题。
对于假设检验,首先要理解其基本原理,即小概率原理,假设检验的方法即是从此原理衍生而来;其次,要掌握其步骤,会根据显著性水平α,即第一类心理学考研错误,来求拒绝域与接收域,其求法要根据不同的条件来套用公式,能根据理解推导公式是上策,如果时间不够,可以选择记忆各种不同条件下的求拒绝域的公式。
最后,相比之下两个正态总体参数的假设检验的考查可能性要低于一个正态总体参数的假设检验。
假设检验的基本概念数理统计的基本任务是根据样本推断总体,对总体的分布律或者分布参数作某种假设,然后根据抽得的样本,运用统计分析的方法来检验这一假设是否正确,从而作出接受假设或者拒绝假设的决定,这就是假设检验.根据实际问题提出的假设0H 称为原假设,其对立假设1H 称为备择假设. 假设检验中推理的依据是小概率原理:小概率事件在一次试验中实际上不会发生. 假设检验中的小概率α称为显著性水平,通常取0.05α=或者0.01α=.假设检验中使用的推理方法是:为了检验原假设0H 是否成立,我医学考研论坛们先假定原假设0H 成立. 如果抽样的结果导致小概率事件在一次试验中发生了,根据小概率原理,有理由怀疑0H 的正确性,从而拒绝0H ,否则接受0H .假设检验的步骤⑴根据实际问题提出原假设0H 和备择假设1H ; ⑵确定检验统计量T ;⑶根据给定的显著水平α,查概率分布表,确定拒绝域W ;⑷利用样本值计算统计量T 的值t ,若t W ∈,则拒绝0H ,否则接受0H .假设检验中可能犯的两类错误由于小概率事件还是可能发生的,根据小概率作出的判断可能是错误的. 事件0H 真而拒绝0H ,称为第一类(弃真)错误,犯第一类错误的概率为{}0P t W H α∈≤,因此显著性水平α是用来控制犯第一类错误的概率的. 0H 假而接受0H ,称为第二类(纳伪)错误,犯第二类错误的概率为{}1P t W H ∉,记作β.典型例题1.136,,X X 是取自正态总体(,0.04)N μ的简单随机样本,检验假设0:0.5H μ=,备择假设11:0.5H μμ=>,检验的显著水平0.05α=,取否医学考研论坛定域为X c >,则c = ,若10.65μ=,则犯第二类错误的概率β= .解 ⑴0H 成立时,0.04~(0.5,)36X N , {}00.50.051()0.1/3c P X c H αΦ-==>=-,0.5()0.95(1.645)0.1/3c ΦΦ-==,0.51.6450.1/3c -=,得0.5548c =.⑵1H 成立时,0.04~(0.65,)36X N{}10.55480.65()( 2.856)0.1/3P X c H βΦΦ-=≤==-.1(2.856)10.99790.0021Φ=-=-=2.设总体20~(,)X N μσ,20σ已知,检验假设00:H μμ=,备择假设10:H μμ>,取否定域为X c >,则对固定的样本容量n ,犯第一类错误的概率α随c 的增大而 .(减小)解 0H 成立时,200~(,)X N nσμ,犯第一类(弃真)错误的概率{}001(/P X c H nαΦσ=>=-,故犯第一类错误的概率α随c 的增大而减小.一个正态总体2(,)N μσ参数的假设检验 ⑴ 2σ已知,关于μ的检海文考研验(u 检验) 检验假设00:H μμ= 统计量X U =拒绝域2U u α>检验假设00:H μμ>统计量X U =拒绝域U u α<-检验假设00:H μμ<统计量X U =拒绝域U u α>⑵2σ未知,关于μ的检验(t 检验) 检验假设00:H μμ=统计量X t =拒绝域2(1)t t n α>-检验假设00:H μμ> 统计量0/X t S n = 拒绝域(1)t t n α<--检验假设00:H μμ< 统计量0/X t S n=拒绝域(1)t t n α>-⑶μ未知,关于2σ的检验(2χ检验) 检验假设2200:H σσ=统计量2220(1)n S χσ-=拒绝域222(1)n αχχ>-或者2212(1)n αχχ-<-检验假设2200:H σσ>统计量2220(1)n S χσ-=拒绝域221(1)n αχχ-<-检验假设2200:H σσ< 统计量2220(1)n S χσ-= 拒绝域22(1)n αχχ>-▲拒绝域均采用上侧分位数.两个正态总体21(,)N μσ、22(,)N μσ参数的假设检验.⑴两个正态总体21(,)N μσ、22(,)N μσ均值的假设检验(t 检验) 检验假设012:H μμ=统计量X Yt =拒绝域122(2)t t n n α>+-检验假设012:H μμ>统计量X Yt =拒绝域12(2)t t n n α<-+-检验假设012:H μμ<统计量X Yt =拒绝域12(2)t t n n α>+-⑵两个正态总体211(,)N μσ、222(,)N μσ方差的假设检验(F 检验) 检验假设22012:H σσ=统计量2122S F S = 拒绝域122(1,1)F F n n α>--或者1212(1,1)F F n n α-<--检验假设22012:H σσ>统计量2122S F S = 拒绝域112(1,1)F F n n α-<--检验假设22012:H σσ< 统计量2122S F S = 拒绝域12(1,1)F F n n α>--▲拒绝域均采用上侧分位数. 典型例题1.设n X X X ,,,21 是来自正态总海文考研体2(,)N μσ的简单随机样本,其中参数2,μσ未知,记22111,(),n ni i i i X X Q X X n ====-∑∑则假设0:0H μ=的t 检验使用统计量t = .解 统计量2(1)//(1)n n XX nXt S n Q n -===-2.某酒厂用自动装瓶机装酒,每瓶规定重500克,标准差不超过10克,每天定时检查,某天抽取9瓶,测得平均重X =499克,标准差S =16.03克. 假设瓶装酒的重量X 服从正态分布.问这台机器是否工作正常?(05.0=α).解 先检验0H :500μ=,统计量X t =, 拒绝域0.025(8) 2.3060t t >=,4995000.18716.03/3X t -===-,接受0H ;再检验0H ':2210σ≤,统计量222(1)10n S χ-=, 拒绝域220.05(8)15.507χχ>=, 22222(1)816.0320.5571010n S χ-⨯===,拒绝220:10H σ'≤, 故该机器工作无系统误差,但不稳定3.设127,,,X X X 是来自正态总体211(,)N μσ的简单随机样本,设128,,,Y Y Y 是来自正态总体222(,)N μσ的简单随机样本,且两个样本相互独立,它们的样本均值分别为13.8,17.8X Y ==,样本标准差123.9, 4.7S S ==,问在显著性水平0.05下,是否可以认为12μμ<?解 先检验0H :2212σσ=,检验统计量2122S F S =,拒绝域0.025(6,7) 5.12F F >=或者0.9750.02511(6,7)(7,6) 5.70F F F <==,221222 3.90.68854.7S F S ===,接受0H ; 再检验0H ':12μμ<,统计量1211w X Yt S n n =+, 拒绝域0.05(13) 1.7709t t >=,1.7773X Yt ==-,接受0H ',即可以认为12μμ<. ▲检验两个正态总体均值相等时,应先检验它们的方差相等.。
假设检验一、单样本总体均值的假设检验 .................................................... 1 二、独立样本两总体均值差的检验 ................................................ 2 三、两匹配样本均值差的检验 ........................................................ 4 四、单一总体比率的检验 ................................................................ 5 五、两总体比率差的假设检验 .. (7)一、单样本总体均值的假设检验例题:某公司生产化妆品,需要严格控制装瓶重量。
标准规格为每瓶250 克,标准差为1 克,企业的质检部门每日对此进行抽样检验。
某日从生产线上随机抽取16 瓶测重,以95%的保证程度进行总体均值的假设检验。
x t μ-=data6_01 样本化妆品重量 SPSS 操作:(1)打开数据文件,依次选择Analyze (分析)→Compare Means (比较均值)→One Sample T Test (单样本t 检验),将要检验的变量置入Test Variable(s)(检验变量);(2)在Test Value (检验值)框中输入250;点击Options (选项)按钮,在Confidence Interval(置信区间百分比)后面的框中,输入置信度(系统默认为95%,对应的显著性水平设定为5%,即0.05,若需要改变显著性水平如改为0.01,则在框中输入99 即可);(3)点击Continue(继续)→OK(确定),即可得到如图所示的输出结果。
图中的第2~5 列分别为:计算的检验统计量t 、自由度、双尾检验p-值和样本均值与待检验总体均值的差值。
使用SPSS 软件做假设检验的判断规则是:p-值小于设定的显著性水平Ɑ时,要拒绝原假设(与教材不同,教材的判断标准是p<Ɑ/2)。
第十章假设检验辅导第一节假设检验的基本问题1. 假设检验首先一个步骤是建立H o(零假设),本章后一部分例题均省去了这一步(从解题来讲这一步确实可以省略),但是应该清楚:任何一种统计量的假设检验,其出发点都是对H o的检验。
统计结论是对H o能否被拒绝作出推断。
2. 假设检验的基本思想是一种“反证法”式的推理,即通过检验H o的真伪来反证研究假设H1的真伪,若H o为真,则H1必为假,而H o为假,H1即为真,而且无论作出H o是真还是假的结论都是在一个概率水平意义上的推断。
3. 假设检验中的“显著”与实际问题中效果的“显著”既有联系又有区别。
前者是统计学概念而后者是专业上常用的术语,以两个样本平均数差异为例,当t检验的结果在0.05水平上“显著”,这是从统计学意义来说由样本平均数之间的差异可以作出“两个总体平均数存在差异”的结论。
但两总体平均数之间的差异是否具有专业意义(即有否实际上的“显著效果”)还要根据专业上的标准而定。
就是说,统计结论“显著”并不一定意味着实际效果的“显著”。
在具体应用假设检验时,一定要根据各种条件,使用相应的公式,不可错用,尤其是平均数差异的t检验,条件较多,相应的公式不少,切不能以一代全。
每一种统计检验方法都有它的使用条件和对数据资料的要求,在实际应用中,一定要注意它们的使用条件和应用范围,要对相应的前提条件进行检验和证明。
第二节平均数差异显著性检验平均数的显著性检验是常用的参数检验的方法。
平均数的显著性检验分两种情况,其一是关于样本平均数与总体平均数差异的显著性检验,在总体服从正态分布,总体方差已知的情况下,用Z检验;总体方差未知的情况下,用t检验。
其二是平均数差异的显著性检验,在两个总体都服从正态分布,总体方差均已知的情况下,用Z检验(相关样本和独立样本所用统计量不同);在两个总体都服从正态分布,但是总体方差未知时,用t检验(所用检验统计量方法与两个总体是否独立以及方差是否相等有关)。
假设检验参数估计是统计推断的一个方面,统计推断的另一方面就是假设检验。
这2种推断方法都是研究总体参数的情况,但假设检验是研究如何运用样本得到的统计量来检验事先对总体参数所做的假设是否正确,是否具有某种性质或数量特征。
本章在讨论假设检验基本问题的基础上,着重研究总体平均数和2个总体平均数之差的假设检验、总体比率和2个总体比率之差的假设检验以及总体方差的假设检验等。
第一节假设检验的基本问题一、什么是假设检验一个说明统计假设检验基本推论过程的例子:一名被告正在受到法庭的审判。
根据英国的法律,先假定被告是无罪的,于是,证明他有罪的责任就是原告律师的事情了。
用假设检验的术语表示,那就是要建立一个假设,记为H0:被告是无罪的。
H0称为原假设或零假设。
另一个可供选择的假设记作H1:被告是有罪的。
H1称为备择或替代假设。
法庭陪审团要审查各种证据,以确定原告律师是否证实了这些证据与无罪这一基本假设不一致。
如果陪审员们认为证据与不一致,他们就拒绝该假设而接受其备择假设H1,即认为被告有罪。
用统计术语来说,原假设H0是接受检验的假设。
备择假设H1是当原假设被否定时另一种可成立的假设。
原假设和备择假设相互对立,在任何情况下只能有一个成立。
如果接受H0就必须拒绝H1;拒绝H0就必须接受H1。
例:某公司要检验一批新进口的薄钢板是否符合平均厚度为5毫米的规定,那么就是假设这批货(总体)的平均厚度(µ)是5毫米。
然后从这批货中按随机抽样的方法抽取样本并计算样本的平均厚度,以此来检验所做假设的正确性。
本例中需要被检验、被证实的原假设可记为H0: µ=5mm,(即原假设为总体平均厚度等于5mm)。
其备择假设就是H1: µ 5mm,(即这批货平均厚度不等于5毫米)。
总体平均数的假设有3种情况:(1)H0: µ = µ0;H1: µ≠ µ0。
(2)H0: µ≥ µ0;H1: µ < µ0。
单样本T检验按规定苗木平均高达1.60m以上可以出圃,今在苗圃中随机抽取10株苗木,测定的苗木高度如下:1.75 1.58 1.71 1.64 1.55 1.72 1.62 1.83 1.63 1.65假设苗高服从正态分布,试问苗木平均高是否达到出圃要求?(要求α=0.05)解:1)根据题意,提出:虚无假设H0:苗木的平均苗高为H0=1.6m;备择假设H1:苗木的平均苗高H1>1.6m;2)定义变量:在spss软件中的“变量视图”中定义苗木苗高, 之后在“数据视图”中输入苗高数据;3)分析过程在spss软件上操作分析,输出如下:表1.1:单个样本统计量N 均值标准差均值的标准误苗高10 1.6680 .08430 .02666表1.2:单个样本检验检验值 = 1.6t df Sig.(双侧) 均值差值差分的 95% 置信区间下限上限苗高 2.551 9 .031 .06800 .0077 .1283 4)输出结果分析由图1.1和表1.1数据分析可知,变量苗木苗高成正态分布,平均值为1.6680m,标准差为0.0843,说明样本的离散程度较小,标准误为0.0267,说明抽样误差较小。
由表1.3数据分析可知,T检验值为2.55,样本自由度为9,t检验的p值为0.031<0.05,说明差异性显著,因此,否定无效假设H0,取备择假设H1。
由以上分析知:在显著水平为0.05的水平上检验,苗木的平均苗高大于1.6m,符合出圃的要求。
独立样本T检验从两个不同抚育措施育苗的苗圃中各以重复抽样的方式抽得样本如下:样本1苗高(CM):52 58 71 48 57 62 73 68 65 56样本2苗高(CM):56 75 69 82 74 63 58 64 78 77 66 73设苗高服从正态分布且两个总体苗高方差相等(齐性),试以显著水平α=0.05检验两种抚育措施对苗高生长有无显著性影响。
解:1)根据题意提出:虚无假设H0:两种抚育措施对苗木生长没有显著的影响;备择假设H1:两种抚育措施对苗高生长影响显著;2)在spss中的“变量视图”中定义变量“苗高1”,“抚育措施”,之后在“数据视图”中输入题中的苗高数据,及抚育措施,其中措施一定义为“1”措施二定义为“2”;3)分析过程在spss软件上操作分析输出分析数据如下;表2.1:组统计量抚育措施N 均值标准差均值的标准误苗高1 1 10 61.00 8.233 2.6032 12 69.58 8.240 2.379表2.2:独立样本检验方差方程的Levene 检验均值方程的 t 检验F Sig. t df Sig.(双侧)均值差值标准误差值差分的 95% 置信区间下限上限苗高1 假设方差相等.005 .946 -2.434 20 .024 -8.583 3.527 -15.940 -1.227 假设方差不相等-2.434 19.296 .025 -8.583 3.527 -15.957 -1.2104)输出结果分析由上述输出表格分析知:在两种抚育措施下的苗木高度的平均值分别为61.00cm;69.58cm。
假设检验
一、单样本总体均值的假设检验
例题:
某公司生产化妆品,需要严格控制装瓶重量。
标准规格为每瓶250 克,标准差为1 克,企业的质检部门每日对此进行抽样检验。
某日从生产线上随机抽取16 瓶测重,以95%的保证程度进行总体均值的假设检验。
x t μ-=
data6_01 样本化妆品重量 SPSS 操作:
(1)打开数据文件,依次选择Analyze (分析)→Compare Means (比较均值)→One Sample T Test (单样本t 检验),将要检验的变量置入Test Variable(s)(检验变量);
(2)在Test Value (检验值)框中输入250;点击Options (选项)
按钮,在Confidence Interval(置信区间百分比)后面的框中,输入置信度(系统默认为95%,对应的显着性水平设定为5%,即,若需要改变显着性水平如改为,则在框中输入99 即可);
(3)点击Continue(继续)→OK(确定),即可得到如图所示的输出结果。
图中的第2~5 列分别为:计算的检验统计量t 、自由度、双尾检验p-值和样本均值与待检验总体均值的差值。
使用SPSS 软件做假设检验的判断规则是:p-值小于设定的显着性水平?时,要拒绝原假设(与教材不同,教材的判断标准是p<?/2)。
从图中可以看到,p-值为,小于,故检验结论是拒绝原假设、接受备择假设,认为当天生产的全部产品平均装瓶重量与250 克有显着差异(拒绝原假设),不符合规定的标准。
图中表格的最后两列,是样本均值与待检验总体均值差值(xi-250)1-?置信区间的下限与上限,待检验的总体均值Test Value 加上这两个值,就构成了总体均值的1-?置信区间。
通过这个置信区间也可以做假设检验:
若这个区间不包含待检验的总体均值,就要在?水平上拒绝原假设。
本例中样本均值与待检验总体均值差值95%置信区间的下限与上限均为负值,因此所构造的总体均值的95%置信区间不可能包含待检验的总体均值250,因此要在的水平上拒绝原假设、接受备择假设,与依据p-值得出的检验结论一致。
注意:除非给出明确结果,SPSS没有单侧检验,SPSS中的p值均为双侧检验的概率p值,如果要进行要单侧检验,将软件给出的p值与2倍的显着性水平进行比较即可,如要求?=,单侧比较时,p值与2?=进行比较.
二、独立样本两总体均值差的检验
例题:
某品牌时装公司在城市中心商业街的专卖店中只销售新款产品且价格不打折,打折的旧款产品则统一在城郊购物中心的折扣店销售。
公司销售部门为制订更合理的销售价格及折扣方法,对购买该品牌时装的顾客做了抽样调查。
分别从光顾城中心专卖店的顾客中随机抽取了36 人,从光顾折扣店的顾客中随机抽取了25 人。
调查发现,光顾专卖店的顾客样本平均月收入水平为万元,而光顾折扣店的顾客样本平均月收入水平为万元。
现在需要判断:光顾这两种店的顾客的总体收入水平是否也存在明显的差异
(“data6_03样本顾客月收入水平”)
x x t =
SPSS 操作:
(1)打开数据文件,依次选择Analyze (分析)→Compare Means (比较均值)→IndependentSample T Test (独立样本t 检验),将要检验的变量置入Test Variable(s)(检验变量),将分组变量置入Grouping Variable (分组变量),并点击Define Groups (定义组)输入两个组对应的变量值;
(2)点击Options (选项)按钮,在Confidence Interval (置信区间百分比)后面的框中,输入置信度(系统默认为95%,对应的显着性水平为5%即,若需要改变显着性水平如改为,则在框中输入99 即可);
(3)点击Continue (继续)→OK(确定)。
得到如图所示的输出结果。
接受原假设
三、两匹配样本均值差的检验
例题:
中学生慢跑试验的例子。
表6-3 是30 名学生慢跑锻炼前后脉搏恢复时间及差值数据,试以的显着性水平检验:学生慢跑锻炼前后脉搏恢复时间是否具有显着差异。
/d d d t s n
μ-=
data6_04 学生慢跑锻炼前后脉搏恢复时间及差值
SPSS 操作:
(1)打开数据文件,依次选择Analyze (分析)→Compare Means (比较均值)→Paired-Sample T Test (匹配样本t 检验),将要检验的两个变量分别置入Paired Variables (成对变量)下面的Variable1(变量1)和Variable2(变量2);
(2)点击Options (选项)按钮,在Confidence Interval (置信区间百分比)后面的框中输入置信度(系统默认为95%,对应的显着性水平为5%,即,若需要改变显着性水平如改为,则在框中输入99 即可);
(3)点击Continue(继续)→OK(确定),即得到如图所示的输出内容。
拒绝原假设、接受备择假设
方法二:
对d进行单样本t检验,原假设:检验值为0
拒绝原假设、接受备择假设
四、单一总体比率的检验
例题:
甲企业产品中使用的微型电动机采购自专门制造这种电动机的乙企业。
合同规定,若一批电动机的次品率不高于5%,甲企业应当接收;若次品率高于5%,则产品要退回,乙企业同时还要承担相应的运输、检验费用和损失。
现有一批电动机到货,抽取100 件进行检验,发现有6 件次品,样本次品率为6%。
试以 的显着性水平检验:该批产品的次品率是否明显地高于规定的标准。
/d d d t s μ-=
data6_06 产品合格率检验
SPSS 操作:
比率属于二项分布,使用SPSS软件做单一总体比率的检验时,可以选择非参数检验(Nonparametric Tests)中的二项分布检验(Binomial Test)或卡方检验(Chi-Square Test)来做。
下面给出利用SPSS实现中单一总体比率的二项分布检验过程。
注意:数据文件需要整理为图6-12所示的形式(见所附数据集“data6_06 产品合格率检验”),检验结果1代表合格品、2代表次品。
二项式检验
类别数字观测到的
比例
检验比
例
精确显着性
水平(单尾)
检验结果组 1合格品96.96.95.436组 2次品4.04
总计100
接受原假设。
五、两总体比率差的假设检验
例题:
某省一项针对女性社会地位的调查结果显示:被调查的1200 名20 至30 岁青年女性中,拥有大专及以上学历者为390 人,占%;被调查的1000 名20 至30 岁青年男性中,拥有大专及以上学历者为306 人,占%。
试以 的显着性水平检验:该省30 岁以下青年女性中,拥有大专及以上学历的比率是否显着地高于青年男性的这一比率。
1
2
12
11
(1)()
p p Z p p n n -=
-+
data6_07 样本的性别及学历情况
SPSS 操作:
检验统计a
学历
Mann-Whitney U
Wilcoxon W
Z
渐近显着性(双
.443尾)
a. 分组变量:性别
不能拒绝原假设。