离散数学期末模拟题
- 格式:doc
- 大小:163.50 KB
- 文档页数:5
《离散数学》期末考试题(A)一、填空题(每小题3分,共15分)1.设}}{},,{{c b a A =,}}{},,{},{{c c b a B =,则)(=⋃B A ,)(=⋂B A ,)()(=A P .2.集合},,{c b a A =,其上可定义( )个封闭的1元运算,( )个封闭的2元运算,( )个封闭的3元运算.3.命题公式1)(↑∧q p 的对偶式为( ).4.所有6的因数组成的集合为( ).5.不同构的5阶根树有( )棵.二、单选题(每小题3分,共15分)1.设A , B 是集合,若A B A =-,则(A)B = ∅ (B) A = ∅ (C)=⋂B A ∅ (D)A B A =⋂2.谓词公式)())()((x R y yQ x P x ∧∃→∀中量词x ∀的辖域为(A))())()((x R y yQ x P x ∧∃→∀ (B))()(y yQ x P ∃→(C))())()((x R y yQ x P ∧∃→ (D))()(y yQ x P ∃→和)(x R3.任意6阶群的子群的阶一定不为(A)4 (B)6 (C)2 (D)34.设n 是正整数,则有限布尔代数的元素个数为(A)2n (B)4n (C)n 2 (D)2n5.对于下列序列,可构成简单无向图的度数序列为(A)3, 3, 4, 4, 5 (B)0, 1, 3, 3, 3 (C)1, 1, 2, 2, 3 (D)1, 1, 2, 2, 2三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1. 设N N N :⨯→f ,)1,()(+=x x x f ,则f 是满射. () 2. 5男5女圆桌交替就座的方式有2880种. () 3. 设),(≤L 是格,对于L z y x ∈,,,若z x y x ⋅=⋅且z x y x +=+,则z y =. () 4. 任何树都至少2片树叶. ()5. 无向图G 有生成树的充要条件是G 为连通图. ( )四、(10分)设C B A ,,和D 是集合,证明)()()()(D B C A D C B A ⨯-⨯⊆-⨯-,并举例说明上式中不能将⊆改为 = .五、(15分)设N 是自然数集合,定义N 上的关系R 如下:y x R y x +⇔∈),(是偶数,1.证明R 是N 上的等价关系.2.求出N 关于等价关系R 的所有等价类.3.试求出一个N 到N 的函数f ,使得)}()(,N ,|),{(y f x f y x y x R =∈=.六、(10分)在实数集合R 中证明下列推理的有效性:因为R 中存在自然数,而所有自然数是整数,所以R 中存在整数.七、(10分)设R 是实数集合,令}0,R ,|),{(≠∈=a b a b a G ,定义G 上的运算如下: 对于任意G d c b a ∈),(),,(,),(),(),(b ad ac d c b a +=⋅,证明),(⋅G 是非Abel 群.八、(10分)若简单平面图G 的节点数7=n 且边数15=m ,则G 是连通图,试证明之.《离散数学》期末考试题(B)一、填空题(每小题3分,共15分)1.设,,},,{{b a b a A =∅},则-A ∅ = ( ),-A {∅} = ( ),)(A P 中的元素个数=|)(|A P ( ).2.设集合A 中有3个元素,则A 上的二元关系有( )个,其中有( )个是A 到A 的函数.3.谓词公式))()(())()((y P y Q y x Q x P x ⌝∧∃∧→∀中量词x ∀的辖域为( ), 量词y ∃的辖域为( ).4.设}24,12,8,6,4,3,2,1{24=D ,对于其上的整除关系“|”,元素( )不存在补元.5.当n ( )时,n 阶完全无向图n K 是平面图,当n 为( )时,n K 是欧拉图.二、单选题(每小题3分,共15分)1.设R 是集合A 上的偏序关系,1-R 是R 的逆关系,则1-⋃R R 是A 上的(A)偏序关系 (B)等价关系 (C)相容关系 (D)以上结论都不成立2.由2个命题变元p 和q 组成的不等值的命题公式的个数有(A)2 (B)4 (C)8 (D)163.设p 是素数且n 是正整数,则任意有限域的元素个数为(A)n p + (B)pn (C)n p (D)pn4.设R 是实数集合,≤是其上的小于等于关系,则(R, ≤)是(A)有界格 (B)分配格 (C)有补格 (D)布尔格5.3阶完全无向图3K 的不同构的生成子图有(A)2 (B)3 (C)4 (D)5 三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1.若一个元素a 既存在左逆元l a ,又存在右逆元r a ,则r l a a =. ( )2.命题联结词→不满足结合律. ( )3.在Z 8 = {0,1,2,3,4,5,6,7}中,2关于“⋅8”的逆元为4. ( )4.整环不一定是域. ( )5.任何),(m n 平面图的面数2+-=n m r . ( )四、(10分)设B A f →:且C B g →:,若g f 是单射,证明f 是单射,并举例说明g 不一定是单射.五、(15分)设},,,{d c b a A =,A 上的关系)},(),,(),,(),,(),,(),,(),,(),,(),,{(c d b d a d c c b c a c c a b a a a R =,1.画出R 的关系图R G .2.判断R 所具有的性质.3.求出R 的关系矩阵R M .六、(10分)利用真值表求命题公式))(())((p q r r q p A →→↔→→=的主析取范式和主合取范式.七、(10分) 边数30<m 的简单平面图G ,必存在节点v 使得4)deg(≤v .八、(10分) 有六个数字,其中三个1,两个2,一个3,求能组成四位数的个数.《离散数学》期末考试题(C)一、填空题(每小题3分,共15分)1. 若n B m A ==||,||,则=⨯||B A ( ),A 到B 的2元关系共有( )个,A 上的2元关系共有( )个.2. 设A = {1, 2, 3}, f = {(1,1), (2,1), (3, 1)}, g = {(1, 1), (2, 3), (3, 2)}和h = {(1, 3), (2, 1), (3,1)},则( )是单射,( )是满射,( )是双射.3. 下列5个命题公式中,是永真式的有( )(选择正确答案的番号).(1)q q p p →→∧)(;(2))(q p p ∨→;(3))(q p p ∧→;(4)q q p p →∨∧⌝)(;(5)q q p →→)(.4. 设D 24是24的所有正因数组成的集合,“|”是其上的整除关系,则3的补元( ),4的补元( ),6的补元( ).5. 设G 是(7, 15)简单平面图,则G 一定是( )图,且其每个面恰由( )条边围成,G 的面数为( ).二、单选题(每小题3分,共15分)1. 设A , B , C 是集合,则下述论断正确的是( ).(A)若A ⊆ B , B ∈ C ,则A ∈ C . (B)若A ⊆ B , B ∈ C ,则A ⊆ C .(C)若A ∈ B , B ⊆ C ,则A ∈ C . (D)若A ∈ B , B ⊆ C ,则A ⊆ C .2. 设R ⊆ A ⨯ A ,S ⊆ A ⨯ A ,则下述结论正确的是( ).(A)若R 和S 是自反的,则R ⋂ S 是自反的.(B)若R 和S 是对称的,则S R 是对称的.(C)若R 和S 是反对称的,则S R 是反对称的.(D)若R 和S 是传递的,则R ⋃ S 是传递的.3.在谓词逻辑中,下列各式中不正确的是( ).(A))()())()((x xB x xA x B x A x ∀∨∀=∨∀(B))()())()((x xB x xA x B x A x ∀∧∀=∧∀(C))()())()((x xB x xA x B x A x ∃∨∃=∨∃(D)),(),(y x xA y y x yA x ∀∃=∃∀4. 域与整环的关系为( ).(A)整环是域 (B)域是整环 (C)整环不是域 (D) 域不是整环5.设G 是(n , m )图,且G 中每个节点的度数不是k 就是k + 1,则G 中度数为k 的节点个数为( ). (A)2n . (B)n (n + 1). (C)nk . (D)m k n 2)1(-+. 三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1.设f : Z → Z ,x x x f 2||)(-=,则f 是单射. ( )2.设ϕ是群G 1到群G 2的同态映射,若G 1是Abel 群,则G 2是Abel 群. ( )3.设),(≤L 是格,对于L z y x ∈,,,若z x y x ⋅=⋅且z x y x +=+,则z y =. ( )4.元素个数相同的有限布尔代数都是同构的. ( )5.设G 是n (n ≥ 11)阶简单图,则G 或G 是非平面图. ( )四、(15分)设A 和B 是集合,使下列各式(1)A B A =⋂; (2)A B B A -=-;(3)A A B B A =-⋃-)()(成立的充要条件是什么,并给出理由.五、(10分) 设S 是实数集合R 上的关系,其定义如下∈=y x y x S ,|),{(R 且是3y x -是整数}, 证明: S 是R 上的等价关系. 六、(10分) 求谓词公式)))()(()(()(x xD y yC y B x xA ∀→∃⌝→→∃的前束范式.七、(10分) 若n 个人,每个人恰有3个朋友,则n 必为偶数,试证明之.八、(10分) 利用生成函数求解递归关系⎩⎨⎧=-+=-2)1(211a n a a n n .《离散数学》期末考试题(D)一、填空题(每小题3分,共15分)1. 设|A | = 5, |B | = 2, 则可定义A 到B 的函数( )个,其中有( )单射,( )个满射.2. 令G (x ): x 是金子,F (x ): x 是闪光的,则命题“金子都是闪光的,但闪光的未必是金子”符号化为( ).3. 设X 是非空集合,则X 的幂集P (X )关于集合的⋃运算的单位元是( ),零元是( ),P (X )关于集合的⋂运算的单位元是( ).4. 不同构的5阶无向树有( )棵.5. 对于n 阶完全无向图K n , 当n 为( )时是Euler 图,当n ≥ ( )时是Hamilton 图,当n ( )时是平面图.二、单选题(每小题3分,共15分)1. 幂集P (P (P (∅))) 为( )(A){{∅}, {∅, {∅}}}. (B){∅, {∅, {∅}}, {∅}}.(C){ ∅, {∅, {∅}}, {{∅}}, {∅}} (D){ ∅, {∅, {∅}}}.2. 设R 是集合A 上的偏序关系,则1-⋃R R 是( ).(A)偏序关系 (B)等价关系 (C)相容关系 (D)以上答案都不对3. 下列( )组命题公式是不等值的.(A))(B A →⌝与B A ⌝∧. (B) )(B A ↔⌝与)()(B A B A ∧⌝∨⌝∧.(C))(C B A ∨→与C B A →⌝∧)(. (D))(C B A ∨→与)(C B A ∨∧⌝.4.下列代数结构(G , *)中,( )是群.(A)G = {0, 1, 3, 5}, “*”是模7加法. (B) G = Q , “*”是数的乘法.(C)G = Z , “*”是数的减法. (D) G = {1, 3, 4, 5, 9}, “*”是模11乘法.5.4阶完全无向图4K 中含3条边的不同构的生成子图有(A)3 (B)4 (C)5 (D)2三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1.函数的复合运算“ ”满足结合律. ( )2. {→⌝,}是最小功能完备联结词集合. ( )3. 实数集R 关于数的乘法运算“⋅”阿贝尔群. ( )4. 任意有限域的元素个数为2n . ( )5. 设G 是n (n 为奇数)简单图,则G 与G 中度数为奇数的节点个数相同. ( )四、(10分)设A 和B 是集合,使B B A =-成立的充要条件是什么,并给出理由.五、(10分) 设R 和S 是集合A 上的对称关系,证明S R 对称的充要条件是R S S R =.六、(15分)分别利用(1)等值演算法和(2)真值表求命题公式))(())((r q p p q r A ∨→→→∨⌝=的主析取范式和主合取范式.七、(10分) 设G 是(n , m )无向图,若n m ≥,证明G 中必存在圈.八、(10分) 在初始条件f (1) = c 下,求解递归关系bn n f n f +⎪⎭⎫ ⎝⎛=22)(,其中b ,c 为常数且kn 2=,k 为正整数.《离散数学》期末考试题(E)一、填空题(每小题3分,共15分)1.设A = {2, {3}, 4, a }, B = {1, 3, 4, {a }}, 则{3}( )A ,{a }( )B ,{{a }}( )B .2. 设A = {1, 2, 3, 4, 5}上的关系R = {(1, 2), (3, 4), (2, 2)}, S = {(4, 2), (2, 5), (3, 1), (1, 3)}, 则=S R { }, =R S { }, =R R { }.3. gcd(36, 48) = ( ),lcm(36, 48) = ( ).4.任意有限布尔代数)1,0,,,,(⋅+B 均与集合代数( )同构,其元素个数为( ).5. 不同构的5阶无向树有( )棵,不同构的5阶根树有( )棵.二、单选题(每小题3分,共15分)1. 在有理数集合Q 上定义运算“*”如下:对于任意x , y ∈ Q ,y x * = x + y – xy ,则Q 关于*的单位元是( ).(A)x . (B)y . (C)1. (D)0.2. 设A = {1, 2, 3}, 下图分别给出了A 上的两个关系R 和S ,则S R 是( )关系.(A)自反. (B)对称. (C)传递. (D)等价.3.令T (x ): x 是火车,B (x ): x 是汽车,F (x , y ): x 比y 快,则“某些汽车比所有的火车慢”符号化为( ).(A)()()),()()(y x H x T x y B y →∀∧∃.(B)()()),()()(y x H x T x y B y ∧∀→∃.(C)()()),()()(y x H x T y B y x ∧→∃∀.(D)()()),()()(y x H x T x y B y →∀→∃.4. 整数集合Z 关于数的加法“+”和数的乘法“⋅”构成的代数结构(Z, +, ⋅)是( ). 1 1 22 3 3G S G R(A)域(B)域和整环(C)整环(D) 有零因子环G≅,则称G为自补图. 5阶不同构的自补图5.设G是简单图,G是G的补图,若G个数为( ).(A)0. (B)1. (C)2. (D)3.三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1. { ∅, {∅}} ∉P(P({∅})). ( )2. 非空1元及2元联结词集合的个数为29-1. ( )3. 群可分为Abel群和非Abel群. ( )4. 元素个数相同的有限域都是同构的. ( )5. 设G是简单图,则G或G是连通图. ( )四、(15分)设C,:, 若gf 是单射,证明f是单射,并举例说明g→:f→gBBA不一定是单射.五、(10分)设A = {a, b, c, d}上的关系R = {(a, b), (b, d), (c, c), (a, c)}, 画出R的关系图,并求出R的自反闭包r(R)、对称闭包s(R)和传递闭包t(R).六、(10分)用CP规则证明下列推理.⌝∨→∨(.⇒),(⌝),→pqssrqrqp→七、(10分)求谓词公式))xyByAxA∀→∨∀∧⌝∃的前束范式.zC((x()))(z(()八、(10分)任意6个人中,一定有3个人彼此认识或有3个人彼此不认识.《离散数学》期末考试题(F)一、填空题(每小题3分,共15分)1. 设A = {1, 2, 3, {1, 2}, {3}}, B = {2, {2,3}, {1}} , 则A–B = { }, B–A = { }, A⊕B = { }.2. 实数集合R关于加法运算“+”的单位元为( ), 关于乘法运算“⋅”的单位元为( ), 关于乘法运算“⋅”的零元为( ).3. 令Z(x): x是整数,O(x): x是奇数,则“不是所有整数都是奇数”符号化为( ).4. 有限域的元素个数为( ), 其中( )且( ).5. 设G 是(7, 15)简单平面图,则G 一定 ( )连通图,其每个面恰由( )条边围成,G 的面数为( ).二、单选题(每小题3分,共15分)1. 函数的复合运算“ ”满足( )(A)交换律. (B)结合律. (C)幂等律. (D)消去律.2. 设集合A 中有4个元素,则A 上的等价关系共有( )个.(A)13 (B)14 (C)15 (D)163.下列代数结构(G , *)中,( )是群.(A)G = {0, 1, 3, 5}, “*”是模7加法. (B) G = Q , “*”是数的乘法.(C)G = Z , “*”是数的减法. (D) G = {1, 3, 4, 5, 9}, “*”是模11乘法.4. 下列偏序集,( )是格.5. 不同构的(5, 3)简单无向图有( )个.(A)4 (B)5 (C)3 (D)2三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1. 设A ,B ,C 是集合,若C A B A ⊕=⊕, 则B = C . ( )2. 逻辑联结词“→”满足结合律. ( )3. 设 (L , ≤)是偏序集,若L 的任意非空子集均存在上确界和下确界,则(L , ≤)是格.( )4. 在同构意义下,有限布尔代数只有,,,),((⋂⋃X P ∅, X ). ( )5. 设G 是简单图,则G 与G 中度数为奇数的节点个数相同. ( )四、(15分) 设C B g B A f →→:,:, 若g f 是满射,证明g 是满射,并举例说明f 不一定是满射.五、(10分) 在整数集合Z 上定义关系R 如下:对于任意∈y x , Z ,y y x x R y x +=+⇔∈22),(.判断R 是否具有自反性、反自反性、对称性、反对称性及传递性.六、(10分)利用真值表求命题公式)())(q p q p A ⌝→↔→⌝=的主析取范式和主合取范式.七、(10分)证明:在至少两个人的人群中,必有两个人有相同个数的朋友.八、(10分)将6阶完全无向图K 6的边随意地涂上红色或蓝色,证明:无论如何涂法,总存在红色的K 3或蓝色的K 3.(ps :答案见离散数学期末复习题(6套)答案文档)。
一、单项选择题(每小题3分,共30分)1.下列为两个命题变元p,q的最小项的是( ) A .p∧q∧⎤ pB .⎤ p∨qC .⎤ p∧qD .⎤ p∨p∨q 2.下列句子不是命题的是( ) A .中华人民共和国的首都是北京 B .张三是学生 C .雪是黑色的D .太好了!3.对于公式(∀x ) (∃y )(P (x )∧Q (y ))→(∃x )R (x ,y ),下列说法正确的是( ) A .y 是自由变元 B .y 是约束变元C .(∃x )的辖域是R(x , y )D .(∀x )的辖域是(∃y )(P (x )∧Q (y ))→(∃x )R (x ,y )4.7.集合A={1,2,…,10}上的关系R={(x ,y )|x +y =10,x ∈A ,y ∈A},则R 的性质是( )A .自反的B .对称的C .传递的、对称的D .反自反的、传递的 5.设论域为{l ,2},与公式)(x xA ∃等价的是( ) A.A (1)∨A (2)B. A (1)→A (2)C.A (1)D. A (2)→A (1)6. 下列关系矩阵所对应的关系具有反自反性的是( ) A .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001110101B .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101100001 C .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001100100D .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0010101017. 下列运算不满足...交换律的是( ) A .a *b =a+2bB .a *b =min(a ,b )C .a *b =|a -b |D .a *b =2ab8..设A 是奇数集合,下列构成独异点的是( ) A.<A ,+> B.<A ,-> C.<A ,×> D.<A ,÷> 9. 右图的最大入度是( ) A .0 B .1 C .2D .3第9题图拟题学院(系): 高密校区 适用专业: 学年 2学期 离散数学 (B卷) 试题标准答案10. 设有向图D 的节点数大于1,D=(V ,E )是强连通图,当且仅当( ) A. D 中至少有一条通路 B. D 中至少有一条回路C. D 中有通过每个结点至少一次的通路D. D 中有通过每个结点至少一次的回路 二、填空题(每空3分,共30分)1.设A ={1,2,3,4},B ={2,4,6},则A -B =________,A ⊕B =________。
一、选择题(每题2分,共20分)1. 下列命题中,正确的是()A. 逻辑真命题一定是逻辑假命题B. 逻辑假命题一定是逻辑真命题C. 逻辑真命题和逻辑假命题都是存在的D. 逻辑真命题和逻辑假命题都不存在2. 设A和B是两个集合,则下列命题中正确的是()A. A∩B = A∪BB. A∩B = A-BC. A∪B = A∩BD. A-B = A∩B3. 设A和B是两个集合,则下列命题中正确的是()A. A⊆B当且仅当A∩B = AB. A⊆B当且仅当A∩B = BC. A⊆B当且仅当A-B = ∅D. A⊆B当且仅当A∪B = B4. 下列命题中,不是逻辑等价命题的是()A. A→B与¬A∨BB. A∧B与A→BC. A∨B与B→AD. A→B与¬B∨A5. 设R是一个关系,下列命题中正确的是()A. R是等价关系当且仅当R是自反的、对称的和传递的B. R是等价关系当且仅当R是自反的、非对称的和传递的C. R是等价关系当且仅当R是非自反的、对称的和传递的D. R是等价关系当且仅当R是非自反的、非对称的和传递的6. 设P和Q是两个命题,则下列命题中正确的是()A. P∧Q的否定是P∨QB. P∧Q的否定是P∧QC. P∨Q的否定是P∧QD. P∨Q的否定是P∧Q7. 设R是一个偏序关系,下列命题中正确的是()A. R是自反的、反对称的和传递的B. R是自反的、对称的和传递的C. R是自反的、非对称的和传递的D. R是非自反的、对称的和传递的8. 设R是一个全序关系,下列命题中正确的是()A. R是自反的、反对称的和传递的B. R是自反的、对称的和传递的C. R是自反的、非对称的和传递的D. R是非自反的、对称的和传递的9. 设R是一个函数,下列命题中正确的是()A. R是单射当且仅当R是满射B. R是单射当且仅当R是自反的C. R是满射当且仅当R是自反的D. R是单射当且仅当R是反对称的10. 设R是一个关系,下列命题中正确的是()A. R是等价关系当且仅当R是自反的、对称的和传递的B. R是等价关系当且仅当R是自反的、非对称的和传递的C. R是等价关系当且仅当R是非自反的、对称的和传递的D. R是等价关系当且仅当R是非自反的、非对称的和传递的二、填空题(每题2分,共20分)1. 在集合A={1, 2, 3}中,A的子集个数是______。
2 离散数学(A 卷) 王军东(答案写在答题纸上,写在试题纸上无效)一、单项选择题(每小题3分,共30分)1.设A , B 是集合,若A B A =-,则(A) B = ∅ (B) A = ∅ (C) =⋂B A ∅ (D) A B A =⋂2.在有理数集合Q 上定义运算“*”如下:对于任意x , y ∈ Q ,y x * = x + y – xy ,则Q 关于*的单位元是( ).(A)x . (B)y . (C)1. (D)0.3.谓词公式)())()((x R y yQ x P x ∧∃→∀中量词x ∀的辖域为(A))())()((x R y yQ x P x ∧∃→∀ (B))()(y yQ x P ∃→(C))())()((x R y yQ x P ∧∃→ (D))()(y yQ x P ∃→和)(x R4.设p :我们划船,q :我们跑步, 则有命题“我们不能既划船又跑步”符号化为( )(A) ⌝ p ∧⌝ q (B) ⌝ p ∨⌝ q (C) ⌝ (p ↔ q ) (D) ⌝ (⌝ p ∨⌝ q ).5.设Z +是正整数集,R 是实数集,f :Z +→R , f (n )=log 2n ,则f ( )A .仅是单射B .仅是满射C .是双射D .不是函数6. 设集合A = {1, 2, 3, 4, 5}上的关系R = {(x , y )|x , y ∈ A 且x + y = 6},则R 的性质是( ).(A) 自反的. (B) 对称的. (C) 对称的、传递的. (D) 反自反的、传递的.7. 下列联结词中,不满足交换律的是( ).(A)∧. (B)∨. (C)⊕. (D) →.8..设G 是n 阶简单无向图,则其最大度)(G ∆( ).(A) > n (B) ≤ n . (C) < n . (D) ≥ n .9. 下列所示的哈斯图所对应的偏序集中能构成格的是( )A .B .C .D .课程考试试题学期 学年 拟题人:校对人:拟题学院(系): 适 用 专 业:10. 设G 是(n , m )图,且G 中每个节点的度数不是k 就是k + 1,则G 中度数为k 的节点个数为( ). (A)2n . (B)n (n + 1). (C)nk . (D)m k n 2)1(-+. 二、填空题(每空3分,共30分)1.设A={1,2},B={2,3},则A-B=_______, A ⊕B=________,2.设A={2,3 },R ⊆A ×A ,R={(2,3), (2,2)},则R 的自反闭包r(R)=__________,对称闭包s(R)=__________。
《离散数学》模拟题北航10秋学期《离散数学》模拟题⼀⼀、单项选择题(本⼤题共15⼩题,每⼩题2分,共30分)1.∑中所有有限长度的串形成的集合记为∑* ,容易证得∑*上的连接运算不满⾜交换律,但满⾜( A ) A .结合律 B .分配律 C .幂等律 D .吸收律 2.Klein 群中元素a,b,c 的阶为( B )。
A .1B .2C .3D .4 3.群G 的元素x 的所有幂的集合为G 的⼦群,称由x ⽣成的⼦群。
记为( A ). A . B .(x) C .x D .[x] 4.交换环是指乘法满⾜( A )。
A .交换律B .结合律C .分配律D .吸收律 5.⾄少有( B )元素的含单位元、⽆零因⼦环称为除环。
A .⼀ B .⼆ C .三 D .四 6.∨,∧满⾜( C )的格称为分配格A .交换律B .结合律C .分配律D .幂等律 7.若L 为有限布尔代数,则( B )正整数n ,L 与含有n 个元素的集合A 的幂集同构。
A .不存在 B .存在 C .有可能存在 8.有向图D 的顶点v 作为边的始点的次数之和称为v 的出度,记为d +(v), v 作为边的终点的次数之和称为v 的⼊度,记为d -(v),v 的度数d(v)= ( A )。
A .d +(v)+d -(v)B .d +(v)C .d -(v)D .d +(v)*d -(v) 9.若通路Г=v 0e 1v 1e 2…e 1v 1 中所有顶点互不相同(所有边⾃然互不相同)时称为( B ) A .初级回路 B .路径 C .复杂通路D .迹 10.在n 阶图中,若⼀顶点存在到⾃⾝的回路,则必存在从该顶点到⾃⾝的长度不超过( B )的回路。
A .n-1 B .n C .n+1 D .2n 11.“⼈总是要死的”谓词公式表⽰为( C )。
(论域为全总个体域)M(x):x 是⼈;Mortal(x):x 是要死的。
A .)()(x Mortal x M →; B .)()(x Mortal x M ∧C .))()((x Mortal x M x →?; D .))()((x Mortal x M x ∧?12. 公式))()((x Q x P x A →?=的解释I 为:个体域D={2},P(x):x>3, Q(x):x=4则A 的真值为( A )。
离散数学期末考试模拟题1一、单项选择题(每小题1分,共15分。
四选一)1、设Φ是一个空集,则下列之一哪一个不成立()。
⊆Φ③、Φ∈{Φ} ④、Φ⊆{Φ}①、Φ∈Φ②、Φ2、如果命题公式G=P∧Q,则下列之一哪一个成立()。
①、G=⌝(P→Q) ②、G=⌝(P→⌝Q) ③、G=⌝(⌝P→Q) ④、G=⌝(⌝P→⌝Q)3、设X、Y是两个集合|X|=n,|Y|=m,则从X到Y可产生()个二元关系。
①、n m②、m n③、m×n ④、2m×n*,⊕>中,∀a,b∈L,a≤b当切仅当下列()成立。
4、在有补分配格<L,*b=b ②、a⊕b=a ③、a'*b=0 ④、a'⊕b=1①、a5、若<G,*>是一个群,则运算“*”一定满足()。
①、交换律②、消去律③、幂等律④、分配律6、量词的约束范围称为量词的()。
①、定义域②、个体域③、辖域④、值域7、下列公式中,()是析取范式。
①、⌝(P∧Q) ②、⌝(P∨Q) ③、(P∨Q) ④、(P∧Q)8、设G是一个12阶循环群,则该群一定有()个不变子群。
①、2 ②、4 ③、6 ④、89、图的构成要素是()。
①、结点②、边③、结点与边④、结点、变和面10、下列图中,()是平面图。
①②③④11、每个非平凡的无向树至少有()片树叶。
①、1 ②、2 ③、3 ④、412、每个无限循环群有()个生成元。
①、1 ②、2 ③、3 ④、413、设R是集合A={1,2,3,4}上的二元关系,R={<2,1>,<2,3>,<1,3>},则下列()不成立。
①、R是自反关系②、R是反自反关系③、R是反对称关系④、R是传递关系14、设G是一个24阶群,a是G中任意一个元素,则a的周期一定不是()。
①、2 ②、8 ③、16 ④、2415、下列命题中,()不是真命题。
①、海水是咸的当切仅当蝙蝠是瞎子②、如果成都是直辖市,那么北京是中国的首都③、若太阳从西边落下,则2是奇数④、夏天冷当切仅当冬天热二、多项选择题(每小题1分,共10分。
大学离散数学期末考试题库和答案一、单项选择题(每题2分,共20分)1. 在集合论中,以下哪个符号表示“属于”?A. ∈B. ∉C. ⊆D. ⊂答案:A2. 如果A和B是两个集合,那么A∪B表示什么?A. A和B的交集B. A和B的并集C. A和B的差集D. A和B的补集答案:B3. 以下哪个命题是真命题?A. ∀x∈N, x^2 > xB. ∃x∈N, x^2 = x + 1C. ∀x∈N, x^2 ≥ xD. ∃x∈N, x^2 < x答案:C4. 在图论中,一个无向图的边数为E,顶点数为V,那么这个图的生成树的边数是多少?A. EB. V-1C. VD. E-1答案:B5. 以下哪个算法是用于解决旅行商问题(TSP)的?A. 动态规划B. 贪心算法C. 分支限界法D. 回溯法答案:D6. 在逻辑中,以下哪个符号表示“蕴含”?A. ∧B. ∨C. →D. ↔答案:C7. 以下哪个是二进制数?A. 1010B. 2A3C. 12BD. ZYX答案:A8. 在关系数据库中,以下哪个操作用于删除表中的行?A. SELECTB. INSERTC. UPDATED. DELETE答案:D9. 以下哪个是布尔代数的基本运算?A. 并集B. 交集C. 差集D. 所有以上答案:D10. 在离散数学中,以下哪个概念用于描述两个集合之间的关系?A. 函数B. 映射C. 序列D. 所有以上答案:D二、多项选择题(每题3分,共15分)11. 以下哪些是集合的基本运算?A. 并集B. 交集C. 差集D. 补集答案:ABCD12. 在图论中,以下哪些是图的基本类型?A. 无向图B. 有向图C. 完全图D. 二分图答案:ABCD13. 在逻辑中,以下哪些是命题逻辑的基本连接词?A. 与(∧)B. 或(∨)C. 非(¬)D. 蕴含(→)答案:ABCD14. 在关系数据库中,以下哪些是SQL的基本操作?A. SELECTB. INSERTC. UPDATED. DELETE答案:ABCD15. 在离散数学中,以下哪些是组合数学的基本概念?A. 排列B. 组合C. 二项式系数D. 图论答案:ABC三、填空题(每题3分,共30分)16. 如果集合A={1, 2, 3},集合B={2, 3, 4},那么A∩B=______。
离散数学期末考试模拟题1一、单项选择题(每小题1分,共15分。
四选一)1、设Φ是一个空集,则下列之一哪一个不成立()。
⊆Φ③、Φ∈{Φ} ④、Φ⊆{Φ}①、Φ∈Φ②、Φ2、如果命题公式G=P∧Q,则下列之一哪一个成立()。
①、G=⌝(P→Q) ②、G=⌝(P→⌝Q) ③、G=⌝(⌝P→Q) ④、G=⌝(⌝P→⌝Q)3、设X、Y是两个集合|X|=n,|Y|=m,则从X到Y可产生()个二元关系。
①、n m②、m n③、m×n ④、2m×n*,⊕>中,∀a,b∈L,a≤b当切仅当下列()成立。
4、在有补分配格<L,*b=b ②、a⊕b=a ③、a'*b=0 ④、a'⊕b=1①、a5、若<G,*>是一个群,则运算“*”一定满足()。
①、交换律②、消去律③、幂等律④、分配律6、量词的约束范围称为量词的()。
①、定义域②、个体域③、辖域④、值域7、下列公式中,()是析取范式。
①、⌝(P∧Q) ②、⌝(P∨Q) ③、(P∨Q) ④、(P∧Q)8、设G是一个12阶循环群,则该群一定有()个不变子群。
①、2 ②、4 ③、6 ④、89、图的构成要素是()。
①、结点②、边③、结点与边④、结点、变和面10、下列图中,()是平面图。
①②③④11、每个非平凡的无向树至少有()片树叶。
①、1 ②、2 ③、3 ④、412、每个无限循环群有()个生成元。
①、1 ②、2 ③、3 ④、413、设R是集合A={1,2,3,4}上的二元关系,R={<2,1>,<2,3>,<1,3>},则下列()不成立。
①、R是自反关系②、R是反自反关系③、R是反对称关系④、R是传递关系14、设G是一个24阶群,a是G中任意一个元素,则a的周期一定不是()。
①、2 ②、8 ③、16 ④、2415、下列命题中,()不是真命题。
①、海水是咸的当切仅当蝙蝠是瞎子②、如果成都是直辖市,那么北京是中国的首都③、若太阳从西边落下,则2是奇数④、夏天冷当切仅当冬天热二、多项选择题(每小题1分,共10分。
湖南工业大学
2009学年上学期考试试题
一、选择题.(每小题2分,总计30)
1.给定语句如下:
(1)15是素数(质数)。
(2)10能被2整除,3是偶数。
(3)你下午有会吗?若无会,请到我这儿来!
(4)2x+3>0.
(5)只有4是偶数,3才能被2整除。
(6)明年5月1日是晴天。
以上6个语句中,是简单命题的为(A),是复合命题的为(B),是真命题的为(C),
是假命题的是(D),真值待定的命题是(E)
A: ①(1)(3)(4)(6) ②(1)(4)(6) ③(1)(6)
B: ①(2)(4) ②(2)(4)(6) ③(2)(5)
C: ①(1)(2)(5)(6) ②无真命题③(5)
D: ①(1)(2) ②无假命题③(1)(2)(4)(5)
E: ①(4)(6) ②(6)③无真值待定的命题
2.将下列语句符号化:
(1)4是偶数或是奇数。
(A)
设p:4是偶数,q:4是奇数
(2)只有王荣努力学习,她才能取得好成绩。
(B)
设p:王荣努力学习,q:王荣取得好成绩
(3)每列火车都比某些汽车快。
(C)
设F(x):x是火车,G(y):y是汽车,H(x,y):x比y快。
A: ① p∨q ② p∧q ③ p→q
B: ① p→q ② q→p ③ p∧q
C: ①∀x∃y ((F(x)∧G(y))→ (H(x,y))
②∀x (F(x)→∃y(G(y)∧H(x,y)))
③∀x (F(x)∧∃y(G(y)∧H(x,y)))
3.设S={1,2,3},下图给出了S上的5个关系,则它们只具有以下性质:R1是
(A),R2是(B),R3是(C)。
A B C:①自反的,对称的,传递的 ②反自反的,对称的 ③自反的
④ 反对称的 ⑤对称的 ⑥自反的,对称的,反对称的,传递的
4. 设S={Ф,{1},{1,2}},则有
(1)(A )∈S
(2)(B)⊆S
(3) P(S)有(C )个元数。
(4)(D )既是S 的元素,又是S 的子集
A: ① {1,2} ② 1
B: ③{{1,2}} ④{1}
C: ⑤ 3 ⑥ 6 ⑦ 7 ⑧ 8
D: ⑨ {1} ⑩Ф
二、证明(本大题共2小题,第1小题10分,第2小题10分,总计20分)
1、用等值演算算法证明等值式
(p ∧q)∨(p ∧⌝q)⇔p
2、构造下面命题推理的证明
如果今天是星期三,那么我有一次英语或数学测验;如果数学老师有事,那么没有数学测验;今天是星期三且数学老师有事,所以我有一次英语测验。
三、计算(本大题共4小题,第1小题5分,第2小题10分,第3小题15分, 总计30分) 1、设()(){}212,,,个体域为
为,整除为<x x Q y x y x P ,求公式: ()()()()()x Q y x P y x →∃∀,的真值。
2、设集合{
}A A ,4,3,2,1=上的关系 {}
4,3,3,2,1,2,2,11,1=R ,求出它的自反闭包,对称闭包和传递闭包。
3、设{},24,12,8,4,2,1=A 上的整除关系{}
212121,,,a a A a a a a R 整除∈=,
R 是否为A 上的偏序关系?若是,则:
1、画出R 的哈斯图;(10分)
2、求它的极小元,最大元,极大元,最大元。
(5分)
四、用推导法求公式()()p q p →→的主析取范式和主合取范式。
(本大题10分)
湖南工业大学
2009学年上学期考试试题
答案:
一、 选择题
1. A:③ B: ③ C:③ D:① E:②
2. A:① B: ② C:②
3. A:③ B: ④ C:⑥
4. A:① B: ③ C:⑧ D:⑩
二、证明题
1. 证明 左边⇔((p ∧q)∨p )∧((p ∧q)∨⌝q)) (分配律)
⇔ p ∧((p ∧q)∨⌝q)) (吸收律)
⇔ p ∧((p ∨⌝q) ∧ (q ∨⌝q)) (分配律)
⇔ p ∧((p ∨⌝q)∧1) (排中律)
⇔ p ∧ (p ∨⌝q) (同一律)
⇔ p (吸收律)
2.解:p :今天是星期三。
q :我有一次英语测验。
r :我有一次数学测验。
s :数学老师有事。
前提:p →(q ∨r) , s →⌝r , p ∧s
结论:q
证明:①p ∧s 前提引入
②p ①化简
③p →(q ∨r) 前提引入
④q ∨r ②③假言推理
⑤s ①化简
⑥s →⌝r 前提引入
⑦⌝r ⑤⑥假言推理
⑧q ④⑦析取三段论
推理正确。
三、计算
1.
()()()()()
()()()()()()()()
()()()()()()()()()()()()()(),1,12,21,112,121,212,22x y P x y Q x y P y Q P y Q P Q P Q P Q P Q ∀∃→⇔∃→Λ→⇔
→Λ→∨→Λ→
()()()()()()()()()()()()
1,11,1,21,2,10,2,21,11,20
110011101
P P P P Q Q ======∴⇔→Λ→∨→Λ→⇔
该公式的真值是1,真命题。
或者 ()()()()()()()()()()()()()
()()()()()()()()()()()()()()()()()()()()
()()T
T T F T T T F T F F T T T T Q P Q P Q P Q P x Q x P x Q x P x x Q y x P y x ⇔∧⇔∨∧∨⇔→∨→∧→∨→⇔→∨→∧→∨→⇔→∨→∀⇔→∃∀22,221,212,111,12,1,,
2、{}
4,4,3,3,2,2,4,3,3,2,1,2,2,11,1)(=R r {}3,4,2,,4,3,21,2,2,1,1,1)(=R s
{}4,14,22,23,1,4,3,3,2,1,22,11,1)(=R t
3、(1) R 是A 上的偏序关系。
(2)极小元、最小元是1,极大元、 最大元是24。
四、
湖南工业大学
2009学年上学期考试试题 ()()()()
()()
()
()()
()()2301p q p p q p p q p p
p q q p q p q →→⇔⌝⌝∨∨⇔∧⌝∨⇔⇔∧∨⌝⇔∧⌝∨∧⇔∴∑
∏,主合取范式,。