光电检测技术与应用 第五章 光电直接探测系统
- 格式:ppt
- 大小:548.50 KB
- 文档页数:73
光电检测方法2.1直接探测2.1.1基本物理过程直接探测是将待检测的光信号直接入射到光探测器的光敏面上,由光探测器将光信号直接转化为电流或电压,根据不同的要求,再经后续电路处理,最后获得有用的信号。
一般,光探测器前可采用光学天线,在其前端还可经过频率滤波和空间滤波处理。
这是为了进一步提高探测效率和减小杂散的背景光。
信号光场可表示为()cos S E t A t ω=,式中,A 是信号光电场振幅,ω是信号光的频率。
则其平均功率P 为(2.1.1)光探测器输出的光电流为(2.1.2)若光探测器的负载电阻为L R ,则光探测器输出的电功率为(2.1.3)光探测器输出的电功率正比于入射光功率的平方。
从而可知,光探测器对光的响应特性包含两层含意,其一是光电流正比于光场振幅的平方,即光的强度;其二是电输出功率正比于入射光功率的平方。
如果入射信号光为强度调制(TM )光,调制信号为()d t 。
从而得式中第一项为直流项,若光探测器输出有隔直流电容,则输出光电流只包含第二项,这就是直接探测的基本物理过程,需强调指出,探测器响应的是光场的包络,目前,尚无能直接响应光场频率的探测器。
2.1.2信噪比设入射到光探测器的信号光功率为S P,噪声功率为n P,光探测器输出的信号电功率为P S,输出的噪声功率为P N。
可得(2.1.5)根据噪声比的定义,则输出功率信噪比为(2.1.6)从上式可以看出I.若,则有(2.1.7)输出信噪比等于输入信噪比的平方。
由此可见,直接探测系统不适于输入信号比小于1或者微弱光信号的探测。
II.若,则输出信噪比等于输入信噪比的一半,即经光—电转换后信噪比损失了3dB ,在实际应用中还是可以接受的。
由此可见,直接探测方法不能改善输入信噪比。
如果考虑直接探测系统存在的所以噪声,则输出噪声总功率为(2.1.9)式中,222NS NB ND i i i ++分别为信号光,背景光和暗电流引起的散粒噪声。
光电探测技术的发展与应用基于光子特性进行电子信息检测、测量和传输的技术,称之为光电探测技术。
自上个世纪60年代以来,光电探测技术在各种应用领域中日渐突出,如通信、生物、环境监测、材料检测、军事等。
本文将简要介绍其发展历程和应用领域。
一、发展历程1. 光电二极管技术(Germanium)早期光电探测技术基本上是利用光电二极管来制作各种探测器。
其中,Germanium光电二极管具有快速响应、较高的灵敏度和较宽的光谱响应范围等特点。
然而,只有在液氮的温度下,才能得到最佳的光电探测性能。
另外,Germanium材料价格昂贵,难以满足量产需求。
2. 萤石探测器技术70年代,随着高纯度萤石晶体制备技术的发展,降低了探测器工作温度,使得大量萤石探测器被大规模的应用于核物理、高能物理实验、开普勒太空望远镜等领域。
萤石探测器有较快的响应时间、较高的能量分辨率、较宽的能量响应范围等特点,但它不适用于高精度的辐射剂量的测量。
3. 光电倍增管(PMT)技术在80年代,由于PMT管的研制开始进入定型阶段,它的检测方式从直接接收光电子的方式改为以荧光物质为介质进行检测光信号。
PMT具有较快的响应速度和较高的灵敏度,广泛应用于天文、核物理、高能物理、弱信号的检测等领域中。
4. 光电探测器阵列技术随着微电子技术、光电工艺技术和化学气相沉积技术等先进技术的发展,光电探测器阵列技术不断进步。
与传统的单光电探测器相比,光电探测器阵列技术的优势在于:信噪比高、测量精度高、可以同时测量多个参数等。
二、应用领域1. 生物医学应用以荧光标记的生物学分子作为探针,利用荧光光谱分析和显微成像技术,实现了对生物分子结构和功能的高度敏感探测。
例如:绿色荧光蛋白、二级结构预测、蛋白质结构等;同时,可以应用于细胞研究、细胞生物学、代谢成像等领域。
2. 信息传输与光通信传统的光纤通信技术在数据传输速度、带宽和距离上受到限制。
在这个时代,光电探测技术的开发对更高速的数据传输具有重要意义。