2020年浙江省丽水中考数学试卷附答案解析版
- 格式:pdf
- 大小:1.23 MB
- 文档页数:17
2020年浙江省丽水市中考数学试卷一、选择题(共10小题,每小题3分,共30分).1.实数3的相反数是()A.3-B.3C.13-D.132.分式52xx+-的值是零,则x的值为()A.2B.5C.2-D.5-3.下列多项式中,能运用平方差公式分解因式的是()A.22a b+B.22a b-C.22a b-D.22a b--4.下列四个图形中,是中心对称图形的是()A.B.C.D.5.如图,有一些写有号码的卡片,它们的背面都相同,现将它们背面朝上,从中任意摸出一张,摸到1号卡片的概率是()A.12B.13C.23D.166.如图,工人师傅用角尺画出工件边缘AB的垂线a和b,得到//a b.理由是()A.连结直线外一点与直线上各点的所有线段中,垂线段最短B.在同一平面内,垂直于同一条直线的两条直线互相平行C.在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D .经过直线外一点,有且只有一条直线与这条直线平行 7.已知点(2-,)(2a ,)(3b ,)c 在函数(0)ky k x=>的图象上,则下列判断正确的是( ) A .a b c <<B .b a c <<C .a c b <<D .c b a <<8.如图,O 是等边ABC ∆的内切圆,分别切AB ,BC ,AC 于点E ,F ,D ,P 是DF 上一点,则EPF ∠的度数是( )A .65︒B .60︒C .58︒D .50︒9.如图,在编写数学谜题时,“□”内要求填写同一个数字,若设“□”内数字为x .则列出方程正确的是( )A .3252x x ⨯+=B .3205102x x ⨯+=⨯C .320520x x ⨯++=D .3(20)5102x x ⨯++=+10.如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD 与正方形EFGH .连结EG ,BD 相交于点O 、BD 与HC 相交于点P .若GO GP =,则ABCD EFGHS S 正方形正方形的值是( )A .12B .22C .52D .154二、填空题(本题有6小题,每小题4分,共24分)11.点(,2)P m 在第二象限内,则m 的值可以是(写出一个即可) .12.数据1,2,4,5,3的中位数是 .13.如图为一个长方体,则该几何体主视图的面积为 2cm .14.如图,平移图形M ,与图形N 可以拼成一个平行四边形,则图中α的度数是 ︒.15.如图是小明画的卡通图形,每个正六边形的边长都相等,相邻两正六边形的边重合,点A ,B ,C 均为正六边形的顶点,AB 与地面BC 所成的锐角为β.则tan β的值是 .16.图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC ,BD (点A 与点B 重合),点O 是夹子转轴位置,OE AC ⊥于点E ,OF BD ⊥于点F ,1OE OF cm ==,6AC BD cm ==,CE DF =,:2:3CE AE =.按图示方式用手指按夹子,夹子两边绕点O 转动.(1)当E ,F 两点的距离最大时,以点A ,B ,C ,D 为顶点的四边形的周长是 cm . (2)当夹子的开口最大(即点C 与点D 重合)时,A ,B 两点的距离为 cm .三、解答题(本题有8小题,共66分,各小题都必须写出解答过程) 17.计算:0(2020)4tan 45|3|-+︒+-.18.解不等式:552(2)x x -<+.19.某市在开展线上教学活动期间,为更好地组织初中学生居家体育锻炼,随机抽取了部分初中学生对“最喜爱的体育锻炼项目”进行线上问卷调查(每人必须且只选其中一项),得到如图两幅不完整的统计图表.请根据图表信息回答下列问题: 抽取的学生最喜爱体育锻炼项目的统计表 类别 项目 人数(人)A 跳绳 59B 健身操 ▲C 俯卧撑 31D 开合跳 ▲ E其它22(1)求参与问卷调查的学生总人数;(2)在参与问卷调查的学生中,最喜爱“开合跳”的学生有多少人?(3)该市共有初中学生8000人,估算该市初中学生中最喜爱“健身操”的人数.20.如图,AB 的半径2OA =,OC AB ⊥于点C ,60AOC ∠=︒. (1)求弦AB 的长. (2)求AB 的长.21.某地区山峰的高度每增加1百米,气温大约降低0.6C ︒,气温(C)T ︒和高度h (百米)的函数关系如图所示.请根据图象解决下列问题: (1)求高度为5百米时的气温; (2)求T 关于h 的函数表达式;(3)测得山顶的气温为6C ︒,求该山峰的高度.22.如图,在ABC ∆中,42AB =,45B ∠=︒,60C ∠=︒. (1)求BC 边上的高线长.(2)点E 为线段AB 的中点,点F 在边AC 上,连结EF ,沿EF 将AEF ∆折叠得到PEF ∆. ①如图2,当点P 落在BC 上时,求AEP ∠的度数. ②如图3,连结AP ,当PF AC ⊥时,求AP 的长23.如图,在平面直角坐标系中,已知二次函数21()42y x m =--+图象的顶点为A ,与y 轴交于点B ,异于顶点A 的点(1,)C n 在该函数图象上. (1)当5m =时,求n 的值.(2)当2n =时,若点A 在第一象限内,结合图象,求当2y 时,自变量x 的取值范围. (3)作直线AC 与y 轴相交于点D .当点B 在x 轴上方,且在线段OD 上时,求m 的取值范围.24.如图,在平面直角坐标系中,正方形ABOC的两直角边分别在坐标轴的正半轴上,分OB .别过OB,OC的中点D,E作AE,AD的平行线,相交于点F,已知8(1)求证:四边形AEFD为菱形.(2)求四边形AEFD的面积.(3)若点P在x轴正半轴上(异于点)D,点Q在y轴上,平面内是否存在点G,使得以点A,P,Q,G为顶点的四边形与四边形AEFD相似?若存在,求点P的坐标;若不存在,试说明理由.参考答案一、选择题(本题有10小题,每小题3分,共30分) 1.实数3的相反数是( ) A .3-B .3C .13-D .13解:实数3的相反数是:3-. 故选:A . 2.分式52x x +-的值是零,则x 的值为( ) A .2B .5C .2-D .5-解:由题意得:50x +=,且20x -≠, 解得:5x =-, 故选:D .3.下列多项式中,能运用平方差公式分解因式的是( ) A .22a b +B .22a b -C .22a b -D .22a b --解:A 、22a b +不能运用平方差公式分解,故此选项错误; B 、22a b -不能运用平方差公式分解,故此选项错误; C 、22a b -能运用平方差公式分解,故此选项正确;D 、22a b --不能运用平方差公式分解,故此选项错误;故选:C .4.下列四个图形中,是中心对称图形的是( )A .B .C .D .解:A 、该图形不是中心对称图形,故本选项不合题意; B 、该图形不是中心对称图形,故本选项不合题意; C 、该图形是中心对称图形,故本选项符合题意;D 、该图形不是中心对称图形,故本选项不合题意;故选:C .5.如图,有一些写有号码的卡片,它们的背面都相同,现将它们背面朝上,从中任意摸出一张,摸到1号卡片的概率是( )A .12 B .13C .23D .16解:共有6张卡片,其中写有1号的有3张, ∴从中任意摸出一张,摸到1号卡片的概率是3162=; 故选:A .6.如图,工人师傅用角尺画出工件边缘AB 的垂线a 和b ,得到//a b .理由是( )A .连结直线外一点与直线上各点的所有线段中,垂线段最短B .在同一平面内,垂直于同一条直线的两条直线互相平行C .在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D .经过直线外一点,有且只有一条直线与这条直线平行 解:由题意a AB ⊥,b AB ⊥,//a b ∴(垂直于同一条直线的两条直线平行),故选:B .7.已知点(2-,)(2a ,)(3b ,)c 在函数(0)ky k x=>的图象上,则下列判断正确的是( ) A .a b c << B .b a c << C .a c b << D .c b a <<解:0k >, ∴函数(0)ky k x=>的图象分布在第一、三象限,在每一象限,y 随x 的增大而减小, 2023-<<<, 0b c ∴>>,0a <,a cb ∴<<.故选:C .8.如图,O 是等边ABC ∆的内切圆,分别切AB ,BC ,AC 于点E ,F ,D ,P 是DF 上一点,则EPF ∠的度数是( )A .65︒B .60︒C .58︒D .50︒解:如图,连接OE ,OF .O 是ABC ∆的内切圆,E ,F 是切点, OE AB ∴⊥,OF BC ⊥, 90OEB OFB ∴∠=∠=︒, ABC ∆是等边三角形, 60B ∴∠=︒, 120EOF ∴∠=︒,1602EPF EOF ∴∠=∠=︒, 故选:B .9.如图,在编写数学谜题时,“□”内要求填写同一个数字,若设“□”内数字为x .则列出方程正确的是( )A .3252x x ⨯+=B .3205102x x ⨯+=⨯C .320520x x ⨯++=D .3(20)5102x x ⨯++=+解:设“□”内数字为x ,根据题意可得: 3(20)5102x x ⨯++=+.故选:D .10.如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD 与正方形EFGH .连结EG ,BD 相交于点O 、BD 与HC 相交于点P .若GO GP =,则ABCD EFGHS S 正方形正方形的值是( )A .12B .22C .52D .154解:四边形EFGH 为正方形, 45EGH ∴∠=︒,90FGH ∠=︒, OG GP =,67.5GOP OPG ∴∠=∠=︒, 22.5PBG ∴∠=︒,又45DBC ∠=︒, 22.5GBC ∴∠=︒, PBG GBC ∴∠=∠,90BGP BG ∠=∠=︒,BG BG =,()BPG BCG ASA ∴∆≅∆, PG CG ∴=.设OG PG CG x ===, O 为EG ,BD 的交点,2EG x ∴=,2FG x =, 四个全等的直角三角形拼成“赵爽弦图”, BF CG x ∴==,2BG x x ∴=+,2222222(21)(422)BC BG CG x x x ∴=+=++=+,∴()22422222ABCDEFGH x S S x +==+正方形正方形.故选:B .二、填空题(本题有6小题,每小题4分,共24分)11.点(,2)P m 在第二象限内,则m 的值可以是(写出一个即可) 1-(答案不唯一). . 解:点(,2)P m 在第二象限内,0m ∴<,则m 的值可以是1-(答案不唯一).故答案为:1-(答案不唯一).12.数据1,2,4,5,3的中位数是 3 .解:数据1,2,4,5,3按照从小到大排列是1,2,3,4,5,则这组数据的中位数是3,故答案为:3.13.如图为一个长方体,则该几何体主视图的面积为 20 2cm .解:该几何体的主视图是一个长为4,宽为5的矩形,所以该几何体主视图的面积为220cm .故答案为:20.14.如图,平移图形M ,与图形N 可以拼成一个平行四边形,则图中α的度数是 30 ︒.解:四边形ABCD 是平行四边形,18060D C ∴∠=︒-∠=︒,180(54070140180)30α∴∠=︒-︒-︒-︒-︒=︒,故答案为:30.15.如图是小明画的卡通图形,每个正六边形的边长都相等,相邻两正六边形的边重合,点A ,B ,C 均为正六边形的顶点,AB 与地面BC 所成的锐角为β.则tan β的值是 19315.解:如图,作//AT BC ,过点B 作BH AT ⊥于H ,设正六边形的边长为a ,则正六边形的半径为,边心距32a =.观察图象可知:192BH a =,532AH =, //AT BC , BAH β∴∠=,191932tan 15532a BH AH a β∴===. 故答案为19315. 16.图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC ,BD (点A 与点B 重合),点O 是夹子转轴位置,OE AC ⊥于点E ,OF BD ⊥于点F ,1OE OF cm ==,6AC BD cm ==,CE DF =,:2:3CE AE =.按图示方式用手指按夹子,夹子两边绕点O 转动.(1)当E ,F 两点的距离最大时,以点A ,B ,C ,D 为顶点的四边形的周长是 16 cm .(2)当夹子的开口最大(即点C 与点D 重合)时,A ,B 两点的距离为 cm .解:(1)当E ,F 两点的距离最大时,E ,O ,F 共线,此时四边形ABCD 是矩形, 1OE OF cm ==,2EF cm ∴=,2AB CD cm ∴==,∴此时四边形ABCD 的周长为226616()cm +++=,故答案为16.(2)如图3中,连接EF 交OC 于H .由题意2126()55CE CF cm ==⨯=,1OE OF cm ==,CO ∴垂直平分线段EF ,13()5OC CE cm ===, 1122OE EC CO EH =, 121125()13135EH cm ⨯∴==, 242()13EF EH cm ∴== //EF AB ,∴25EF CE AB CB ==, 52460()21313AB cm ∴=⨯=. 故答案为6013. 三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.计算:0(2020)tan 45|3|-+︒+-.解:原式12135=+-+=.18.解不等式:552(2)x x -<+.解:552(2)x x -<+,5542x x -<+5245x x -<+,39x <,3x <.19.某市在开展线上教学活动期间,为更好地组织初中学生居家体育锻炼,随机抽取了部分初中学生对“最喜爱的体育锻炼项目”进行线上问卷调查(每人必须且只选其中一项),得到如图两幅不完整的统计图表.请根据图表信息回答下列问题:抽取的学生最喜爱体育锻炼项目的统计表B健身操 ▲ C俯卧撑 31 D开合跳 ▲ E 其它 22(1)求参与问卷调查的学生总人数;(2)在参与问卷调查的学生中,最喜爱“开合跳”的学生有多少人?(3)该市共有初中学生8000人,估算该市初中学生中最喜爱“健身操”的人数.解:(1)2211%200÷=(人),答:参与调查的学生总数为200人;(2)20024%48⨯=(人),答:最喜爱“开合跳”的学生有48人;(3)最喜爱“健身操”的学生数为2005931482240----=(人),4080001600200⨯=(人), 答:最喜爱“健身操”的学生数大约为1600人.20.如图,AB 的半径2OA =,OC AB ⊥于点C ,60AOC ∠=︒.(1)求弦AB 的长.(2)求AB 的长.解:(1)AB 的半径2OA =,OC AB ⊥于点C ,60AOC ∠=︒,3sin 60232AC OA ∴=︒==,223AB AC ∴==;(2)OC AB ⊥,60AOC ∠=︒,120AOB ∴∠=︒,2OA =,∴AB 的长是:120241803ππ⨯=. 21.某地区山峰的高度每增加1百米,气温大约降低0.6C ︒,气温(C)T ︒和高度h (百米)的函数关系如图所示.请根据图象解决下列问题:(1)求高度为5百米时的气温;(2)求T 关于h 的函数表达式;(3)测得山顶的气温为6C ︒,求该山峰的高度.解:(1)由题意得,高度增加2百米,则气温降低20.6 1.2()C ⨯=︒,13.2 1.212∴-=,∴高度为5百米时的气温大约是12C ︒;(2)设T 关于h 的函数表达式为T kh b =+,则:313.2512k b k b +=⎧⎨+=⎩, 解得0.615k b =-⎧⎨=⎩, T ∴关于h 的函数表达式为0.615T h =-+;(3)当6T =时,60.615h =-+,解得15h =.∴该山峰的高度大约为15百米.22.如图,在ABC ∆中,42AB =,45B ∠=︒,60C ∠=︒.(1)求BC 边上的高线长.(2)点E 为线段AB 的中点,点F 在边AC 上,连结EF ,沿EF 将AEF ∆折叠得到PEF ∆.①如图2,当点P 落在BC 上时,求AEP ∠的度数.②如图3,连结AP ,当PF AC ⊥时,求AP 的长解:(1)如图1中,过点A 作AD BC ⊥于D .在Rt ABD ∆中,2sin 454242AD AB =︒=⨯=.(2)①如图2中,AEF PEF ∆≅∆,AE EP ∴=,AE EB =,BE EP ∴=,45EPB B ∴∠=∠=︒,90PEB ∴∠=︒,1809090AEP ∴∠=︒-︒=︒.②如图3中,由(1)可知:83sin 603AD AC ==︒,PF AC ⊥,90PFA ∴∠=︒,AEF PEF ∆≅∆,45AFE PFE ∴∠=∠=︒,AFE B ∴∠=∠,EAF CAB ∠=∠,AEF ACB ∴∆∆∽, ∴AF AE AB AC =2242833AF =, 23AF ∴=在Rt AFP ∆,AF FP =,226AP ∴==.23.如图,在平面直角坐标系中,已知二次函数21()42y x m =--+图象的顶点为A ,与y 轴交于点B ,异于顶点A 的点(1,)C n 在该函数图象上.(1)当5m =时,求n 的值.(2)当2n =时,若点A 在第一象限内,结合图象,求当2y 时,自变量x 的取值范围. (3)作直线AC 与y 轴相交于点D .当点B 在x 轴上方,且在线段OD 上时,求m 的取值范围.解:(1)当5m =时,21(5)42y x =--+, 当1x =时,214442n =-⨯+=-.(2)当2n =时,将(1,2)C 代入函数表达式21()42y x m =--+,得212(1)42m =--+, 解得3m =或1-(舍弃),∴此时抛物线的对称轴3x =,根据抛物线的对称性可知,当2y =时,1x =或5,x ∴的取值范围为15x .(3)点A 与点C 不重合,1m ∴≠,抛物线的顶点A 的坐标是(,4)m ,∴抛物线的顶点在直线4y =上,当0x =时,2142y m =-+, ∴点B 的坐标为21(0,4)2m -+, 抛物线从图1的位置向左平移到图2的位置,m 逐渐减小,点B 沿y 轴向上移动,当点B 与O 重合时,21402m -+=, 解得22m =或22-当点B 与点D 重合时,如图2,顶点A 也与B ,D 重合,点B 到达最高点, ∴点(0,4)B ,21442m ∴-+=,解得0m =, 当抛物线从图2的位置继续向左平移时,如图3点B 不在线段OD 上,B ∴点在线段OD 上时,m 的取值范围是:01m <或122m <<.24.如图,在平面直角坐标系中,正方形ABOC 的两直角边分别在坐标轴的正半轴上,分别过OB ,OC 的中点D ,E 作AE ,AD 的平行线,相交于点F ,已知8OB =. (1)求证:四边形AEFD 为菱形.(2)求四边形AEFD 的面积.(3)若点P 在x 轴正半轴上(异于点)D ,点Q 在y 轴上,平面内是否存在点G ,使得以点A ,P ,Q ,G 为顶点的四边形与四边形AEFD 相似?若存在,求点P 的坐标;若不存在,试说明理由.【解答】(1)证明:如图1中,//AE DF ,//AD EF ,∴四边形AEFD 是平行四边形,四边形ABCD 是正方形,AC AB OC OB ∴===,90ACE ABD ∠=∠=︒, E ,D 分别是OC ,OB 的中点,CE BD ∴=,()CAE ABD SAS ∴∆≅∆,AE AD ∴=,∴四边形AEFD 是菱形.(2)解:如图1中,连接DE .184162ADB ACE S S ∆∆==⨯⨯=, 14482EOD S ∆=⨯⨯=, 264216824AED ABD EOD ABOC S S S S ∆∆∆∴=--=-⨯-=正方形,248AED AEFD S S ∆∴==菱形.(3)解:如图1中,连接AF ,设AF 交DE 于K ,4OE OD ==,OK DE ⊥,KE KD ∴=,2OK KE KD ∴===,82AO =,62AK ∴=,3AK DK ∴=,①当AP 为菱形的一边,点Q 在x 轴的上方,有图2,图3两种情形: 如图2中,设AG 交PQ 于H ,过点H 作HN x ⊥轴于N ,交AC 于M ,设AM t =.菱形PAQG ∽菱形ADFE ,3PH AH ∴=, //HN OQ ,QH HP =,ON NP ∴=,HN ∴是PQO ∆的中位线,8ON PN t ∴==-,90MAH PHN AHM ∠=∠=︒-∠,90PNH AMH ∠=∠=︒,HMA PNH ∴∆∆∽,∴13AM MH AH NH PN PH ===, 33HN AM t ∴==,83MH MN NH t ∴=-=-,3PN MH =,83(83)t t ∴-=-,2t ∴=,22(8)12OP ON t ∴==-=,(12,0)P ∴.如图3中,过点H 作HI y ⊥轴于I ,过点P 作PN x ⊥轴交IH 于N ,延长BA 交IN 于M .同法可证:AMH HNP ∆∆∽, ∴13AM MH AH HN PN HP ===,设MH t =, 33PN MH t ∴==,38AM BM AB t ∴=-=-, HI 是OPQ ∆的中位线,2OP IH ∴=,HIHN ∴,8924t t ∴+=-,4t ∴=,22(8)24OP HI t ∴==+=,(24,0)P ∴.②当AP 为菱形的边,点Q 在x 轴的下方时,有图4,图5两种情形: 如图4中,3QH PH =,过点H 作HM OC ⊥于M ,过D 点P 作PN MH ⊥于N .MH 是QAC ∆的中位线,142MH AC ∴==, 同法可得:HPN QHM ∆∆∽, ∴13NP HN PH HM MQ QH ===, 1433PN HM ∴==, 43OM PN ∴==,设HN t =,则3MQ t =, MQ MC =,4383t ∴=-, 209t ∴=, 5649OP MN t ∴==+=, ∴点P 的坐标为56(9,0).如图5中,3QH PH =,过点H 作HM x ⊥轴于M 交AC 于I ,过点Q 作QN HM ⊥于N .IH 是ACQ ∆的中位线,2CQ HI ∴=,4NQ CI ==,同法可得:PMH HNQ ∆∆∽, ∴13MH PM PH NQ HN HQ ===,则1433MH NQ ==, 设PM t =,则3HN t =,HN HI =,4383t ∴=+, 289t ∴=, 849OP OM PM QN PM t ∴=-=-=-=, 8(9P ∴,0). ③如图6中,当AP 为菱形的对角线时,有图6一种情形:过点H 作HM y ⊥轴于于点M ,交AB 于I ,过点P 作PN HM ⊥于N . //HI x 轴,AH HP =,4AI IB ∴==,4PN IB ∴==,同法可得:PNH HMQ ∆∆∽, ∴13PN HN PH HM MQ HQ ===, 312MH PN ∴==,4HI MH MI =-=, HI 是ABP ∆的中位线,28BP IH ∴==,16OP OB BP ∴=+=,(16,0)P ∴,综上所述,满足条件的点P 的坐标为(12,0)或(24,0)或56(9,0)或8(9,0)或(16,0).。
2020年浙江省丽水市中考数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.实数3的相反数是()A.﹣3B.3C .﹣D .2.分式的值是零,则x的值为()A.2B.5C.﹣2D.﹣53.下列多项式中,能运用平方差公式分解因式的是()A.a2+b2B.2a﹣b2C.a2﹣b2D.﹣a2﹣b24.下列四个图形中,是中心对称图形的是()A .B .C .D .5.如图,有一些写有号码的卡片,它们的背面都相同,现将它们背面朝上,从中任意摸出一张,摸到1号卡片的概率是()A .B .C .D .6.如图,工人师傅用角尺画出工件边缘AB的垂线a和b,得到a∥b.理由是()A.连结直线外一点与直线上各点的所有线段中,垂线段最短B.在同一平面内,垂直于同一条直线的两条直线互相平行C.在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D.经过直线外一点,有且只有一条直线与这条直线平行7.已知点(﹣2,a)(2,b)(3,c)在函数y =(k>0)的图象上,则下列判断正确的是()A.a<b<c B.b<a<c C.a<c<b D.c<b<a第1页(共28页)8.如图,⊙O是等边△ABC的内切圆,分别切AB,BC,AC于点E,F,D,P 是上一点,则∠EPF的度数是()A.65°B.60°C.58°D.50°9.如图,在编写数学谜题时,“□”内要求填写同一个数字,若设“□”内数字为x.则列出方程正确的是()A.3×2x+5=2x B.3×20x+5=10x×2C.3×20+x+5=20x D.3×(20+x)+5=10x+2 10.如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD与正方形EFGH.连结EG,BD 相交于点O、BD与HC相交于点P.若GO=GP ,则的值是()A.1+B.2+C.5﹣D .二、填空题(本题有6小题,每小题4分,共24分)11.点P(m,2)在第二象限内,则m的值可以是(写出一个即可).12.数据1,2,4,5,3的中位数是.13.如图为一个长方体,则该几何体主视图的面积为cm2.第2页(共28页)。
2020年浙江省丽水市中考数学必修综合测试试题 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题如图是一个正方体纸盒的平面展开图,每一个正方形内部都有一个单项式.当折成正方体后,“?”所表示的单项式与对面正方形上的单项式是同类项,则“?”所表示的单项式是( )A .bB .cC .dD .e2.已知反比例函数2y x=-过两点 (x 1,y 1)、(x 2,y 2),当120x x <<时,y, 与 y 2 大小关 系为( )A .12y y =B .12y y >C .12y y <D . y 1与 y 2 大小不确定3. 如图,四边形 ABCD 内接于⊙O ,若∠BOD=150°,则∠BCD=( )A .65°B .130°C . 105°D .115°4.老师对某班同学中出现的错别字情况进行抽样调查,一个小组10位同学在一篇作文中 出现的错别字个数统计如下(单位:个):0,2,0,2,3,0,2,3,1,2.有关这组数据的下列说法中,正确的是( )A .平均数是2B .众数是3C .中位数是1.5D .方差是1.25 5. 一只小狗正在平面镜前欣赏自己的全身像(如图),此时,它所看到的全身像是( )6.如图,指出OA 是表示什么方向的一条射线() A .南偏东40° B .北偏东40° C .东偏北40°D .北偏西40° 7.如图,A 、B 、C 是同一直线上的顺次三点,下面说法正确的是( )A .射线AB 与射线BA 是同一条射线B .射线AB 与射线BC 是同一条射线C .射线AB 与射线AC 是同一条射线D .射线BA 与射线BC 是同一条射线二、填空题8.如图,过点P 画⊙O 的切线PQ ,Q 为切点,过P ﹑O 两点的直线交⊙O 于A ﹑B 两点,且2sin ,12,5P AB ∠==则OP=__________. 9.某单位内线电话的号码由 3 个数字组成,每个数字可以是 1,2,3 的一个,如果不知道某人的内线电话号码,任意拨一个号码接通的概率是 .10.从1-,1,2这三个数中,任取两个不同的数作为一次函数y kx b =+的系数k ,b ,则一次函数y kx b =+的图象不经过第四象限的概率是 .11.正方形边长为 4,若边长增加 x ,则面积增加 y ,则y 与x 的函数关系式是 .12.若点A 的坐标是(-7,-4),则它到x 轴的距离是 .13.在直角三角形中,两个锐角的差为20°,则两个锐角的度数分别为__ ___.14.若分式13a -无意义,242b b --的值为 0,则ab = . 15.已知113x y -=,则代数式21422x xy y x xy y----的值为 . 16.如图,BD 是ABC ∠的平分线,DE AB ⊥于E ,236cm ABC S =△,18cm AB =,12cm BC =,则DE =__________cm .17.点A 和点A ′关于直线l 成轴对称,则直线l 和线段AA ′的位置关系是: .18.如图,延长线段AB 到C ,使4BC =,若8AB =,则线段AC 的长是BC 的 倍.19.买6千克苹果,付出10元,找回3元4角,则每千克苹果的价格是_______元.三、解答题20.路灯下站着小赵、小芳、小刚三人,小芳和小刚的影长如图,确定图中路灯灯泡的位置,并画出小赵在灯光下的影子.21.在摸奖活动中,游乐场在一只黑色的口袋里装有只颜色不同的50只小球,其中红球1只、黄球2只、绿球10只,其余为白球,搅拌均匀后,每2元摸1个球,奖品的标准在球上(如下图)(1) 如果花2元摸1个球,那么摸不到奖的概率是多少?(2) 如果花4元同时摸2个球,那么获得10元奖品的概率是多少?22.如图,四边形ABCD是菱形,DE⊥AB交BA的延长线于E,DF⊥BC,交BC的延长线于F.请你猜想DE与DF的大小有什么关系?并证明你的猜想.23.如图所示,在等腰梯形ABCD中,AD∥BC,DE⊥BC于点E,BF⊥AE于点F,请你添加一个条件,使△ABF≌△CDE.(1)你添加的一个..条件是;(2)请写出证明过程.24.某教育局在中学开展的“创新素质实践行”中,进行了小论文的评比,各校交论文的时间为5月1日至30日,评委会把各校交的论文的件数按5天一组分组统计,绘制了频数分布直方图(如图所示),已知从左至右各长方形的高的比为2:3:4:6:4:1,第二组的频数为18,请同答下列问题:(1)本次活动共有多少篇论文参加评比?(2)哪组上交的论文数量最多?有多少篇?25.如图,在四边形ABCD中,AC⊥DC,∠ADC的面积为30cm2,DC=12 cm ,AB=3cm ,BC=4 cm,求△ABC的面积.26.阅读下列解法,并回答问题:如图,∠1 = 75°,∠2 = 105°,说明 AB∥CD,以下几种说明方法正确吗?如果正确,请说出利用了平行线的哪一种判定方法,如果不正确,请给予纠正.解法1:∵∠1 +∠3 = 180°,∠1 = 75°,∴∠3= l05°,又∵∠2=105°,∴∠2 =∠3,∴.AB∥CD.解法2:∵∠2+∠4 = 180°,∠2 = 105°,∴∠4= 75°,又∵∠1= 75°,∴∠1 = ∠4,∴AB∥CD.解法 3:∵∠ 2 =∠5,∠2= 105°,∴∠5 =105°,又∵∠1 = 75°,∴∠1 +∠5 =180°,∴.AB∥CD.27. 已知1x a y =⎧⎨=-⎩是二元一次方程122x y a -=的一个解,求a 的值. 23a =-28.(1)计算:2432(21)(21)(21)(21)(21)-++++;(2)试求(1)中结果的个位数字.29.自然数中有许多奇妙而有趣的现象,很多秘密等待我们探索. 比如:写出一个你喜欢 欢的数,把这个数乘以 2,再加上 2,把结果乘以 5,再减去 10,再除以 10,结果你会重新得到原来的数.假设一开始写出的数为n ,根据这个例子的每一步,列出最后的表达式.30.合并同类项:(1)222442ayb a b ab a b --++(2)2223232a a a a --+--【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.C3.C4.D5.A6.7.C二、填空题8.159.110.27111.328=+12.y x x413.55°,35°14.-615.416.2.417.垂直且平分18.319.1.1三、解答题20.略21.(1)白球的个数37102150=---摸不到奖的概率是5037; (2)获10元的奖品只有一种可能即同时摸出两个黄球的获得10元奖品的概率是1225149251=⨯. 22.解:DE =DF .证明如下:连结BD .∵四边形ABCD 是菱形∴∠CBD =∠ABD(菱形的对角线平分一组对角)∵DF ⊥BC ,DE ⊥AB ,∴DF =DE(角平分线上的点到角两边的距离相等)23.(1)如AF=EC ;(2)证明略.(答案不惟一).24.(1)120篇;(2)第四组,36篇;(3)第六组25.6cm226.解法都是正确的,解法l利用了同位角相等来判定两直线平行,解法2得用了内错角相等来判定两直线平行,解法3利用了同旁内角互补来证明两直线平行27.23a=-28.(1)6421-;(2)529.例如写出一个数为 3,则(232)510310⨯+⨯-=.若写出的数为n,则5(22)101010101010n nn +-+-==30.(1)2234a b ab-+ (2)26a a--。
2020年浙江省丽水市中考数学经典试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.如图,几何体的主视图是( )A .B .C .D .2.在Rt △ABC 中, ∠C=90°,若AB=2AC,则cosA 的值等于( ) A .3B .23 C .21 D .33 3.如图,⊙O 的直径 CD 过弦 EF 的中点G ,∠EOD=40°,则∠DCF 等于( ) A .80°B .50°C .40°D .20°4.依次连接菱形各边中点所得到的四边形是( ) A .梯形B .菱形C .矩形D .正方形5.将△ABC 的三个顶点的横坐标都乘-l ,纵坐标保持不变,则所得图形( ) A .与原图形关于x 轴对称 B .与原图形关于k 轴对称 C .与原图形关于原点对称 D .向x 轴的负方向平移了一个单位6.一个三角形的周长为30cm ,且其中两条边长都等于第三条边长的2倍,那么这个三角形的最短边长为( ) A . 4cm B . 5cm C . 6cm D .10cm 7.如图,AB ∥CD ,如果∠2=2∠1,那么∠2 为( )A .105°B .120°C .135°D .150°8.下列各图中,正确画出△ABC 的AC 边上的高的是( )A .B .C .D .9.下列从左到右的变形是因式分解的为( )A .2(3)(3)9a a α-+=-B .22410(2)6x x x ++=++C .2269(3)x x x -+=-D .243(2)(2)3x x x x x -+=-++ 10.-3 不是( ) A . 有理数B . 整数C .自然数D .负有理数二、填空题11.如图,四圆两两相切,⊙O 的半径为 a ,⊙O 1、⊙O 2半径为 12a ,则⊙O 3的半径为 .12.如图所示是由 8块相同的等腰直角三角形黑白瓷砖镶嵌而成的正方形地面示意图,一只蚂蚁在上面自由爬动,并随机停留在某块瓷砖上,问蚂蚁停留在黑色瓷砖上的概率是 .13.在△ABC 中,∠C= 90°,若2cos 3A =,则tanA= . 14.掷两枚硬币,一枚硬币正面朝上,另一枚硬币反面朝上的概率是 .15.某校团委准备举办学生绘画展览,为美化画面,在长为30cm 、宽为20的矩形画面四周镶上宽度相等的彩纸成较大的矩形,并使彩纸的面积恰好与原画面面积相等,设彩纸的宽为x cm ,可列方程 .16.一等腰三角形的腰长与底边长之比为 5:8,它的底边上的高为33的周长为 ,面积为 .17.如果=+=+-==+2222,7,0y x xy y x xy y x ,则.18.如图,图①经过 变为图②,再经过 变为图③.19.如图,△A′B′C′是△ABC经旋转变换后的像,(1)旋转中心是 ,旋转角度是;(2)图中相等的线段:OA= ,OB= ,OC= ,AB= ,BC= ,CA= .(3)图中相等的角:∠CAB= ,∠BCA= ,∠AOA′= = .20.网①是一个三角形.分别连结这个三角形三边的中点得到图乙;再分别连结图②中间的小三角形三边的中点,得到图③,按此方法继续下去,请你根据每个图中三角形个数的规律,完成下列问题:(1)将下表填写完整:图形编号12345…三角形个数159(2)在第n个图形中有个三角形 (用含n的式子表示).21.请写出25ab合并后结果为0. 你给出的两个同类项5ab的两个同类项,且这两个同类项与2是 ..三、解答题22.已知:如图,在Rt△ABC中,∠C=90°,AC=BC,AD是∠A的平分线.试说明AC+CD=AB成立的理由.23.画出如图所示的轴对称图形的对称轴,并回答下列问题: (1)连结BD ,则对称轴和线段BD 有怎样的位置关系? (2)原图形中有哪些相等的角?哪些全等的三角形? (3)分别作出图形中点F 、G 的对称点.24.计算: (1)22216946xy x yx xy ÷- (2)22111x x x --+-25.将下面的代数式尽可能化简,再选择一个你喜欢的数代入求值:212(1)1a a a a --++-.26.某种子培育基地用A ,B ,C ,D 四种型号的小麦种子共2 000粒进行发芽实验,从中选出发芽率高的种子进行推广.通过实验得知,C 型号种子的发芽率为95%,根据实验数据绘制了图1和图2两幅尚不完整的统计图. (1)D 型号种子的粒数是 ; (2)请你将图2的统计图补充完整;(3)通过计算说明,应选哪一个型号的种子进行推广.A 35%B 20%C 20%D各型号种子数的百分比图1图2A B C D 型号800 600400 200630 370 470发芽数/粒27.根据下列条件列方程:(1)某数与5的差的3倍等于21(2)某数的20%减去该数的l0%等于500(3)把一条带子剪去5 cm后,再对折一次,此时带子的长度正好是原带子长的13,求这条带子的原长.(4)彩票发行者预计将发行额的35%作为奖金,若奖金总数为70000元,彩票每张5元,问卖出多少张彩票时,刚好是这笔奖金?28.两个代数式的和是223x xy y-+,其中一个代数式是22x xy+,试求出另一个代数式.29.某中学为了培养学生的社会实践能力,今年“五一”长假期间要求学生参加一项社会调查活动.为此,小明在他所居住小区的600个家庭中,随机调查了50个家庭在新工资制度实施后的收入情况,并绘制了如下的频数分布表和频数分布直方图(收入取整数,单位:元).请你根据以上提供的信息,解答下列问题:(1)补全频数分布表和频数分布直方图;(2)这50个家庭收入的中位数落在小组;(3)请你估算该小区600个家庭中收入较低(不足1400元)的家庭个数大约有多少?30.2008年四川省遭受地震灾害,全国人民万众一心,众志成城,抗震救灾.如图(1)是某市一所中学根据“献出爱心,抗震救灾”自愿捐款活动期间学生捐款情况制成的条形统计图,图(2)是该中学学生人数比例统计图(该校共有学生 1450人).(1)该校九年级学生共捐款多少元?(2)该校学生均每人捐款多少元?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.C3.D4.C5.B6.C7.B8.C9.C10.C二、填空题13a 12. 0. 5.13.214. 1215. 20302)230)(220(⨯⨯=++x x 16.17.0,1418.平移变换,轴对称变换19.(3)∠C ′A ′B ′,∠B ′C ′A ′,∠BOB ′,∠COC ′(1)0,60°;(2)OA ′,OB ′,OC ′,A ′B ′,B ′C ′,C ′A ′;20.(1)13,17 (2)4n-321.答案不唯一,如22ab 和27ab -三、解答题 22. 略23.如图所示,连结BD ,作线段BD 的垂直平分线m ,直线m•就是所求的对称轴. (1)对称轴垂直平分线段BD ;(2)原图形中相等的角有:∠B=∠D ,∠BAC=∠DEC ,∠BCA=∠DCE ,∠CAE=∠CEA ,∠BCE=∠DCA ,∠BAE=∠DEA .全等的三角形有:△ABC 和△EDC ; (3)点F 、G 的对称点分别是F ′、G ′,如图所示.(1)2238x y -;(2)x-11. 25.2a ,所得的值不唯一26.解:(1)500; (2)如图; (3)A 型号发芽率为90%,B 型号发芽率为92.5%,D 型号发芽率为94%,C 型号发芽率为95%.∴应选C 型号的种子进行推广.27.略28.2x 2-3xy+y 229.⑴10, 0.100;(2)第三小组 1400~1600;⑶ 180.30.(1) 5.4×1450×(1-34% -38%)=2192.4(元);(2)6.452元800 600 4002000 630 370 470发芽数/粒 380。
2020年浙江省丽水市中考数学试题与答案( WORD 版)数 学考生须知:1 .全卷总分值为120分,考试时刻为120分钟.2 .答题前,请在答题卡上先填写姓名和准考证号,再用铅笔将准考证号和科目对应的括号或方框涂 里八、、♦3•请在”答题卷n 〃上填写座位号并在密封线内填写县(市、区)学校、姓名和准考证号.4. 本卷答案必须做在答题卷i 、n 的相应位置上,做在试题卷上无效.答题时,不承诺使用运算器. 温馨提示:带着愉悦的心情,载着自信与细心,靠着沉着与平复,迈向理想的彼岸!2参考公式:二次函数y ax 2 bx c (a 丸)图象的顶点坐标是〔—,4ac -〕.2a 4a试卷I一、选择题〔本大题有10小题,每题3分,共30分•请选出各题中一个符合题意的正确选项,将答题卡 上相应的位置涂黑•不选、多项选择、错选,均不给分〕 1. 卜面四个数中,负数是A . -3B . 0C . 0.2D . 3C 2. 如图,D ,E 分不是△ ABC 的边AC 和 BC 的中点,DE=2,那么AB=A . 1B . 2C . 3D . 4EX\E 3. 不等式x v 2在数轴上表示正确的选项是AB(第2题)■ 11012 3 "-10 12i 3 ' -10 12 3 ~ -10 1" 23一A .B .C .D .):成绩(分) 0 1 2 3 4 5 6 7 8 9 10 人数(人)113561519这次听力测试成绩的众数是 A . 5 分 B . 6 分 C . 9 分 D . 10 分5.粉笔盒里只有2支黄色粉笔和3支红色粉笔,每支粉笔除颜色外均相同,现从中任取一支粉笔,那么 取出黄色粉笔的概率是B .6.如下图的物体由两个紧靠在一起的圆柱组成,小刚预备画出它的三视 所画的三视图中的俯视图应该是A .两个相交的圆B .两个内切的圆图,那么他主视方向(第6题)C .两个外切的圆D .两个外离的圆以下四个函数图象中,当 x > 0时,y 随x 的增大而增大的是如图,边长为(m+3)的正方形纸片剪出一个边长为 m 的正方形之后,剩余部分又剪拼成一个矩形 (不重分解因式:x 2- 9=_▲玉树地震灾区小朋友卓玛从某地捐赠的 2种不同款式的书包和 2种不同款式的文具盒中,分不取一个书包和一个文具盒进行款式搭配,那么不同搭配的可能有▲ 种.7. 8. 9. 10. 上._ 、 11. 12. 13. 14.15. a M 0, S 1 2a , S 2S 3S 2,,S 2 010S 2 009那么S 2 010 ▲(用含a 的代数式表示).B (第 16题)叠无缝隙),假设拼成的矩形一边长为 一边长是 3,那------------ 么另 A . 2m+3 B . 2m+6 C . m+3D . m+61i* 1 1 11 1 13♦ m+3 + m +f小刚用一张半径为 24cm 的扇形纸板做一个如下图的 小丑帽子侧面(接缝忽略不计),假如做成的圆锥形小 的底面半径为10cm ,那么这张扇形纸板的面积是 A . 120 n cm 2 B . 240 n cm 2 C . 260 n cm 2D . 480 n cm 2圆锥形 如图,四边形ABCD 中,. / BAD= / ACB=90 ° AB=AD ,AC=4BC ,设CD 的长为x ,四边形 ABCD 的面积为y ,那么y函数关系式是八224 2A . yxB y x 2525 2 24 2 C . yx Dy -x 55与x 之间的讲明:本卷有二大题, 14小题,共90分,请将本卷的答案或解答过程用钢笔或圆珠笔写在答题卷H填空题 〔此题有6小题,每题 4分,共24分〕假设点〔4, 如图,直线那么/ ADEA8 y (X M 0)的图象上,那么 m 的值是 ▲. xDE 交/ ABC 的边 BA 于点 D ,假设 DE // BC ,Z B=70 °的度数是 ▲.m 〕在反比例函数 (第8丑帽子E BC(第13题)16.如图,△ ABC 是O O 的内接三角形,点 D 是BC 的中点,/ AOB=98° , / COB=120° .那么/ ABD 的度数是 ▲ 三、解答题〔此题有8小题,第17〜19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分〕1 17.运算:20 折 — si n302 18•解方程组2x y 3,①3x y 7.② 19.:如图,E , F 分不是兀ABCD 的边AD , BC 的中点. 求证:AF =CE . 20.如图,直线I 与O O 相交于A , B 两点,且与半径为 H , AB=16cm , cos OBH 4. 5 (1) 求O O 的半径; (2) 假如要将直线l 向下平移到与O O 相切的位置,平移的距离 应是多少?请讲明理由. OC 垂直,垂足C l(第20题)21.黄老师退休在家,为选择一个合适的时刻参观 2018年上海世博会,他查阅了 5月10日至16日(星期 一至星期日)每天的参观人数,得到图 1、图2所示的统计图,其中图 1是每天参观人数的统计图,图 2是5月15日(星期六)这一天上午、中午、下午和晚上四个时刻段参观人数的扇形统计图•请你依照 统计图解答下面的咨询题: (1) 5月10日至16日这一周中,参观人数最多的是哪一天?有多少人?参观人数最少的又是哪一天? 有多少人? (2) 5月15日(星期六)这一天,上午的参观人数比下午的参观人数多多少人 (精确到 1万人)? (3) 假如黄老师想尽择参观人数较少 去参观世博会,你 选择什么时刻比 适?上海世博会5月10日至16日(星期一上海世博会5月15日〔星期六〕四 个时刻段参观人数的扇形统计图 晚上8 %(图2)可能选 的时刻 认为他 较 合(第21题)22•如图,方格纸中每个小正方形的边长为 1 , △ ABC 和厶DEF 的顶点都在方格纸的格点上.-1(1) ⑵当点B 在第一象限,假如抛物线y ax 2①当a — , b4纵坐标是 乜时,求点B 的横坐标;2 c (a 工0的对称轴通过点 C ,请你探究: c3 5时,A , B 两点是否都 5 bx1 2 在这条抛物线上?并讲明理由; ② 设b=-2am ,是否存在如此的 m 的值,使A , B 两点不 可能同时在这条抛物线上?假设存在,直截了当写出m 的值;A假设不存在,请讲明理由.判定△ ABC 和厶DEF 是否相似,并讲明理由; P i , P 2, P 3, P 4, P 5, D ,F 是厶 DEF 边上 的7个格点,请在这7个格点中选取3个点 作为三角形的顶点,使构成的三角形与△ ABC 相似(要求写出2个符合条件的三角 形,并在图中连结相应线段,不必讲明理由23.小刚上午7:30从家里动身步行上学, 途经青年宫时走了 1200步,用时10分钟,到达学校的时刻是 7:55.为了估测路程等有关数据,小刚专门在学校的田径跑道上,按上学的步行速度,走完100米用了150 步.(1)小刚上学步行的平均速度是多少米/分?小刚家和青年宫之间、青年宫和学校之间的路程分不是多少米?(2)下午4: 00,小刚从学校动身,以45米/分的速度行走,按上学时的原路回家,在未到青年宫300米处与同伴玩了半小时后,赶忙以110米/分的速度回家,中途没有再停留.咨询: ① 小刚到家的时刻是下午几时? ② 小刚回家过程中,离家的路程s (米)与时刻t (分)之间关系如图,请写出点 B 的坐标,并求出线段 CD 所在 函数解析式.24. △ ABC 中,/ A=Z B=30 ° AB=^/3 .把△ ABC 放在平面直角坐标系中,使0(如图),△ ABC 能够绕点O 作任意角度的旋转.AB 的中点位于坐标原点F的函数 直线的1(第24浙江省2018年初中毕业生学业考试〔丽水市〕数学试题参考答案及评分标准题号12345678910答案A D A D B C C A B C 评分标准选对一题给3分,不选、多项选? 择、错选均不给分111. (x+3)(x-3) 12. 2 13. 70 °14. 4 15. 16. 101°a三.解答题(此题有8小题,共66分)17.(此题6分)解:原式=1 21212(母项运算1分).... 4分=3. ..... 2分18.(此题6分)解法1 :①+②,得5x=10. x=2. ..... 3分把x=2代入①,得4-y=3. y=1. ..... 2分• 方程组的解是x 2, y 1...... 1分解法2 :由①,得y=2x- 3. ③ ..... 1分把③代入②,得3x+2x-3=7. x=2 . ..... 2分把x=2代入③,得y=1 . ..... 2分• 方程组的解是x 2,y 1...... 1分19.(此题6分)四边形ABCD是平行四边形,且E, F分不是AD , BC的中点,/• AE = CF ...... 2分又•/四边形ABCD是平行四边形,AD // BC ,即卩AE // CF .四边形AFCE是平行四边形. ……3分AF=CE. ……1分方法2:•••四边形ABCD是平行四边形,且E, F分不是AD , BC的中点,BF=DE . ……2分又•/四边形ABCD是平行四边形,/ B= / D, AB=CD .••• △ ABF◎△ CDE . ……3 分••• AF=CE. ……1 分证明:方法1:20.(此题8分)1 1HB -AB2 2OBHHB 4cosOB 5OB = 5 HB = :5 X 8=10OH = OBBH 10CH 10 6 因此将直线I 向下平移到与O O 相切的位置时, 4 .平移的距离是21.(此题8分)解: (1) 参观人数最多的是15日(或周六),有34万人;参观人数最少的是10日(或周一),有16万人. 34 X (74%-6%)=23.12 〜23. 上午参观人数比下午参观人数多23万人.答案不唯独,差不多合理即可,如选择星期一下午参观等.22.(此题10分) 解:⑴△ ABC 和厶DEF 相似.依照勾股定理,得AB 2 • 5 , AC 5 ,BC=5 ;DE 4.2 , DF 2.2 , EF 2.10 .AB AC BC DE DF EF••• △ ABCDEF .(2)答案不唯独,下面 6个三角形中的任意 △ P 2P 5D , △ P 4P 5F , △P 2P 4D ,23.(此题10分)2解:(1) 小刚每分钟走 1200-10=120(步),每步走100-150=(米) 3 因此小刚上学的步行速度是 小刚家和青年宫之间的路程是 青年宫和学校之间的路程是 (2)①叮302120X — =80(米/分).380X 10=800(米). 80X(25- 10)=1200(米). 800 30060(分钟),解:⑴I(第20直线I 与半径OC 垂直,16 8 . 4 4 (2)在 Rt △ OBH 中,2个均可.BF…1分 …4分D(第22因此小刚到家的时刻是下午5: 00.② 小刚从学校动身,以45米/分的速度行走到离青年宫300米处时实际走了900米,用时900 20分,45现在小刚离家1 100米,因此点B的坐标是〔20,1100〕...... 2分线段CD表示小刚与同伴玩了30分钟后,回家的那个时刻段中离家的路程s(米)与行走时刻t(分)之间的函数关系,由路程与时刻的关系得s 1100 110(t 50),即线段CD所在直线的函数解析式是s 6 600 110t . ……2分(线段CD所在直线的函数解析式也能够通过下面的方法求得:点C的坐标是〔50, 1100〕,点D的坐标是〔60, 0〕设线段CD所在直线的函数解析式是s kt b,将点C, D的坐标代入,得50k b 1100,解得k 110,60k b 0. b 6 600.因此线段CD所在直线的函数解析式是s 110t 6 600)解:(1)•/ 点O是AB的中点,••设点B的横坐标是x(x>0),那么x2O B 1A B 3.1分..... 1分解得X1,x2f (舍去)22• 点B的横坐标是_62:i 1⑵①当a —, b , c42y(5)2 13 5 / _ •4520以下分两种情形讨论.X时,得y二x2丄X X5 4 2 5.... 2分..... (伙)情形1:设点C在第一象限(如图甲),那么点C的横坐标为 55OC O B tan30 3于由此,可求得点C的坐标为(_i kl)(5 ' 5 ),15 )丿,5••• A, B两点关于原点对称,• 点B的坐标为(J5, 』).5 5将点A的横坐标代入(衣)式右边,运算得』,即等于点A的纵坐5标;24.(此题12分)(乙)将点B的横坐标代入(*)式右边,运算得-15,即等于点B的纵坐标.5•••在这种情形下,A, B两点都在抛物线上.情形2:设点C在第四象限(如图乙),那么点C的坐标为(迁,-525 )F,..... 2分点A的坐标为(三15,上),点B的坐标为( 2.1515 )).5 555经运算,A, B两点都不在这条抛物线上. ..... 1分(情形2另解:经判定,假如A, B两点都在这条抛物线上,那么抛物线将开口向下,而的抛物线开口向上.因此A, B两点不可能都在这条抛物线上)②存在.m的值是1或-1 . ……2分2 2 . _ . _(y a(x m) am c,因为这条抛物线的对称轴通过点C,因此-K m< 1.当m=±1时,点C在x轴上,现在A, B两点都在y轴上.因此当m=±1时,A, B两点不可能同时在这条抛物线上)。
2020年浙江省丽水市中考数学试卷原卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图所示,在四边形ABCD 中,∠B=∠D=90°,:C:1:2:2CD B CA=,则∠DAB 等于()A.60°B.75°C.90°D.105°2.两个相似三角形对应高的长分别为 8 和 6则它们的面积比是()A.4:3 B.16:9 C.2:3D.3:23.如图,C是以AB为直径的⊙O上一点,已知AB=5,BC=3,则圆心O到弦BC的距离是()A.1.5 B.2 C.2.5 D.34.过⊙O内一点M的最长的弦长为4cm,最短的弦长为2cm ,则OM 的长为()A.3cm B.2cm C . 1cm D. 3cm5.如图,一块等边三角形的木板,边长为 1,现将木板沿水平线翻滚(如图),那么B点从开始至结束所走过的路程长度为()A.32πB.43πC.4 D.322π+6.下列命题为真命题的是()A.三角形的中位线把三角形的面积分成相等的两部分B.对角线相等且相互平分的四边形是正方形C.关于某直线对称的两个三角形是全等三角形D.一组对边平行,另一组对边相等的四边形一定是等腰梯形7.如图,顺次连结四边形ABCD各边的中点得四边形EFGH,要使EFGH是菱形,应添加的条件是()A.AD∥BC B.AC=BD C.AC⊥BD D.AD=AB8.下列命题中,是假命题的为()A.两条直线相交,只有一个交点B.全等三角形对应边上的中线相等C.全等三角形对应边上的高相等D.三角形一边上的中线把这个三角形分成两个全等的小三角形9.下列说法错误的是()A.错误的判断也是命题B.命题有真命题和假命题两种C.定理是命题D.命题是定理10.已知正比例函数y kx=的图象经过点(2,4),k的值是()A. 1 B.2 C. -1 D.-211.如图反映的过程是:小明从家跑步到体育馆,在那里锻炼了一阵后又走到新华书店去买书,然后散步走回家,其中t表示时间,s表示小明离家的距离,那么小明在体育馆锻炼和在新华书店买书共用去的时间是()A.35min B.45min C.50min D.60min12.某校初三(2)班40名同学为“希望工程”捐款,共捐款100元.捐款情况如下表:捐款(元)1234人数67表格中捐款2元和3若设捐款2元的有x名同学,捐款3元的有y名同学,根据题意,可得方程组()A.272366x yx y+=⎧⎨+=⎩B.2723100x yx y+=⎧⎨+=⎩C.273266x yx y+=⎧⎨+=⎩D.2732100x yx y+=⎧⎨+=⎩13.一只小狗正在平面镜前欣赏自己的全身像(如图所示),此时,它所看到的全身像是()14.若-2 减去一个有理数的差等于-7,则-2乘以这个有理数的积等于( ) A .-10B .10C .-14D .14二、填空题15.如图,在⊙O 中,已知20=∠OAC °,OA ∥CD ,则 =∠AOD .16.设计一个商标图形(如图所示),在△ABC 中,AB=AC=2cm,∠B=30°,以A 为圆心,AB 为半径作B ⌒EC ,以BC 为直径作半圆B ⌒FC ,则商标图案面积等于________cm 2.F ECBA17.命题“关于x 的一元二次方程20ax bx c ++=(a ≠0),若240b ac -=,则这个方程有两个相等的实数根.”的逆命题是: ,这个命题是 命题.(填“真”或“假”)18.天河宾馆在重新装修后,准备在大厅的主楼梯上铺设某种红色地毯,已知这种地毯每平 方米售价30元,主楼梯宽2 m ,其侧面图如图所示,则购买地毯至少需要 元.19.某初级中学八年级(1)班若干名同学(不足20人)星期日去公园游览,公园售票窗口标明票价:每人10元,团体票20人以上(含 20人)八折优惠. 他们经过核算,买团体票比买单人票便宜,则它们至少有 人.20.在四边形ABCD 中.给出下列论断:①AB ∥DC ;②AD=BC ;③∠A=∠C.以其中两个作为题设,另外一个作为结论,用“如果…,那么…”的形式,写出一个你认为正确的命题 . 21.一个几何体的三视图都是正方形,则这个几何体是 . 22.填空:(1)∵∠1=∠E ,∴ ∥ ( )(2)∵∠2=∠ ,∴AB ∥ (同位角相等,两直线平行)23. 写出一个二元一次方程组,使它的解为23x y =⎧⎨=-⎩,则二元一次方程组为 . 24.观察下表: 的个位数字是 . 25.已知a 、b 为两个连续整数,且a <7<b ,则b a += .三、解答题26.已如图所示,梯子 AB 长为 2. 5米,顶端A 靠在墙壁上,这时梯子底端 B 与墙角的距离为1. 5 米,梯子滑动后停在 DE 的位置上,测得 BD 的长为0. 5 米,求梯子顶端A 下滑了多少?27.(1)你能找出几个使不等式2 2.515x -≥⋅成立的 x 的值吗? (2)x=3,5,7 能使不等式225 1.5x -⋅≥成立吗?28.“勤劳”是中华民族的传统美德,学校要求同学们在家里帮助父母做些力所能及的家务.王刚同学对部分同学暑假在家做家务的时问进了抽样调查(时间取整上数),所得数据统计如表2: 表2 时间分组/时0.5~20.520.5~40.540.5~60.5 60.5~80.5 80.5~100.5幂的运算 18 182 183 184 185 186 187 188 … 结果的个位数字84268426…人数20253015lO(1)抽取样本的容量是;(2)样本的中位数所在时间段的范围是;(3)若该学校有学生1260人,那么大约有多少学生在暑假做家务的时间在40.5~100.5小时之间?29.已有长为l的篱笆,利用它和房屋的一面墙围成如图形状的园子,园子的宽为t.(1)用关于l、t的代数式表示园子的面积;(2)当l=100 m,t=30 m 时,求园子的面积.30.如图,任意剪一个三角形纸片ABC,设它的锐角为∠A,首先用对折的方法得到高AN,然后按图中所示的方法分别将含有∠B,∠C的部分向里折,找出AB,AC的中点D,E,同时得到两个折痕DF,EG,分别沿折痕DF,EG剪下图中的三角形①,②,并按图中箭头所指的方向分别旋转180°.(1)你能拼成一个什么样的四边形?并说明你的理由.(2)请你利用这个图形,证明三角形的面积公式:12S=⨯⨯底高.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.B3.B4.A5.B6.C7.B8.D9.D10.B11.CA13.A14.A二、填空题 15. 40°16.361+π 17. 若关于x 的一元二次方程20ax bx c ++=(0a ≠)有两个相等的实数根,则240b ac -=,真18.480°19.1720.略21.立方体22.(1)AC ;DE ;同位角相等,两直线平行;(2)B ,CD23.略24.625.5三、解答题 26.梯子顶端下滑了 0. 5 米.(1)能,x=2,3,4,…;(2)成立28.(1)100;(2)40.5~60.5小时; (3)∵3015101260693100++⨯=,∴大约有693名学生在暑假做家务的时间在40.5~100.5小时之间.29.(1) (2)t l t ⋅- (2)1200 (m 2 )30.(1)矩形;(2)略。
2020年浙江省丽水市中考数学能力测试试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.如图,△ABC 中,AD ﹕DC=1﹕2,E 为BD 的中点,延长AE 交BC 于F ,则BF :FC 的值是( ) A .1﹕2B .1﹕3C .1﹕4D .1﹕52.一个滑轮起重装置如图所示,滑轮的半径是10cm,当重物上升10cm 时, 滑轮的一条半径OA 绕轴心O 按逆时针方向旋转的角度约为(假设绳索与滑轮之间没有滑动,π取3.14,结果精确到1°)( ) A .115°B .60°C .57°D .29°3.关于x 的一元二次方程()220x mx m -+-=的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根 D .无法确定4.已知某样本的方差是4,则这个样本的标准差是( )A .2B .4C .8D .16 5.现规定一种运算a ※b ab a b =+-,其中\a 、b 为实数,则a ※b +()b a -※b 等于( ) A .2a b - B . 2b b - C .2b D .2b a - 6.已知ΔABC 中,∠A ∶∠B ∶∠C=3∶7∶8,则ΔABC 的形状是( )A .钝角三角形B .直角三角形C .锐角三角形D .都有可能7.一个多边形各边长为5,6,7,8,9,另一个相似图形和6对应的边长为9,则这个相似图形的周长为 ( ) A .35 B .40.5 C .45 D .52.5 8.在扇形统计图中,若将圆均匀地分成 12份,则每份圆心角的度数是( )A .10°B .18°C .30°D .72°二、填空题9.在Rt ABC △中,90C ∠=,5AC =,4BC =,则tan A = .10.双曲线y=8x与直线y=2x 的交点坐标为 . 11.如图,在Rt △ABC 中,∠ACB= 90°,CD ⊥AB 于D ,DE ∥BC ,交 AC 于E ,则图中与△ABC 相似的三角形有 个.12.已知356x y z==,且326y z =+,那么 ,y= . 13.点A 在y 轴右侧,距y 轴4个单位长度,距x 轴3个单位长度,则A 点的坐标是 ,A 点离原点的距离是 .14.严驰同学在杭州市动物园的大门口看到这个动物园的平面示意图如图所示,试借助刻度尺、量角器解决下列问题:(1)表演厅在大门的北偏 约 度的方向上,到大门的图上距离约为 cm ,实际距离为 m .(2)虎山在大门的南偏 约 度的方向上,到大门的图上距离约为 cm ,实际距离为 m .(3)猴山在大熊猫馆南偏 约 度的方向上,到大熊猫馆的图上距离约为 cm ,实际距离为 m .15.在“222a ab b □□”方框中,任意填上“+”或“-”.能够构成完全平方式的概率是 .16.如图,在△ABC 中,∠ACB=90°,AC=BC ,∠ACD=52°,则∠BDC= .17.如图是根据某市l999年至2003年工业生产总值绘制的折线统计图.观察统计图可得:增长幅度最大的年份是 年,比它的前一年增加 亿元. 工业生产总值,亿元18.下表记录的是中国、美国、印度、澳大利亚四个国家l996年的人口自然增长率. 国别 中国 美国 印度 澳大利亚 人口自然增 长率(‰)10.4 6.018.6 6.7从统计图中获得人口自然增长率最高的国家是 ,最低的是 . 19.p-2[q-2p-3(-p-q)]= . 20.任何实数的绝对值都是 数.三、解答题21.从4 条长度为“2,3,4,5、”的线段中随意取 3 条,刚好能组成一个三角形的概率是多少?你能说明其中的理由吗?22.如图,AB ∥CD,AD 与BC 相交于点O ,31BC OB .若OA=7cm,求OD 的长度.23.如图,已知图中的两个正五边形是位似图形. (1)AE 的对应线段是哪条线段? (2)请在图中画出位似中心 0,并说明画法.24.某工程队中标修建某段公路,若每天修建0.5 千米,则需要 48 天才能完成任务. (1)求该工程队修建时间 t(天)与每天修建路程 a(千米/天)间的函数解析式; (2)若要求 40 天完成任务,每天应修建多少千米?25.某商场在销售中发现“好好”牌服装平均每天可以销售20件,每件盈利40元.为了迎接“五∙ 一”国际劳动节,商场决定采取适当的降价措施,经市场调查发现:如果每件服装每降价2元,那么平均每天就可以多售出4件,要想平均每天在这种服装上盈利1200元,那么每件服装应降价多少元?如果商场要扩大销售量,尽可能地减少库存,每件服装应降价多少元?26.若y=kx+b ,当x=1时y=-1;当x=3时,y=5,求k 和b 的值.27.先化简,后求值:(1) (2x -3)2-(2x+3)(2x -3),其中x=1.(2)[(ab+3)(ab -3)-2a 2b 2+9]÷(-ab ),其中a=3,b=31.28.有一种正方形模板如图所示,边长是 a(m),成本价为每平方米 10 元. 现根据客户需求,需将边长增加 0.5 m ,问现在这块模板的成本价是多少?29.某运输公司经营货物托运,有火车和汽车两种运输方式,主要参考数据如下:(1)本市某货主要托运一批粮食到A市,选择汽车运输的费用比选择火车费用多1100元,求本市与A市之间的路程是多少千米.(2)如果B市与本市之间的路程为S千米,货主要托运鲜蔬菜,由于蔬菜会失水或腐烂,运输过程中的损耗平均为200元/时,又知道火车与汽车在路上需临时停车耽误的时间分别为2小时和3.1小时, 且选择汽车与火车运输的总费用相同,求B市与本市之间的路程S是多少千米.30.用计算器计算:(1)23π⨯(保留1位小数)(2)5 1.43 4.25÷-÷(精确到0.01)【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.C3.A4.A5.B6.C7.D8.C二、填空题9.410.5(2,4),(-2,-4)11.412.6,1013.(4,3)或(4,-3),514.(1)西,79,2,200;(2)西,76,4.4,440;(3)东,70,1.3,130 15.1216.97°17.2003,4018.印度;美国19.8p q--20.非负三、解答题21.刚好能组成一个三角形的概率是34,因为从4条线段中随意取3条共有4种取法:2,3,4;2,4,5;2,3,5;3,4,5;其中只有一种(2,3,5)不能组成三角形,所以能组成一个三角形的概率为34.22.14㎝.23.(1)FG.(2)连结两个对应点的两条线段的交点即为位似中心0.24.(1) 0.54824ta =⨯=,∴24t a=(2)当 t=40 时,代入(1)中得240.640a ==(千米). 25.设每件服装应降价x 元,则(40-x )(20+x2 ×4)=1200,解得x 1=10,x 2=20 为尽可能地减少库存,每件服装应降价20元26.⎩⎨⎧+=+=-b k b k 351,解得:⎩⎨⎧-==43b k . 27.(1)18-12x=6;(2) ab=-1.28.面积为221(0.5)4a a a +=++,成本价为 (2510102a a ++)元 29.(1)设本市与A 市之间的路程是x 千米,则15x+2000=20x+900-1100 解得x=440 答:本市与A 市之间的路程是440千米. (2)由题意列方程:200(2)152000200( 3.1)2090010080s ss s +++=+++ 解这个方程,得s=160答:B 市与本市之间的路程为160千米.30.(1)28.3;(2)2.87。
2020年浙江省丽水市中考数学优质试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图所示的盘中随机抛掷一枚骰子,落在阴影区域的概率(盘底被等分成12份,不考虑骰子落在线上情形)是( )A .61B .41C .31D .212.某电视台举行歌手大奖赛,每场比赛都有编号为 1~10 号共 10 道综合素质测试题供选手随机抽取作答. 在某场比赛中,前两位选手分别抽走了2 号、7号题,第3位选手抽中8 号题的概率是( )A .110B .19C .18D .173.如果∠A 为锐角,那么sin ∠A ( )A .小于1B .等于1C .大于1D .大于零且小于1 4. 若一个圆锥的底面半径为 3,母线长为5,则它的侧面展开图的圆心角是( )A .60°B .90°C .120°D .216° 5.一种花边是由如图的弓形组成的,弧ACB 的半径为 5,弦 AB=8,则弓高 CD 为( )A .2B .52C .3D .1636.如图,在△ABC 中,AB =AC ,BC =BD ,AD =DE =EB ,则∠A 的度数是( )A .30°B .36°C .45°D .54°7.判断四边形是菱形应满足的条件是( )A .对角线相等B .对角线互相垂直C .对角线互相平分D .对角线互相垂直平分8.判断两个直角三角形全等,下列方法中,不能应用的是( )A . AASB .HLC .SASD . AAA9.下列事件中,不可能事件是( )A .掷一枚六个面分别刻有1~6数码的均匀正方体骰子,•向上一面的点数是“5”B .任意选择某个电视频道,正在播放动画片C .肥皂泡会破碎D .在平面内,度量一个三角形的内角度数,其和为360°10.若1044m x x x --=--无解,则m 的值是( ) A .-2B .2C .3D .-3 11.由5 个顶点、8条棱、5个面构成的几何体是( ) A . 立方体B .三棱锥C .四棱锥D .不存在 12.某人第一次向南走 40 km ,第二次向北走30 km ,第三次向北走 40 km ,最后相当于这人( )A . 向南走110kmB . 向北走 50 kmC .向南走 30 kmD .向北走 30 km 二、填空题 13.一只口袋里有相同的红、绿、蓝三种颜色的小球,其中有6个红球,5个绿球.若任意摸出一个绿球的概率是14,则任意摸出一个蓝球的概率是 . 14.数1x,34x 的比例中项是 . 15.如图,在菱形ABCD ,AB=BD=2,则AC = .16.线段是中心对称图形,它的对称中心是这条线段的 .17.如图,点E 是∠AOB 的平分线上一点,EC ⊥OA,ED ⊥OB,垂足分别是C 、D ,若OE=4,∠AOB=60°,则DE=_______.18.如图,已知a ∥b ,∠1=70°,∠2=40°,则∠3= __________.19.某市城区地图(比例尺为1:8000)•上,•安居街和新兴街的长度分别是15cm•和10cm ,那么安居街的实际长度是_______千米,安居街与新兴街的实际长度的比是 .20.已知2|24|(36)0x x -++=,则341x y -+的值是 .21.在数轴上,与表示-1 的点相距2008个单位长度的点所表示的数是 .22.今有 16. 5 t 煤,若一辆汽车最多运 4 t ,则至少需派 辆汽车才可一次将所有煤运走.三、解答题23.河边有一条笔直的公路,公路两侧是平坦地带,一次活动课,老师要求测量河的宽度.一同学的测量结果如图所示:30BCD ∠=,4570BDC CD ∠==,米.A O BE C D请你帮助计算河的宽度AB (结果保留根号).24.如图,在正△ABC 中,D 、E 分别在 AC 、AB 上,且13AD AB =,E 是AB 的中点,试说明△AED ∽△CBD.25.已知⎩⎨⎧==32y x 是方程组⎩⎨⎧+=-=+43y b ax by ax 的解,求a ,b 的值.26.课堂上,李老师给大家出了这样一道题:当x=5,2,2,3时,•分别求代数式22212211x x x x x -+-÷-+的值.小明一看,“太复杂了,怎么算呢?”你能帮小明解决这个问题吗?请你写出具体过程.27.若方程组25342x y x y -=⎧⎨+=⎩的解也是方程107x my的解,求m.28.如图,AD平分∠BAC,AB=AC,则BD=CD,试说明理由.29.佩佩所在的班级共有50名学生,在一次教学考试中,女生的及格率为 80%,男生的及格率为75%,全班的及格率为 78%,问这个班的男、女生各有多少人?30.列式计算:(1)13 的相反数,加上-27 的绝对值,再加上负 31 的和.(2)从-3 中减去712-与16-的和,所得的差是多少?(3)和为-8. 6,一个加数为 -3. 2,求另一个加数.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.C3.D4.D5.A6.C7.D8.D9.D10.C11.CD二、填空题13.92014. 2x ±15.16.中点17.218.70°19.1.2,3:220.1521.-2009或 200722.5三、解答题23.解:在Rt ABC △中,30BCD ∠=,tan 30AB AC =,3tan 30AB AC ∴==, 在Rt △ABD 中,45BDC ∠=,∴AD AB =.又AC AD CD +=,70AB +=,35AB ∴=米.24.∵△ABC 是正三角形,∴AB=AC=BC.∵13AD AB =,∴12AD CD =,∵AE=12AB=12BC, ∴AE AD BC DC=,∵∠A=∠C ,∴△AED ∽△CBD.3=a ,1-=b26.21. 27.m=-13.28.△ABD ≌△ACD (SAS ),则BD=CD .29.设这个班男生有x 人,则女生有(50x -)人.由题意,得75%80%(50)78%50x x +-=⨯,解得20x =,∴5030x -=(人). 答:这个班男生20人,女生 30人.30.(1)(13)|27|(31)17-+-+-=- (2)711(3)[()()]21264---+-=- (3)-8.6-(-3.2)=-5.4。
2020年浙江省丽水市中考数学试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1. 如图,AB 是⊙O 的直径,弦 AC 、BD 相交于点P ,CD AB 等于( )A .sin ∠BPCB .cos ∠BPC C .tan ∠BPCD .cot ∠BPC 2.如图所示,课堂上小亮站在座位上回答数学老师提出的问题,那么数学老师观察小亮身后,盲区是( )A .DCE △B .四边形ABCDC .ABF △D .ABE △ 3.已知⊙O 的半径为r ,圆心O 到直线l 的距离为d .若直线l 与⊙O 有交点,则下列结论正确的是( )A .d =rB .d ≤rC .d ≥rD .d <r 4. 过⊙O 内一点M 的最长的弦长为4cm ,最短的弦长为2cm ,则OM 的长为( ) A .3cmB .2cmC . 1cmD . 3cm 5.一个多边形的内角和与外角和相等,则这个多边形是( ) A .三角形B .四边形C .五边形D .六边形 6.如图,直线l 与直线a ,b 相交,且a ∥b ,∠1=800,则∠2的度数是( )A .600B .800C .1000D .12007.给出下列运算:①326()a a -=-;②224-=-;③22()()x y x y y x ---=-;④0(31)1=.其中运算正确的是( )A . ①和②B . ①和③C . ②和④D . ③和④ 8.256421的结果为( )A . 61B .19C .-21D .-8 二、填空题9.已知⊙O 1与⊙O 2的半径分别为2cm 和3cm ,当⊙O 1与⊙O 2外切时,圆心距O 1O 2=____ cm .10.“平行四边形的对角线互相平分”的逆命题是 . 11.如图,四边形ABCD 是各边长都大于2,分别以它的顶点为圆心,1为半径画弧(弧的端点分别在四边形的相邻两边上),则这四条弧长的和是_________.12.已知221y x x =-+-+,则y x= . 13.把如图所示折叠成正方体,如果相对面的值相等,则一组x ,y 的值是 .14.已知点P (x-1,x+3),那么点P 不可能在第 象限.15.如图,乙图形可以由图形 得到.16.若方程组7336029510x y x y +-=⎧⎨+-=⎩的解也是方程21mx y +=的解,则m = . 17.长方形的长是(2a b +)cm, 宽是(a b +)cm,它的周长是 cm, 面积是 cm 2.18.已知三角形的两条边的长分别是3和5,第三条边的长为a ,则a 的长度在 和 之间.19.比较两条线段的大小的方法有两种:一种是 ;另一种是 .20.在有理数中,倒数是它本身的数有 ,平方等于它本身的数有 ,立方等于它本身的数有 ,绝对值等于它本身的数有 .21.33亿精确到 位,有 个有效数字,它们是 ;26.5万精确到 位,有 个有效数字,它们是 .22.已知x 的与 3 的差小于 5,用不等式表示为 .三、解答题23.将背面相同,正面分别标有数字1、2、3、4的四张卡片洗匀后,背面朝上放在桌子上.(1)从中随机抽取一张卡片,求该卡片正面上的数字是偶数的概率;(2)先从中随机抽取一张卡片(不放回...),将该卡片正面上的数字作为十位上的数字;再随机抽取一张,将该卡片正面上的数字作为个位上的数字,则组成的两位数恰好是4的倍数的概率是多少?请用树状图或列表法加以说明.24.已知方程组713x y a x y a +=--⎧⎨-=+⎩的解x 为非正数,y 为负数,求a 的取值范围.25.如图,在方格纸(每个小方格都是边长为1个单位长度的正方形)中,我们称每个小正方形的顶点为格点,以格点为顶点的图形称为格点围形. 如图中的△ABC 称为格点△ABC. 请根据你所学过的平移、旋转、对称等知识,说明网中“格点四边形图案”是如何通过“格点A4BC 图案”变换得到的.26.已知,4425,7522==y x 求22)()(y x y x --+的值.27.为加快西都大开发,某自治区决定新修一条公路,甲、乙两工程队承包此项工程. 如 果甲工程队单独施工,则刚好如期完成;如果乙工程队单独施工就要超过 6 个月才能完成. 现在甲、乙两队先共同施工 4个月,剩下的由乙队单独施工,则刚好如期完成. 问原来规定修好这条公路需多长时间?28.有10 张相同的卡片上写的数字如下:卡片任意搅乱后,一个人随机抽取一张,卡片上的数字是下列情况的概率是多少?(1)2;(2)大于2;(3)8;(4)一个偶数;(5)一个奇数.29.如图,D、B是线段AC上的两点,且D为AC的中点,BC=DB,DC= 3.5,求线段AB的长.30.解下列方程(1)1(5)7 2x-=(2)5x-2(x-1)=14(3) 5(x-1)=2(4x+2)-20( x-1)(4) 324 [2(6)]1 233-+=【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.D3.B4.A5.B6.答案:B7.D8.B二、填空题9.510.对角线互相平分的四边形是平行四边形11.π6 12.21 13. 23x y =⎧⎨=⎩或32x y =⎧⎨=⎩ 14.四15.甲先向左平移3个单位长度,再向下平移6个单位长度16.-317.64a b +,2223a ab b ++18.2,819.叠合法、度量法20.1±,0和 1,0 和1±,非负数21.亿两;3,3;千,三;2,6,522.1352x -<三、解答题23.解:(1)P 偶数=42 =21 (2)P (4的倍数)=123=41.24.解原方程组,得342x a y a =-+⎧⎨=--⎩,∵x 为非正数,y 为负数,∴30420a a -+≤⎧⎨--<⎩,∴23a -<≤. 25.把“格点△ABC 图案”向右平移 10个单位长度,再向上平移5个单位长度,以BC 中点为旋转中心旋转 180°(或以 BC 所在直线为对称轴作轴对称变换),即得到“格点四边形图案”26.32.27.12 个月28. (1)110;(2)910;(3)12;(4)1;(5)0 29.因为D 为 AC 的中点,∴CD=12AC. ∵CD =3.5,∴AC =7.又∵ BC=BD ,∴BC=12CD=12×3.5=1.75.∴AB=AC-BC=7-1.75=5.25 30. (1)x=19 (2)x=4 (3)2917x = (4)13y =。