数论01二次同余式与平方剩余
- 格式:ppt
- 大小:352.50 KB
- 文档页数:30
初等数论第五章二次同余式与平方剩余第五章二次同余式与平方剩余第五章二次同余式与平方剩余§1二次同余式与平方剩余二次同余式的一般形式是ax2?bx?c?0(modm),a??0(modm)(1)下面讨论它的解的情况。
?k?1?2令m?p1p2?pk,则(1)有解的充要条件为ax2?bx?c?0(modpi?i),i?1,2,?,k有解,而解f(x)?ax2?bx?c?0(modp?),p为质数(2)又可以归结为解f(x)?ax2?bx?c?0(modp),p为质数(3)。
当p?2时,同余式(3)极易求解,因此,我们只需讨论二次同余式f(x)?ax2?bx?c?0(modp),p为奇质数(4)若p?|a,用4a乘(4)再配方得(2ax?b)2?4ac?b2?0(modp),令y?2ax?b,A?b2?4ac,得y2?A?0(modp)可以证明:同余式(4)和(5)是等价的。
证明必要性显然;反之,设(5)有一解y?y0,因为(p,2a)?1,所以2ax?b?y0(modp)有解,即(4)有解。
以上讨论可知,二次同余式可以化为x2?a(modp),p为奇质数(6)(5)来求解,当p|a时,(6)仅有一个解x?0(modp),所以我们下面总假定p?|a或(p,a)?1。
因此,下面主要研究形如x2?a(modp),(p,a)?1,p为奇质数同余式。
(7)的定义若同余式x2?a(modp),(a,p)?1,p为奇质数有解,则a 叫做模p的平方剩余(二次剩余),若无解,则a叫做模p的平方非剩余(二次非剩余)。
定理1(欧拉判别条件)若(a,p)?1,则a是模p的平方剩余的充要条件为ap?12?1(modp);a是模p的平方非剩余的充要条件为a- 1 - p?12??1(modp)。
若a是模p的平方剩余,则(7)式恰有两解。
第五章二次同余式与平方剩余证明(1)设a是模p 的平方剩余,则同余式x2?a(modp),(a,p)?1有解,设为?,于是??a(modp),从而欧拉定理可知反之,若ap?122ap?12??p?1?1(modp)。
二次同余式的解法一、什么是二次同余式二次同余式是指形如ax2+bx+c≡0(mod m)的同余方程,其中a,b,c,m是给定的整数,x是未知数,≡表示模同余。
二、二次同余式的解法解二次同余式的一种常用方法是通过模平方根的性质。
下面介绍二次同余式的两种解法:平方剩余和二次非剩余。
2.1 平方剩余如果存在一个整数x,使得x2≡c(mod m),则称c是模m的平方剩余。
我们可以通过以下步骤求解二次同余式:1.计算模m的平方剩余集合{02,12,22,…,(m−1)2}。
2.判断c是否在平方剩余集合中。
–如果在集合中,即存在x满足x2≡c(mod m),则可以得到两个解:x≡±√c(mod m)。
–如果不在集合中,则二次同余式无解。
2.2 二次非剩余如果不存在一个整数x,使得x2≡c(mod m),则称c是模m的二次非剩余。
解决二次同余式的方法如下:1.计算模m的平方剩余集合{02,12,22,…,(m−1)2}。
2.判断c是否在平方剩余集合中。
–如果在集合中,则二次同余式无解。
–如果不在集合中,可以通过以下步骤求解二次同余式:1.找到一个整数y,使得y2≡c⋅a(mod m),其中a是模m的一个非平方剩余。
2.利用模m的平方剩余集合求解y的平方根。
3.根据平方根的性质,可以得到两个解:x≡±y(mod m)。
2.3 例子假设我们要解决二次同余式3x2+5x+2≡0(mod11)。
按照上述方法,我们可以进行如下步骤:1.计算模11的平方剩余集合:{02,12,22,…,102}={0,1,4,9,5,3,3,5,9,4,1}。
2.判断2是否在平方剩余集合中,发现不在集合中。
3.找到一个整数y,使得y2≡2⋅a(mod11),其中a是模11的一个非平方剩余。
可以选择a=3,则62≡2⋅3(mod11)。
4.利用模11的平方剩余集合求解6的平方根,发现6在平方剩余集合中。
5.得到两个解:x≡±6(mod11)。
数论的四⼤定理详解(转载)转载于:前⾔可以发现RSA中的很多攻击⽅法都是从数论四⼤定理推导出的,所以找时间好好学习了⼀下数论四⼤定理的证明及其应⽤场景——Rabin算法。
欧拉定理若$n,a$为正整数,且$n,a$互素,即$gcd(a,n) = 1$,则$a^{φ(n)}\equiv1\pmod{n}$证明⾸先,我们需要知道欧拉定理是什么:数论上的欧拉定理,指的是$a^{φ(n)}\equiv1\pmod{n}$这个式⼦实在$a$和$n$互质的前提下成⽴的。
证明⾸先,我们知道在1到$n$的数中,与n互质的⼀共有$φ(n$)个,所以我们把这$φ(n)$个数拿出来,放到设出的集合X中,即为$x_1,x_2……x_{φ(n)}$那么接下来,我们可以再设出⼀个集合为M,设M中的数为:$m_1=a∗x_1,m_2=a∗x_2……m_φ(n)=a∗x_{φ(n)}$下⾯我们证明两个推理:⼀、M中任意两个数都不模n同余。
反证法。
证明:假设M中存在两个数设为$m_a,m_b$模$n$同余。
即$m_a\equiv m_b$移项得到:$m_a−m_b=n∗k$再将m⽤x来表⽰得到:$a∗x_a−a∗x_b=n∗k$提取公因式得到:$a∗(x_a−x_b)=n∗k$我们现在已知$a$与$n$互质,那么式⼦就可以转化为:$x_a−x_b\equiv 0 \pmod{n}$因为$a$中没有与$n$的公因⼦(1除外)所以$a !\equiv 0 \pmod{n}$ 所有只能是$ x_a−x_b\equiv 0\pmod{n}$。
⼜因为$x_a,x_b$都是⼩于$n$的并且不会相同,那么上述的式⼦⾃然全都不成⽴。
假设不成⽴。
证得:$M$中任意两个数都不模$4$同余。
⼆、M中的数除以n的余数全部与n互质。
证明:我们已知$m_i=a∗x_i$⼜因为$a$与$n$互质,$x_i$与$n$互质,所以可得$m_i$与$n$互质。
带⼊到欧⼏⾥得算法中推⼀步就好了。