《建筑结构荷载计算》PPT课件
- 格式:ppt
- 大小:673.50 KB
- 文档页数:15
《建筑力学及结构》建筑结构荷载计算【学习目标】1、具有判别荷载类别的能力2、能利用《建筑结构荷载规范》求荷载代表值3、能进行简支梁、单向板楼盖、框架结构的荷载标准值计算【知识点】荷载的分类及荷载代表值、永久荷载标准值、楼面和屋面活荷载、雪荷载、风荷载、建筑结构荷载标准值计算【工作任务】任务1 简支梁的荷载标准值计算任务2 单向板楼盖荷载标准值计算任务3 框架结构荷载标准值计算【教学设计】荷载计算是结构计算的第一步。
首先通过荷载计算才能计算出结构构件上的内、力,再逐步进行强度、刚度,稳定性等计算。
本单元先对荷载的分类及荷载代表值作一了解,熟悉常见的永久荷载、楼面和屋面活荷载、雪荷载、风荷载的计算、能进行简支梁、单向板楼盖、框架结构的荷载标准值计算 2.1荷载的分类建筑结构在使用期间和施工过程中要承受各种“作用”。
我们把施加在结构上的集中力或分布力称为直接作用,也称为荷载;把引起结构外加变形或约束变形的原因称为间接作用。
结构上的荷载,可分为下列三类:2.1.1永久荷载(恒载)在结构使用期间,其值不随时间变化,或其变化与平均值相比可以忽略不计,或其变化是单调的并能趋于限值的荷载。
例如,结构自重、土压力、预应力等。
永久荷载不随时间变化,长期作用在结构上,在结构上的作用位置也不变。
注:自重是材料自身所受重力产生的荷载(重力)。
2.1.2可变荷载(活载)在结构使用期间,其值随时间变化,且变化与平均值相比不可以忽略不计的荷载。
例如,楼面活荷载、屋面活荷载和积灰荷载、吊车荷载、风荷载、雪荷载等。
可变荷载的大小随时间而变,作用位置可变,且像风荷载、吊车荷载等能引起结构振动,使结构产生加速度。
2.1.3偶然荷载在结构使用期间不一定出现,一旦出现,其值很大且持续时间很短的荷载。
例如,爆炸力、撞击力、地震等。
2.2荷载代表值《荷载规范》规定:对永久荷载应采用标准值作为代表值。
对可变荷载应根据设计要求采用标准值、组合值、频遇值或准永久值作为代表值。
CHAPTER定义建筑构造是研究建筑物各组成部分的构造原理和构造方法的学科,主要任务是根据建筑物的使用功能、技术经济和艺术造型要求提供合理的构造方案,作为建筑设计中综合解决技术问题及进行施工图设计的依据。
分类根据建筑物使用性质的不同,可分为民用建筑构造和工业建筑构造两大类。
民用建筑构造又可分为居住建筑构造和公共建筑构造;工业建筑构造可分为单层厂房构造和多层厂房构造。
主要依赖经验积累,以木构架为主,注重建筑的形式和象征意义。
古代建筑构造近代建筑构造现代建筑构造随着工业革命的兴起,新材料、新技术和新工艺不断涌现,建筑构造逐渐走向科学化和工业化。
强调建筑、结构、设备等多专业的协同设计,注重绿色建筑、智能建筑等新型建筑技术的发展。
030201合理的建筑构造设计能够确保建筑物满足使用要求,如保温、隔热、防水、隔声等。
保证建筑物的使用功能提高建筑物的安全性提升建筑物的经济效益促进建筑艺术的发展通过科学的构造措施,可以增强建筑物的结构安全性,如抗震、防火等。
优化建筑构造设计可以降低建造成本和维护费用,提高建筑物的经济效益。
建筑构造作为建筑设计的重要组成部分,对于塑造建筑物的艺术形象具有重要意义。
建筑构造的重要性CHAPTER无机材料有机材料金属材料复合材料建筑材料分类及特性01020304包括石材、砖瓦、陶瓷、玻璃等,具有高强度、耐久性好、防火等特点。
包括木材、塑料、橡胶等,具有质轻、易加工、装饰性好等特点。
包括钢铁、铝合金等,具有强度高、塑性好、易加工等特点。
由两种或两种以上不同性质的材料组成,具有综合性能好的特点。
物理性能力学性能热工性能耐久性建筑材料性能评价包括密度、孔隙率、吸水率、抗冻性等,影响材料的耐久性和使用寿命。
包括导热系数、热容量等,影响建筑物的保温和隔热效果。
包括抗压、抗拉、抗弯等强度指标,以及韧性和硬度等,决定材料承受荷载的能力。
包括耐候性、耐腐蚀性、耐磨损性等,决定材料在自然环境中的使用寿命。
8 风 荷 载8.1 风荷载标准值及基本风压8.1.1 垂直于建筑物表面上的风荷载标准值,应按下述公式计算: 1 当计算主要受力结构时0z s z k w w μμβ= (8.1.1-1)式中 k w —风荷载标准值(kN/m 2);z β—高度z处的风振系数; s μ—风荷载体型系数; z μ—风压高度变化系数;0w —基本风压(kN/m 2)。
2 当计算围护结构时0z sl gz k w w μμβ=(8.1.1-2)式中 gz β—高度z处的阵风系数;sl μ—风荷载局部体型系数。
8.1.2 基本风压应按本规范附录D.4中附表D.4给出的50年一遇的风压采用,但不得小于0.3kN/m 2。
对于高层建筑、高耸结构以及对风荷载比较敏感的其他结构,基本风压应适当提高,并应由有关的结构设计规范具体规定。
8.1.3 当城市或建设地点的基本风压值在本规范附录D.5没有给出时,基本风压值可按附录D规定的方法,根据基本风压的定义和当地年最大风速资料,通过统计分析确定,分析时应考虑样本数量的影响。
当地没有风速资料时,可根据附近地区规定的基本风压或长期资料,通过气象和地形条件的对比分析确定;也可按本规范附录D中附图D.6.3全国基本风压分布图近似确定。
8.1.4 风荷载的组合值、频遇值和准永久值系数可分别取O.6、0.4和0.0。
8.2 风压高度变化系数8.2.1 对于平坦或稍有起伏的地形,风压高度变化系数应根据地面粗糙度类别按表8.2.1确定。
地面粗糙度可分为A、B、C、D四类:A类指近海海面和海岛、海岸、湖岸及沙漠地区; B类指田野、乡村、丛林、丘陵以及房屋比较稀疏的乡镇; C类指有密集建筑群的城市市区;D类指有密集建筑群且房屋较高的城市市区。
表8.2.1 风压高度变化系数z μ地面粗糙度类别离地面或海 平面高度 (m) A B C D5 1.09 1.00 0.65 0.51 10 1.28 1.00 0.65 0.51 15 1.42 1.13 0.65 0.51 20 1.52 1.23 0.74 0.51 30 1.67 1.39 0.88 0.51 40 1.79 1.52 1.00 0.60 50 1.89 1.62 1.10 0.69 60 1.97 1.71 1.20 0.77 70 2.05 1.79 1.28 0.84 80 2.12 1.87 1.36 0.91 90 2.18 1.93 1.43 0.98 100 2.23 2.00 1.50 1.04 150 2.46 2.25 1.79 1.33 200 2.64 2.46 2.03 1.58 250 2.78 2.63 2.24 1.81 300 2.91 2.77 2.43 2.02 350 2.91 2.91 2.60 2.22 400 2.91 2.91 2.76 2.40 450 2.91 2.91 2.91 2.58 500 2.91 2.91 2.91 2.74 ≥5502.91 2.91 2.91 2.918.2.2 对于山区的建筑物,风压高度变化系数可按平坦地面的粗糙度类别,由表8.2.1确定外,还应考虑地形条件的修正,修正系数η分别按下述规定采用: 1 对于山峰和山坡,其顶部B处的修正系数可按下述公式采用:2B 5.21tg 1⎥⎦⎤⎢⎣⎡⎟⎠⎞⎜⎝⎛−+=H z ακη (8.2.2)式中tg α——山峰或山坡在迎风面一侧的坡度;当tg α>0.3时,取tg α=0.3;κ——系数,对山峰取2.2,对山坡取1.4;H ——山顶或山坡全高(m);z ——建筑物计算位置离建筑物地面的高度,m;当 2.5z H >时,取 2.5z H =。