小波变换的本质
- 格式:doc
- 大小:20.00 KB
- 文档页数:8
完美通俗解读小波变换,终于懂了小波是什么要讲小波变换,我们必须了解傅立叶变换。
要了解傅立叶变换,我们先要弄清楚什么是”变换“。
很多处理,不管是压缩也好,滤波也好,图形处理也好,本质都是变换。
变换的是什么东西呢?是基,也就是basis。
如果你暂时有些遗忘了basis的定义,那么简单说,在线性代数里,basis是指空间里一系列线性独立的向量,而这个空间里的任何其他向量,都可以由这些个向量的线性组合来表示。
那basis在变换里面啥用呢?比如说吧,傅立叶展开的本质,就是把一个空间中的信号用该空间的某个basis的线性组合表示出来,要这样表示的原因,是因为傅立叶变换的本质,是。
小波变换自然也不例外的和basis有关了。
再比如你用Photoshop去处理图像,里面的图像拉伸,反转,等等一系列操作,都是和basis的改变有关。
既然这些变换都是在搞基,那我们自然就容易想到,这个basis 的选取非常重要,因为basis的特点决定了具体的计算过程。
一个空间中可能有很多种形式的basis,什么样的basis比较好,很大程度上取决于这个basis服务于什么应用。
比如如果我们希望选取有利于压缩的话,那么就希望这个basis 能用其中很少的向量来最大程度地表示信号,这样即使把别的向量给砍了,信号也不会损失很多。
而如果是图形处理中常见的线性变换,最省计算量的完美basis就是eigenvector basis了,因为此时变换矩阵T对它们的作用等同于对角矩阵(Tv_n=av_n,a是eigenvalue)。
总的来说,抛开具体的应用不谈,所有的basis,我们都希望它们有一个共同的特点,那就是,容易计算,用最简单的方式呈现最多的信号特性。
好,现在我们对变换有了基本的认识,知道他们其实就是在搞基。
当然,搞基也是分形式的,不同的变换,搞基的妙处各有不同。
接下来先看看,傅立叶变换是在干嘛。
傅立叶级数最早是Joseph Fourier这个人提出的,他发现,这个basis不仅仅存在与vector space,还存在于function space。
小波变换学习心得第一章什么是小波变换1从傅里叶变换到小波变换1.1短时傅里叶变换为了克制傅里叶变换中时域和频域不能兼容的缺点,短时傅里叶变换把一个时间信号变为时间和频率的二维函数,它能够提供信号在某个时间段和某个频率X围的一定信息。
这些信息的精度依赖于时间窗的大小。
短时傅里叶变换的缺点是对所有的频率成分,所取的时间窗大小一样,然而,对很多信号为了获得更准确的时间或频率信息,需要可变的时间窗。
1.2小波变换小波变换提出了变换的时间窗,当需要准确的低频信息时,采用长的时间窗,当需要准确的高频信息时,采用短的时间窗,图1.3给出了时间域信号、傅里叶变换、短时傅里叶变换和小波变换的比照示意图。
由图1.3看出,小波变换用的不是时间-频率域。
而是时间-尺度域,尺度越大,采用越大的时间窗,尺度越小,采用越短的时间窗,即尺度与频率成反比。
1.2连续小波变换小波是一个衰减的波形,它在有限的区域里存在〔不为零〕,且其均值为零。
图1.4是一个Daubechies小波〔db10〕与正弦波的比拟。
正弦波:随时间无限振动的光滑波形,小波变换:锋利变化而且是无规那么的波形。
因此小波能更好的刻画信号的局部特性。
在数学上,傅里叶变换的公式为jtFftedt连续小波变换〔ContinueWaveletTransform〕的数学表达式CWTfttdta,ba,b1t bat a2a, b式中,t为小波;a为尺度因子;b为平移参数。
图1.6是小波变换的示意图。
由图看出,小波变换给出了在各个时刻信号是由哪些尺度的小波构成。
小波中的尺度因子的作用是将小波在保持完全相似条件下“拉伸〞或者“压缩〞,图1.7给吃了尺度因子的“拉伸〞和“压缩〞作用。
小波中的平移参数,是简单地将波形沿时间轴平移。
连续小波变换CWT a,b是参数a和b的函数。
下面的五个步骤是获得CWT a,b的最简单方法。
第一步,选择尺度a一定的小波,把它与原始信号的开场一段进展比拟。
连续小波变换的概念swt,cwt,dwt1。
连续小波的概念。
就是把一个可以称作小波的函数(从负无穷到正无穷积分为零)在某个尺度下与待处理信号卷积。
改变小波函数的尺度,也就改变了滤波器的带通范围,相应每一尺度下的小波系数也就反映了对应通带的信息。
本质上,连续小波也就是一组可控制通带范围的多尺度滤波器。
2。
连续小波是尺度可连续取值的小波,里面的a一般取整数,而不像二进小波a取2的整数幂。
从连续小波到二进小波再到正交离散小波,其实就是a、b都连续,a不连续、b连续,a、b都不连续的过程。
操作他们的快速算法也就是卷积(快速傅里叶),多孔(a trous),MALLAT。
在MATLAB里,也就是CWT,SWT,DWT。
SWT称平稳小波变换、二进小波变换、或者非抽取小波变换。
3。
从冗余性上:CWT>SWT>DWT,前面两个都冗余,后面的离散小波变换不冗余。
4。
从应用上:CWT适合相似性检测、奇异性分析;SWT适合消噪,模极大值分析;DWT适合压缩。
5。
操作。
就是在某个尺度上得到小波的离散值和原信号卷积,再改变尺度重新得到小波的离散值和原信号卷积。
每一个尺度得到一个行向量存储这个尺度下的小波系数,多个尺度就是一个矩阵,这个矩阵就是我们要显示的时间-尺度图。
6。
显示。
“不要认为工程很简单”。
我的一个老师说过的话。
小波系数的显示还是有技巧的。
很多人画出的图形“一片乌黑”就是个例子。
第一步,一般将所有尺度下的小波系数取模;第二步,将每个尺度下的小波系数范围作映射,映射到你指定MAP的范围,比如如果是GRAY,你就映射到0-255;第三步,用IMAGE命令画图;第四步,设置时间和尺度坐标。
MATLAB是个很专业的软件,它把这些做的很好,但也就使我们懒惰和糊涂,我是个好奇心重的人就研究了下。
里面有个巧妙的函数把我说的(1,2)两个步骤封装在了一起,就是WCODEMAT,有兴趣的同学可以看看。
希望大家深入研究小波。
matlab小波变换信号去噪Matlab是一款非常强大的数据分析工具,其中小波变换可以应用于信号去噪的领域。
下面将详细介绍基于Matlab小波变换的信号去噪方法。
1、小波变换简介小波变换是时频分析的一种方法,它将信号分解成尺度与时间两个维度,能够保持信号的局部特征,适用于非平稳信号的分析。
小波变换的本质是将信号从时域转换到时频域,得到更加精细的频域信息,可以方便的对信号进行滤波、去噪等处理。
2、小波去噪方法小波去噪是指通过小波分析方法将噪声与信号分离并且去除的过程。
小波去噪的基本步骤是通过小波分解将信号分解成多尺度信号,然后对每一个分解系数进行阈值处理,去除一部分小于阈值的噪声信号,最后将处理后的分解系数合成原始信号。
3、基于Matlab的小波变换信号去噪实现在Matlab中,可以使用wavemenu命令进行小波变换,使用wthresh命令对小波分解系数进行阈值处理,利用waverec命令将阈值处理后的小波分解系数合成原始信号。
下面给出基于Matlab实现小波变换信号去噪的步骤:(1)读取信号,并可视化观测信号波形。
(2)通过wavedec命令将信号进行小波分解得到多个尺度系数,展示出小波分解系数。
(3)通过绘制小波系数分布直方图或者小波系数二维展示图,估计信号的噪声强度。
(4)根据阈值处理法对小波系数进行阈值处理,获得非噪声系数和噪声系数。
(5)通过waverec命令将非噪声系数合成原始信号。
(6)可视化效果,比较去噪前后信号的波形。
针对每个步骤,需要熟悉各个工具箱的使用知识。
在实际应用中,还需要根据特定的数据处理需求进行合理的参数设置。
4、总结小波去噪是一种常见的信号处理方法,在Matlab中也可以方便地实现。
通过实现基于Matlab小波变换的信号去噪,可以更好地应对复杂信号处理的需求,提高数据分析的准确性和精度。
小波变换与傅里叶变换的区别和联系小波变换(WaveletTransform)和傅里叶变换(FourierTransform)是现代信号处理领域的两种重要变换技术。
不论它们有哪些相似之处,这两种变换技术也在许多方面存在本质上的不同。
本文将通过对小波变换和傅里叶变换的综述介绍它们的区别和联系。
一、小波变换小波变换是一种信号处理的重要技术,它的基本思想就是将信号划分成瞬态信号和非瞬态信号,以提取瞬态信号中的特征,从而得到更丰富的信息。
它的实质是将时域的信号转换到时频域的信号,这样可以获取时域信号中隐藏的频率特性。
小波变换有两个主要优势:时间精度高和高分辨率。
它可以准确地定位信号变化的时间;而且,由于小波变换采用分段处理的方式,因此其分辨率更高。
二、傅里叶变换傅里叶变换(Fourier Transform)是一种时域到频域的变换技术,它可以将时间域的信号转换到频域。
傅里叶变换可以精确地表示频域信号;它可以将平稳信号拆分成不同的频率分量,其变换结果是一个复数函数。
傅里叶变换最大的优势就是其时域到频域的变换非常有效。
傅里叶变换可以将频域信号简化到时域信号,从而可以快速计算出信号的频率特性。
三、小波变换与傅里叶变换的区别(1)小波变换是一种由瞬态信号构成的时频域变换,是将短时信号分解成多个小时间片,获取每个小时间片的频率特性;而傅里叶变换是一种将平稳信号从时域转换到频域的变换技术,它可以将信号拆分成不同的频率分量。
(2)傅里叶变换更侧重于精确表示频域信号;而小波变换更侧重于时精度和高分辨率。
(3)同时,小波变换和傅里叶变换可以获取信号的频率特性,但是它们获取信号的方式有很大不同。
四、小波变换与傅里叶变换的联系小波变换和傅里叶变换都可以获取信号的频率特性,因此,它们也具有一定的共性。
(1)小波变换和傅里叶变换都使用矩阵运算来进行计算,可以有效提高处理速度。
(2)通过比较两种变换技术的优劣,可以帮助使用者更好地选择合适的信号处理技术。
离散小波变换(dwt
离散小波变换(DWT)是一种信号处理技术,它将信号分解成不
同频率的子信号,从而可以更好地理解信号的时间和频率特性。
DWT
是一种多尺度分析技术,通过对信号进行分解和重构,可以提取信
号的特征,去除噪音,压缩信号等。
DWT的基本原理是利用小波函数对信号进行分解和重构。
在分
解过程中,信号被分解成不同频率的子信号,每个子信号对应不同
尺度的小波函数。
这种分解可以帮助我们更好地理解信号的频域特性,同时也可以提供信号的时间信息。
在重构过程中,可以根据需
要选择部分子信号进行合成,从而实现对信号的去噪、压缩等操作。
DWT在信号处理领域有着广泛的应用,例如在图像压缩、语音
信号处理、生物医学信号分析等方面都有重要的作用。
通过DWT可
以将信号分解成不同频率的子信号,从而更好地理解信号的特性,
有助于提取信号的特征,减少数据冗余,实现信号的压缩和去噪等
操作。
在实际应用中,DWT有多种变种和扩展,如离散小波包变换(DWPT)、连续小波变换(CWT)等,这些方法在不同领域都有着广
泛的应用。
总的来说,离散小波变换作为一种重要的信号处理技术,对于理解和处理信号具有重要意义,它为我们提供了一种多尺度分
析的工具,有助于从不同角度理解和处理信号。
四层小波变换
摘要:
一、引言
二、小波变换的基本概念
三、四层小波变换的原理
四、四层小波变换的应用领域
五、总结
正文:
一、引言
小波变换是一种在时频域上同时进行的信号分析方法,广泛应用于图像处理、语音处理、信号分析等领域。
四层小波变换是小波变换的一种重要形式,具有较高的信号分析能力和应用价值。
二、小波变换的基本概念
小波变换是一种基于小波基函数的信号分析方法,其基本思想是将信号分解成一系列小波基函数的线性组合,从而得到信号的频域表示。
小波基函数是一种具有局部特性的函数,能够有效地反映信号的局部特征,因此小波变换具有较高的时频分析能力。
三、四层小波变换的原理
四层小波变换是一种基于四层小波基函数的信号分析方法,其原理是将信号分解成一系列四层小波基函数的线性组合。
四层小波基函数是一种具有四层结构的小波基函数,能够更加细致地反映信号的局部特征,因此四层小波变换
具有更高的时频分析能力和信号重构能力。
四、四层小波变换的应用领域
四层小波变换在图像处理、语音处理、信号分析等领域都具有广泛的应用。
例如,在图像处理领域,四层小波变换可以用于图像的压缩、去噪、边缘检测等任务;在语音处理领域,四层小波变换可以用于语音的压缩、去噪、语音识别等任务;在信号分析领域,四层小波变换可以用于信号的时频分析、去噪、特征提取等任务。
五、总结
四层小波变换是一种具有较高信号分析能力和应用价值的信号分析方法,广泛应用于图像处理、语音处理、信号分析等领域。
⼩波包变换(WaveletPacketTransform)的学习笔记对于⼀个连续的周期信号,可以将其分解为⼀组频率不同的三⾓函数信号的线性组合,这就是傅⾥叶级数的本质,将信号从时域投影到频域中的不同频段上来完成分解。
当这个周期信号的周期趋近于⽆穷⼤时,傅⾥叶级数就变成了傅⾥叶变换。
此时的信号本质上是⼀个连续⾮周期信号,傅⾥叶变换的意义就在于对其进⾏分解,同样也是以⼀组三⾓函数作为正交基,并通过这组三⾓函数基的线性组合来表⽰原信号。
数学表达为:由于三⾓函数是⼀个⽆限长的信号,在时域上不具有局部性,因此以其作为正交基对信号进⾏拟合时,具有以下两个不⾜:第⼀,对于突变信号,如阶跃信号或尖峰信号,其需要⼤量的三⾓函数基进⾏组合才能完成较好的信号拟合;第⼆,由于三⾓函数不具备在时域上的局部性,因此在对信号进⾏傅⾥叶变换时,仅仅只能获取到信号在频域上的分布信息,并不能获取到这些不同频率的信号分量在时域上出现的位置。
因此傅⾥叶变换对于⾮平稳信号的分解会遗失其在时域上的变化信息。
⼩波变换就是为了解决对⾮平稳信号的分解问题⽽产⽣的数学⽅法。
相⽐于傅⾥叶变换使⽤⼀组⽆限长的三⾓函数基进⾏信号拟合,⼩波变换使⽤的是⼀组正交的、迅速衰减的⼩波函数基进⾏信号拟合。
这种⼩波函数基可通过其尺度变量和平移变量,获得不同的频率和时间位置。
因此在利⽤这种⼩波函数基对信号进⾏分解时,可以⽤较少的⼩波函数基就拟合出突变信号(稀疏编码特性),同时也能获得不同频率的信号分量在时域上的出现位置。
⽤于⽣成⼀组不同频率和时移的⼩波函数的⼩波函数,称为基本⼩波(Basic Wavelet),由其⽣成的⼀组⼩波函数,是该基本⼩波的⼀个⼩波族(Wavelet Family),表⽰为:,其中为尺度参数,通过伸缩控制⼩波的尺度(频率),为平移参数,通过移位控制⼩波在时域中的出现位置。
这两个参数的作⽤顺序是先作平移,再作伸缩。
对这⼀族⼩波函数进⾏归⼀化,即得到⼀组⼩波函数基。
东北大学研究生考试试卷考试科目:状态监测与故障诊断课程编号:阅卷人:考试日期:2013.12*名:***学号:*******注意事项1.考前研究生将上述项目填写清楚2.字迹要清楚,保持卷面清洁3.交卷时请将本试卷和题签一起上交东北大学研究生院小波分析的基本理论小波分析是当前应用数学和工程学科中一个迅速发展的新领域,是分析和处理非平稳信号的一种有力工具。
经过大量学者不断探索研究,它是以局部化函数所形成的小波基作为基底而展开的。
小波分析在保留傅里叶分析优点的基础上,具有许多特殊的性能和优点。
而小波分析则是一种更合理的时频表示和子带多分辨分析方法。
所以理论基础渐已扎实,理论体系逐步完善,在工程领域已得到广泛应用。
1 小波变换理论1.1 连续小波变换定义1.1 小波函数的定义:设ψ(x )为一平方可积函数,也即ψ(x )∈ L 2(R ),若其傅里叶变换ψ(ω)满足条件:C ψ=∫|ψ̂(ω)||ω|d ω<+∞+∞−∞1-1则称ψ(x )是一个基本小波或小波母函数(Mother Wavelet ),并称上式为小波函数的容许性条件。
由定义1.1可知,小波函数具有两个特点:(1)小:它们在时域都具有紧支集或近似紧支集。
由定义的条件知道任何满足可容许性条件的L 2(R )空间的函数都可以作为小波母函数(包括实数函数或复数函数、紧支集或非紧支集函数等)。
但是在一般的情况下,常常选取紧支集或近似紧支集的同时具有时域和频域的局部性实数或复数函数作为小波母函,让小波母函数在时域和频域都具有较好的局部特性,这样可以更好的完成实验。
(2)波动性:若设ψ̂(ω)在点ω=0连续,则由容许性条件得:∫ψ(x )dx =ψ̂(0)=0+∞−∞ 1-2也即直流分量为零,同时也就说明ψ(x )必是具有正负交替的波动性,这也是其 称为小波的原因。
定义1.2 连续小波基函数的定义:将小波母函数ψ(x )进行伸缩和平移,设其收缩因子(即尺度因子)为a,平移因子为b,使其平移伸缩后的函数为ψa,b (x ),则有:ψa ,b (x )=|a |−12ψ(x−b a),a >0,b ∈R 1-3称ψa,b (x )为依赖于参数a,b 的小波基函数。
基于小波变换的语音信号去噪技术研究语音信号作为一种重要的信息载体,在日常生活和工业生产中广泛应用。
随着社会的不断发展和科技的不断进步,对语音信号的要求也越来越高。
但是,在实际应用中,语音信号往往受到各种噪声的干扰,严重影响了信号质量和准确性。
因此,去除语音信号中的噪声,成为了语音处理领域中一个重要的研究方向。
小波变换是一种非常有效的信号分析工具,广泛应用于图像处理、信号处理等领域。
在语音信号去噪方面,小波变换也被用来分析和处理语音信号。
本文将介绍基于小波变换的语音信号去噪技术的研究进展以及相关问题。
一、小波变换小波变换是一种多尺度分析工具,通过将信号分解成不同尺度的子信号,可以对信号进行深入分析和处理。
小波变换的本质是将信号转换到小波域,从而更好地分析和处理信号。
小波变换可以分为离散小波变换和连续小波变换两种。
离散小波变换是将信号离散化后进行变换,适用于数字信号处理。
而连续小波变换是将信号在连续时间域上进行变换,适用于模拟信号处理。
二、语音信号去噪技术传统的语音信号去噪技术有很多,比如基于差分算法的去噪技术、基于局部统计量的去噪技术、基于频域滤波的去噪技术等。
这些方法具有一定的效果,但是在某些情况下效果并不理想,比如噪声比较强、语音信号频率较低等情况下。
基于小波变换的语音信号去噪技术是一种新兴的技术,具有很好的效果。
该技术通过将语音信号分解到小波域中,利用小波系数之间的相关性处理噪声,然后将处理后的信号反变换回到时域中。
三、基于小波变换的语音信号去噪技术的研究在基于小波变换的语音信号去噪技术方面,目前研究较多的是基于软阈值方法的去噪技术和基于最小均方误差方法的去噪技术。
1. 基于软阈值方法的去噪技术基于软阈值方法的去噪技术是一种比较简单的处理方法,其基本思想是对小波系数进行处理,将小于一定阈值的系数置为零,大于一定阈值的系数保持不变。
这种方法可以有效地去除高频噪声,但对于内部噪声的处理效果较差。
小波变换算法实现小波变换是现代信号处理领域中一种重要的分析方法,用于将一个时间域上的信号转换成频率-时间域上的信号。
小波变换具有时频局部化的特性,可以更好地描述信号的瞬时特征。
下面将介绍小波变换的基本原理和算法实现。
一、小波变换的基本原理小波变换本质上是将一个信号分解成不同频率和时间的成分。
它利用小波函数作为基函数,通过对信号的卷积和迭代分解,将信号分解为近似系数和细节系数。
近似系数表示信号在不同尺度上的低频成分,而细节系数表示信号在不同尺度上的高频成分。
通过迭代分解和重构,可以得到一系列尺度不同的近似系数和细节系数。
这些系数可以用于信号的压缩、去噪、边缘检测等各种信号处理任务,具有很强的应用价值。
二、小波变换的实现步骤小波变换的实现分为分解和重构两个步骤。
下面将详细介绍每个步骤的算法实现。
1.分解(1)选择小波基函数:需要选择一种合适的小波基函数作为分解的基础。
常见的小波基函数有Haar、Daubechies、Symlets等。
(2)信号补零:为了使信号长度满足小波变换的要求,需要对信号进行补零操作,通常在信号末尾添加0。
(3)小波滤波器:通过卷积操作将信号分解为低频和高频的部分。
低频部分即近似系数,高频部分即细节系数。
(4)采样:将滤波后的信号进行降采样,得到下一层的近似系数和细节系数。
(5)重复分解:将降采样后的近似系数和细节系数作为输入,重复进行上述分解操作,得到更高阶的近似系数和细节系数。
2.重构(1)插值:将近似系数和细节系数进行上采样,补齐0,得到重构所需的长度。
(2)小波滤波器:将插值后的系数与小波滤波器进行卷积操作,得到重构后的信号。
(3)重复重构:将重构信号作为输入,重复进行上述重构操作,得到原始信号的近似恢复。
三、小波变换的优缺点小波变换有以下几个优点:(1)时频局部化:小波函数具有时频局部化的特性,能更好地描述信号的瞬时特征。
(2)多分辨率分析:小波变换能够将信号在不同尺度上进行分解,分析信号的低频和高频成分。
傅里叶变换和小波变换
傅里叶变换和小波变换都是处理信号和数据的重要工具,它们分别在不同的场合下使用。
傅里叶变换是一种将时域信号转换为频域信号的方法。
它通过将信号表示为正弦和余弦函数的和,将信号分解成不同的频率分量。
在频域中,我们可以更好地理解信号的频率特征,从而更好地处理和分析信号。
例如,在音频处理、图像处理和通信等领域中,傅里叶变换被广泛用于信号分析和处理。
小波变换是一种比傅里叶变换更为灵活的信号处理工具,它可以同时表示时域和频域的信息。
小波变换使用小波函数作为基函数,这些小波函数可以随着尺度的变化而变化。
在处理非平稳信号(如语音、图像等)时,小波变换具有更好的时频定位能力,可以更好地捕捉信号的局部特征。
因此,小波变换在许多领域中都有广泛的应用,如信号处理、图像处理、模式识别等。
傅里叶变换主要用于分析平稳信号,例如在音频处理、图像处理和通信等领域中,傅里叶变换被广泛用于信号分析和处理。
由于傅里叶变换将信号表示为正弦和余弦函数的和,因此它可以将信号分解成不同的频率分量,从而更好地理解信号的频率特征。
小波变换则更适合处理非平稳信号,例如在语音、图像和时间序列分析等领域中,小波变换被广泛用于信号的时频分析和特征提取。
由于小波变换使用小波函数作为基函数,这些小波函数可以随着尺度的变化而变化,因此小波变换可以更好地捕捉信号的局部特征,并具有更好的时频定位能力。
总的来说,傅里叶变换和小波变换都是重要的信号处理工具,它们的选择取决于具体的任务和数据特性。
在实际应用中,我们可以根据需要选择合适的工具来处理和分析信号。
中值滤波小波变换
中值滤波和小波变换是数字信号处理中常用的两种技术,它们在图像处理、信号去噪和特征提取等方面有着广泛的应用。
首先,让我们来谈谈中值滤波。
中值滤波是一种非线性滤波方法,它的原理是用像素点邻域灰度值的中值来代替该像素点的灰度值,从而达到去除噪声的目的。
中值滤波对于椒盐噪声和斑点噪声有很好的去除效果,因为它不受噪声干扰的影响,能够有效保留图像的边缘信息。
然而,中值滤波也有一些局限性,比如在去除高斯噪声方面效果不如线性滤波器。
接下来是小波变换。
小波变换是一种时频分析方法,它将信号分解成不同尺度和频率的小波系数,从而可以对信号进行多尺度的分析。
小波变换可以用于信号压缩、去噪、特征提取等领域。
与傅立叶变换相比,小波变换具有更好的局部性质,能够更准确地定位信号中的瞬时变化和突变点。
此外,小波变换还有离散小波变换和连续小波变换两种形式,分别适用于离散信号和连续信号的处理。
综上所述,中值滤波和小波变换是两种不同的信号处理技术,
它们各自在去噪和特征提取方面有着独特的优势和应用场景。
在实际应用中,可以根据具体的问题和要求选择合适的方法进行处理。
傅里叶变换与小波变换的比较分析傅里叶变换与小波变换都是信号处理中常用的数学工具,它们的目的是将一个特定的各种信号分解成其基本成分。
这些成分能够使得我们更好地理解信号的本质,并且在提取有用信息方面非常重要。
虽然这两个工具在原理上都是用于分析信号的,但它们之间存在明显的差异,本文将就其分别进行详细分析和比较。
傅里叶变换(Fourier Transform)是一个非常重要的数学工具,它可以将一个信号分解成其不同频率的成分。
换句话说,它可以将时域信号转换成频域信号,进而可以对其进行频谱分析,得出其频率成分的强弱。
如果一个信号是由若干个频率不同的正弦波叠加而成,那么傅里叶变换可以将其分解成不同频率的正弦波。
不仅如此,FFT(快速傅里叶变换)的发明更加速了对信号的频域分析。
小波变换(Wavelet Transform)是一种分析时域信号的数学工具。
该工具可以将信号分解成具有不同频率和时间分辨率的小波基成分。
这种分解方式具有时间域和频域的优点,因此可以对信号的局部特征进行较好的分析。
相比于傅里叶变换,小波变换在处理非线性问题、非平稳信号和信号突变点等问题上具有很好的应用实例。
在计算速度方面,傅里叶变换有着很大的优势。
由于傅里叶变换基于频域的分析,相比于时域信号,其重要的时间数据相对较少,因此可以大大加快计算速度。
这也是FFT(快速傅里叶变换)能够以较快的速度计算出傅里叶变换的主要原因。
相比较而言,小波变换的计算速度更慢。
这是因为小波变换需要同时考虑时间和频域信息,因此需要更复杂的算法和计算方式。
同时,小波变换的基函数需要满足一些特定的条件,这也增加了计算的复杂度。
在信号信息提取方面,小波变换则更具优势。
在信号分析方面,小波变换不仅可以提供整个信号的频率信息,而且可以提供信号的局部信息,例如信号的突变点、瞬时频率等特征。
当一个信号的主要频率成分集中在小时间窗口内时,小波变换可以更好地检测和分析这个信号。
相反,傅里叶变换不能提供这样的局部时间-频率分析,因为其只能计算整个信号的功率谱密度。
小波变换原理小波变换是一种多尺度分析方法,它可以将信号分解成不同尺度的成分,从而揭示出信号的局部特征。
小波变换在信号处理、图像处理、数据压缩等领域有着广泛的应用。
本文将介绍小波变换的原理及其在实际应用中的一些特点。
小波变换的原理可以通过分析其数学表达式来理解。
假设我们有一个连续信号f(t),我们希望将其分解成不同尺度的成分。
我们可以使用一组小波函数ψ(a, b)来对信号进行分解,其中a表示尺度参数,b表示平移参数。
小波函数具有一定的特性,比如局部化、平滑性等,这使得它可以很好地描述信号的局部特征。
小波变换可以通过对信号与小波函数进行内积运算来实现,即。
W(a, b) = ∫f(t)ψ(a, b)dt。
其中W(a, b)表示小波系数,ψ(a, b)表示小波函数的共轭。
通过对不同尺度和平移参数下的小波系数进行计算,我们可以得到信号在不同尺度下的频谱信息,从而实现信号的分解和分析。
小波变换的一个重要特点是多尺度分析能力。
传统的傅里叶变换只能提供信号在全局尺度下的频谱信息,而小波变换可以提供信号在不同尺度下的频谱信息,这使得它可以更好地捕捉信号的局部特征。
这种多尺度分析的能力使得小波变换在处理非平稳信号时具有优势,比如地震信号、心电图信号等。
另外,小波变换还具有一定的局部化特性。
小波函数在时域和频域上都具有一定的局部化特性,这使得小波变换可以更好地描述信号的局部特征。
相比之下,傅里叶变换在频域上具有全局性,这在一定程度上限制了其对信号局部特征的描述能力。
除了信号分析之外,小波变换还在图像处理、数据压缩等领域有着广泛的应用。
在图像处理中,小波变换可以用于图像的去噪、边缘检测等任务;在数据压缩中,小波变换可以将信号的能量集中在少数重要的小波系数上,从而实现对信号的高效压缩。
总之,小波变换是一种重要的信号分析方法,它具有多尺度分析能力和局部化特性,适用于处理非平稳信号和具有局部特征的信号。
在实际应用中,小波变换有着广泛的应用前景,可以帮助我们更好地理解和处理各种类型的信号和数据。
为了应付老板的的一个任务而收集了几篇相关文章!我是搞电力系统故障波形分析的,正上研二,导师定的方向是用小波变换进行信号的消噪及波形奇异点检测.出于研究方向的需要从去年年底开始接触小波.毕竟是工科出身,学起小波来觉得难度很大.不夸张地说常有学不下去的感觉.硬着头皮看了一段时间,终于觉得有点眉目,现将我从信号奇异性方面的理解写出来,请各位同仁批评指正,并希望能对刚接触小波的朋友有点帮助!1学习小波变换所需的基础知识由于小波变换的知识涵盖了调和分析,实变函数论,泛函分析及矩阵论,所以没有一定的数学基础很难学好小波变换.但是对于我们工科学生来说,重要的是能利用这门知识来分析所遇到的问题.所以个人认为并不需要去详细学习调和分析,实变函数论,泛函分析及矩阵论等数学知识.最重要是的理解小波变换的思想!从这个意义上说付立叶变换这一关必需得过!因为小波变换的基础知识在付立叶变换中均有提及,我觉得这也就是很多小波变换的书都将付立叶分析作为其重要内容的原因.所以我认为学习小波应从<数字信号处理>中的付立叶分析开始.当然也可从<信号与系统>这本书开始.然后再看杨福生老师的小波变换书.个人觉得他的书最能为工科学生所接受.2信号的分解付立叶级数将周期信号分解为了一个个倍频分量的叠加,基函数是正交的,也就是通常所说的标准正交基.通过分解我们就能将特定的频率成分提取出来而实现特定的各种需要,如滤波,消噪等.付立叶变换则将倍频谱转换为了连续谱,其意义差不多.小波变换也是一种信号分解思想:只不过它是将信号分解为一个个频带信号的叠加.其中的低频部分作为信号的近似,高频部分作为信号的细节.所谓的细节部分就是一组组小波分量的叠加,也就是常说的小波级数.3小波变换的时频分析思想付立叶变换将信号从时域变换到了频域,从整体上看待信号所包含的频率成分.对于某个局部时间点或时间段上信号的频谱分析就无能为力了,对于我们从事信号的奇异性检测的人来说,付立叶变换就失去了意义(包括加窗付立叶变换).因为我们要找的是信号的奇异点(时域方面)和奇异点处所包含的频带(频域方面)也就是说需要一种时频分析方法.当然能有纯时域的分析方法更好!(据说数学形态学能达到这种效果).小波变换之所以可以检测信号的奇异点,正在于它的"小".因为用小的波去近似奇异信号要比正弦波要好的多.4小波变换的实质小波变换的公式有内积形式和卷积形式,两种形式的实质都是一样的.它要求的就是一个个小波分量的系数也就是"权".其直观意义就是首先用一个时窗最窄,频窗最宽的小波作为尺子去一步步地"量"信号,也就是去比较信号与小波的相似程度.信号局部与小波越相似,则小波变换的值越大,否则越小!当一步比较完成后,再将尺子拉长一倍,又去一步步地比较,从而得出一组组数据.如此这般循环,最后得出的就是信号的小波分解(小波级数).当然这只是一种粗略的解释.5连续小波变换,二进小波变换与离散小波变换的关系当尺度及位移均作连续变化时,可以理解必将产生一大堆数据,作实际应用时并不需要这么多的数据,因此就产生了离散的思想.将尺度作二进离散就得到二进小波变换,同时也将信号的频带作了二进离散.当觉得二进离散数据量仍显大时,同时将位移也作离散就得到了离散小波变换!6 MALLAT算法的意义想必大家都注意到,小波变换是以内积或卷积的形式实现的,这给数值计算带来了不利之处,因为用计算机作数值积分其计算量大.MALLAT算法则解决了这一问题,它不涉及小波的具体形式,只是对系数进行操作!其计算也就是用高通及低通滤波系数与小波系数作卷积.因为作信号处理时,我们往往并不关心小皮的具体形式,更为关心小波系数.需提出的是该算法仅适用于正交小波如果小波不是正交的(如B样条小波)则算法失效!7小波变换的模极大值及其意义对于我们搞信号奇异性检测的人来说,小波变换最重要的应用就是用模极大值定值奇异点.我觉得模极大值可以从两个方面去理解:第一,从直观角度,上文已说明小波变换的实质就是一种度量波形相似程度的方法.信号与小波越相似,则小波系数越大.这也就可理解为出现了小波变换的模极大值.因为当信号出现奇异点时,或是间断点,或是一阶导数不连续点,其在各个尺度下都将必然出现大的小波系数.从而可以定位奇异点!第二个方面从小波的取法来看,当小波取为光滑函数一阶导数或二阶导数时,从公式可以推导出小波变换将出现模极大值点或是过零点.也就是很多书上说的模极大值检测和零交叉检测.这些可以查书看!我只谈谈连续小波变换,对于离散的也有同样的argument。
小波函数的dilation和translation是这样一个形式:1/\sqrt{|s|}\psi((x-u)/s),s是scale,u是该小波atom的center。
由于根据定义,小波的积分是0,也就是说小波函数的傅立叶变换在零点为零。
再有于小波函数的傅立叶变换一般是连续的(比如如果小波是属于L_1的),这样在0的一个小临域里面,小波的傅立叶变换很接近零,这也就是说小波函数的傅立叶变换可以看成某个高通滤波器的transfer function,这样小波变换W(f)实际是在measure该函数f在u点附近的variation。
从这个角度看的话,如果小波的宽度很大(对应尺度s很大),该函数在该小波的窗口下的variation就很大;如果小波的宽度小(对应尺度s小),则函数在该小波的窗口下的variation就相对比较小(除非信号是fractal,呵呵)。
小波情结到了小波版很久,总觉得应该写些什么。
这篇文章也就献给那些所有正在研究或即将研究小波的同学、老师和科研人员们。
这是篇与技术无关的文章,撰写的是我对小波的感受。
从我开始接触小波,研究小波,到迷恋小波的真实记录。
因此,我把它起名叫小波情结。
刚开始,接触小波的时候在研一。
关于老师布置的从频域构造一种小波的作业开始。
后来我才知道,这种小波本质上就是meyer小波。
当时,就一个字,嫩。
实际上就是对小波毫无所知。
脑子里就是一叠的公式。
正交条件,容许条件等一大堆,与概念理解相差甚远的东东。
但,还是乐此不疲的编程。
总想看看,我亲手缔造的小波长的是什么样,也有些略带孩子气的,想把它作为桌面和自己的酷酷头像之类的欲望。
于是,十一的头三天,我基本上闭门造车。
当时,我用的是matlab,也是我最后得到哭笑不得结果的直接的助手与帮凶。
因为构造的过程的起始,我就把函数离散化了。
紧接着就是平移,对乘,积分,抽取,插值,dsp里的一套trick 把我搞得叫苦不迭。
程序也累计到了1000行左右。
当时,最可恨的就是对点,由于dsp下标的1,2,3离散化,所以我也就用手指开始傻傻的算。
连续几天晚上鏖战,终于在3号的晚上。
通过IFFT后,美妙的波形出来了。
注意,美妙和丑陋只有一步之遥。
这是我的对小波的第一课体会。
当我一看屏幕,疯了,彻底疯了。
一个DELTA函数类似的波形,就在我眼前。
心想:忙乎了三天,整了个DELTA函数出来。
这难道就是回报吗别急,小波是紧支撑的啊。
概念上对头,一定是取点的问题。
我便拿起MATLAB自带的照妖镜(放大镜)一看,呵呵,一个差强人意的波形就在我眼前了。
我当时大喊一声,爽,那时已经凌晨2:00。
第一次的经历,对我来说收获很丰。
然后,第二次挑战,则是彻底改变我对小波是个深不可测的家伙的看法。
这次作业,就是用刚才构造的小波,做消噪。
我这次,又一次的想起,爱情格言:我心灵的古堡经不起你轻轻的一击。
女生问:结果呢回答:碎了。
一个如此,不精确的波形,怎么能消噪呢而且,当时老师要用连续小波的方法。
也就是内积求和的方法。
我和同学,首先合作,用mathmatic 做了个好一点的波形。
因为,除最后一步,反傅里叶变换外,其他都是解析的。
然后,一个困扰我许久的问题产生了。
一个函数可以由无穷多个小波的膨胀和伸缩叠加起来。
那么,我把函数从-inf 到+inf 积分,假设函数有直流分量,所以积分不为零。
但是小波,积分却为零。
这不是矛盾吗后来,也就是研二我才知道,有些时候积分后不可以交换。
还有,其实有限的小波逼近,必须加上尺度函数才可以。
但当时,我们只是采用了把小波的支撑取宽的办法解决了此问题。
但,我由于不太喜欢这种方法的冗长和费时,所以想令辟蹊径。
于是,mallet一个令我崇拜的算法,终于在我阅读超星的时候,跳在了我生命里。
首先,便是看冗长的证明,勉强理解了。
当看到滤波器组的解释后,我开始豁然开朗。
这是我熟悉的dsp概念。
因此,我花了一晚上,把这个算法彻底搞懂了。
但概念的理解和程序的成功编制,还是有一小步,就是这一步,使无数英雄竟折腰。
我的幸运之神便是MATLAB里的DEMO。
那个里面,有一个详细的算法解释。
并且从哪里我知道了些怪怪的函数。
WKEEP(),DYADDOWN(),DYADUP()等等。
而且,又一个问题,理论和实际差别产生了。
这个问题甚至现在,还困扰着很多的小波工作者。
一个长度为100的信号,分解后理论上高频50,低频50。
但用卷积算法,假设滤波器长度为10。
因此总长度109,做抽取后长度55。
多了5。
这怎么办呢。
我去问了很多老师,回答都一样。
就是MATLAB里用的函数WKEEP()。
把两头丢掉。
当时我勉强接受了这个结果。
但始终有个概念,小波变换就是正交变换,它和傅里也变换一样,一定可以写成正交阵的形式。
第二次作业的完成,我的小波课结束了。
但我的小波情结还在继续。
关于,正交阵的猜想还在困扰着我。
一本电磁场和小波结合的外文书籍,帮助了我。
圆周卷积的概念,历历在目。
是呀,卷积对着傅里叶变换,而圆周卷积对应着离散傅里叶变换。
这就是连续与离散的区别和联系啊。
于是我用db小波,构造了一个完全正交的矩阵。
当我把这个矩阵和它的转置相乘的时候,单位阵出来了。
那天,我高兴得流泪。
最终,我把圆周卷积用快速傅里叶变换实现出来。
今后的日子,我便觉得,思维的水再也关不住了。
步步为营,我实现了db小波的时域构造,采用矩阵特征向量法和casade理论两种解法,我都成功了。
慢慢的我开始醉心于消失矩,开始懂得框架,开始懂得双正交。
然后就是,PR条件,二代小波,小波插值,因子化,等等。
于是,我也在研学一边和大家交流,一边阅读大量书籍和文献,而且实现里面的每一个例子和思想。
当我们还在觉得自己懂点小波的时候,美国人已把它用于指纹压缩,产生了巨大的经济和社会效益;当我们,还在对二代不屑一顾的时候,一个叫JPEG2000标准的东东,彻底给我们上了一课。
当我们,还在国家著名期刊上,打着错误的提升公式的时候,当我们,还在为些不值一提的程序保密的时候,一个叫各相异性小波的东东又开始蠢蠢欲动。
看看那些大师们吧,看看他们的态度,再看看我们,我们努力的够吗。
你说看不懂文献,我就要问你,你看了一遍,十遍,还是一百遍呢如果说你认为是高手,你是否写了超过10万行以上小波的代码,看了10本以上的书,100篇的文献,实现里面所有的例子和思想了呢。