光化学原理与应用辐射跃迁-磷光2015- 4-10 终版 已讲.
- 格式:pdf
- 大小:1002.50 KB
- 文档页数:62
引言:光化学的原理及应用(二)是对光化学这一重要领域的深入探讨,本文将从引言概述、正文内容、总结等方面展开讲述。
光化学作为一门交叉学科,涉及光学、化学、物理等领域,其应用领域广泛,对环境保护、能源开发、生命科学等方面都有重要意义。
概述:正文内容:1.光化学反应的基本原理1.1光激发光激发是光化学反应的起始过程,当分子吸收光子能量时,电子从基态跃迁到激发态。
1.2能量转化电子在激发态具备较高的能量,这部分能量可以被转化为化学能、热能或其他形式的能量,从而推动光化学反应的进行。
1.3化学键断裂和形成在光化学反应中,光激发的分子发生化学键的断裂和形成,从而产生新的物质。
2.光化学反应机理与动力学2.1电子转移反应电子转移反应是光化学反应中常见的一种反应机制,包括光电子转移和化学电子转移两种形式。
2.2自由基反应自由基反应是指光化学反应中涉及到自由基的、传递和消耗等过程,具有较为复杂的反应机理。
3.光化学在环境保护中的应用3.1水处理光化学技术可以利用光能来催化水中有机污染物降解,从而实现水处理和污染物去除。
3.2大气污染控制光化学反应可以参与大气中有机物的降解和氧化过程,从而改善大气质量和减少空气污染物的排放。
4.光化学在能源开发中的应用4.1光电转化光电转化是指将光能转化为电能的过程,其中包括太阳能电池等光电转换器件的设计与制备。
4.2光催化光催化是指利用光能来驱动化学反应的过程,如利用光催化材料来实现水分解产生氢气。
5.光化学在生命科学中的应用5.1光动力疗法光动力疗法是一种通过激活光敏剂来杀灭肿瘤细胞的治疗方法,已在肿瘤治疗中得到广泛应用。
5.2光合作用光合作用是指植物中利用光能将二氧化碳和水转化为有机物质的生物化学过程,是生物界中重要的能量供应方式。
总结:光化学作为一门交叉学科,深入研究了光激发、能量转化、化学键断裂和形成等一系列过程,对科学研究、工业生产、环境改善、能源开发和生命科学等领域都有重要应用。
荧光分析法检测原理及应用举例1荧光定义某些化学物质从外界吸收并储存能量而进入激发态,当其从激发态回到基态时,过剩的能量以电磁辐射的形式放射出去即发光,称之为荧光。
可产生荧光的分子或原子在接受能量后引起发光,供能一旦停止,荧光现象随之消失。
2荧光分类由化学反应引起的荧光称为化学荧光,由光激发引起的荧光称为光致荧光,课题主要研究光致荧光。
按产生荧光的基本微粒不同,荧光可分为原子荧光、X 射线荧光和分子荧光,课题主要研究分子荧光。
3光致荧光机理某一波长的光照射在分子上,分子对此光有吸收作用,光能量被分子所吸收,分子具有的能量使分子的能级由最低的基态能级上升至较高的各个激发态的不同振动能级,称为跃迁。
分子在各个激发态处于不稳定的状态,并随时在激发态的不同振动能级下降至基态,在下降过程中,分子产生发光现象,此过程为释放能量的过程,即为光致荧光的机理。
光致荧光的过程按照时间顺序可分为以下几部分。
3.1 分子受激发过程在波长为10~400nm的紫外区或390~780nm的可见光区,光具有较高的能量,当某一特征波长的光照射分子时,是的分子会吸收此特征波长的光能量,能量由光传递到分子上,此过程为分子受激发过程。
分子中的电子会出现跃迁过程,在稳定的基态向不稳定的激发态跃迁。
跃迁所需要的能量为跃迁前后两个能级的能量差,即为吸收光的能量。
分子跃迁至不稳定的激发态中即为电子激发态分子。
在电子激发态中,存在多重态。
多重态表示为2S+1。
S为0或1,它表示电子在自转过程中,具有的角动量的代数和。
S=0表示所有电子自旋的角动量代数和为0,即所有电子都是自旋配对的,那么2S+1=1,电子所处的激发态为单重态,用S i表示,由此可推出,S即为基态的单重态,S1为第一跃迁能级激发态的单重态,S2为第二跃迁能级激发态的单重态。
S=1表示电子的自旋方向不能配对,说明电子在跃迁过程中自旋方向有变化,存在不配对的电子为2个,2S+1=3,电子在激发态中位于第三振动能级,称为三重态,用T i来表示,T1即为第一激发态中的三重态,T2即为第二激发态中的三重态,以此类推。
简述荧光与磷光的产生原理及应用
简述荧光与磷光的产生原理及应用,并说明有机物结构是如何影响荧光的。
具有荧光性的分子吸收入射光的能量后,其中的电子从基态(通常为自旋单重态)跃迁至具有相同自旋多重度的激发态。
处于各激发态的电子通过振动驰豫、内转移等无辐射跃迁过程回到第一电子激发单重态的最低振动能级。
然后再由这个最低振动能级跃迁回到基态时,发出荧光。
由第一激发单重态的最低振动能级,有可能以系间窜跃方式转至第一激发三重态,再经过振动驰豫,转至其最低振动能级,由此激发态跃回至基态时,便发射磷光。
荧光与磷光的根本区别:荧光是由激发单重态最低振动能层至基态各振动能层间跃迁产生的;而磷光是由激发三重态的最低振动能层至基态各振动能层间跃迁产生的。
荧光主要用于元素及有机化合物的荧光测定,照明,印刷防伪技术,生化和医药方面等。
磷光分析主要用于测定有机化合物,如石油产品、多环芳烃、农药、药物等方面。
有机物结构对荧光的影响主要有以下方面:(1)跃迁类型:相对于n-n *跃迁,n - n *跃迁能发出较强的荧光(较大的量子产率)。
(2)共轭效应:增加体系的共轭度,荧光效率一般也将增大。
(3)刚性平面结构:多数具有刚性平面结构的有机分子具有强烈的荧光。
(4)取代基效应:给电子基团使荧光增强,吸电子基团,会减弱甚至会猝灭荧光;卤素取代基随原子序数的增加而荧光降低;取代基的空间障碍对荧光也有影响;立体异构现象对荧光强度有显著的影响。