光电探测器特性测试实验
- 格式:doc
- 大小:518.12 KB
- 文档页数:4
光电探测器的性能测试与分析一、引言光电探测器是一种重要的光电器件,其性能的优劣直接影响到光电仪器的使用效果。
因此,对于光电探测器的性能测试与分析具有重要意义。
本文将从光电探测器的性能测试方法、测试参数的选择、测试结果分析等多个方面进行详细探讨。
二、光电探测器的性能测试方法1. 光谱响应测试光谱响应测试是评估光电探测器对不同波长光的响应能力的重要方法。
常用的测试设备包括光源、光谱辐射计和系统软件等,通过调节光源的波长和强度,测量光电探测器在不同波长下的响应能力。
2. 响应时间测试响应时间是指光电探测器从接收到光信号到达稳定的响应状态所需的时间。
正确测试光电探测器的响应时间可以帮助评估其在高速光信号检测和快速数据采集等应用中的适用性。
常用的测试方法包括脉冲激励法和步阶激励法。
3. 暗电流测试暗电流是指光电探测器在没有光照的情况下产生的电流。
暗电流是评估光电探测器的敏感性能和噪声特性的重要参数。
测试时需要排除光源的影响,并通过调节环境温度等因素来控制暗电流的大小。
4. 噪声测试噪声是光电探测器输出信号中不希望的波动成分,会干扰信号的准确度和稳定性。
常见的噪声包括热噪声、暗噪声和自由噪声等。
噪声测试可以通过测量输出信号的功率谱密度来进行。
三、测试参数的选择在进行光电探测器的性能测试时,需要选择合适的测试参数。
首先,需要根据实际应用需求选择测试范围和测试精度。
其次,需要考虑光电探测器的工作原理、结构特点和材料特性等因素,选择合适的测试方法和测试设备。
最后,需要根据测试结果的应用场景,选择合适的性能指标进行评估。
四、测试结果分析在进行光电探测器的性能测试后,需要对测试结果进行分析。
首先,需要比较测试结果与规格书中的标准值是否一致,以验证光电探测器是否符合规格要求。
其次,需要分析测试结果的稳定性和可重复性,确定光电探测器的长期稳定性能。
最后,需要与其他同类产品进行对比分析,评估光电探测器在市场竞争中的优势和劣势。
实验一 光电探测器特性测试实验一、实验目的1、学习光电探测器响应度及量子效率的概念2、掌握光电探测器响应度的测试方法3、了解光电探测器响应度对光纤通信系统的影响二、实验内容1、测试1310nm 检测器I-P 特性2、根据I-P 特性曲线,得出检测器的响应度并计算其量子效率三、实验仪器1、ZY12OFCom23BH1型光纤通信原理实验箱 1台2、光功率计 1台3、FC-FC 单模光跳线 1根4、万用表 1台5、连接导线1根四、实验原理在光纤通信工程中,光检测器(photodetector ),又称光电探测器或光检波器。
按其作用原理可分为热器件和光子器件两大类。
前者是吸收光子使器件升温,从而探知入射光能的大小,后者则将入射光转化为电流或电压,是以光子-电子的能量转换形式完成光的检测目的。
最简单的光检测器就是p-n 结,但它存在许多缺点,光纤通信系统中,较多采用p-i-n 光电二极管(简称PIN 管)及雪崩光电二极管(APD 管),都是实现光电转换的半导体器件。
在给定波长的光照射下,光检测器的输出平均电流与入射的光功率平均值之比称响应率或响应度。
简言之,即输入单位的光功率产生的平均输出电流,R 的单位为A/W 或uA/uW 。
其表达式为:P I R p = (1-1)响应率是器件外部电路中呈现的宏观灵敏特性,而量子效率是内部呈现的微观灵敏特性。
量子效率是能量为h υ的每个入射光子所产生的电子-空穴载流子对的数量:hvP eP //I =入射到器件上的光子数对数通过结区的光生载流子=η (×100%) (1-2)上式中,e 是电子电荷;υ为光的频率。
通过测试I P 与P 的关系,即可计算获得检测器的量子效率,其中光电检测器的量子效率与响应度的关系为:24.1ηλ=R (1-3)在波长确定的情况下,通过测试得到一定光功率下检测器输出的电流,即可获得检测器的响应度及量子效率的大小,从而了解检测器的性能指标。
一、实验目的1. 理解光电探测的基本原理和实验方法。
2. 掌握光电探测器的使用和调试技巧。
3. 学习光电探测实验的测量和分析方法。
4. 通过实验,加深对光电探测技术在实际应用中的理解和应用。
二、实验原理光电探测是利用光电效应将光信号转换为电信号的过程。
光电探测器是光电探测系统的核心部件,它将光信号转换为电信号,然后通过放大、滤波等电路处理后,输出可供进一步处理和利用的电信号。
本实验主要涉及以下光电探测器:光电二极管、光电三极管、光电耦合器等。
光电二极管是一种半导体器件,具有光电转换效率高、响应速度快、体积小等优点。
光电三极管是一种具有放大作用的光电探测器,它可以将微弱的光信号放大成较大的电信号。
光电耦合器是一种将输入信号的光电转换和输出信号的传输分开的器件,具有良好的隔离性能。
三、实验仪器与设备1. 光源:LED灯、激光笔等。
2. 光电探测器:光电二极管、光电三极管、光电耦合器等。
3. 放大器:运算放大器、低噪声放大器等。
4. 测量仪器:示波器、万用表等。
5. 连接线、测试板等。
四、实验内容及步骤1. 光电二极管特性测试(1)测试前准备:将光电二极管、放大器、示波器、万用表等仪器连接好。
(2)测试步骤:① 将光电二极管正向偏置,调整偏置电压,观察并记录光电二极管的伏安特性曲线。
② 将光电二极管反向偏置,调整偏置电压,观察并记录光电二极管的反向饱和电流。
③ 测量光电二极管的暗电流和亮电流。
2. 光电三极管特性测试(1)测试前准备:将光电三极管、放大器、示波器、万用表等仪器连接好。
(2)测试步骤:① 将光电三极管集电极、基极和发射极分别连接到电路中,调整基极偏置电压,观察并记录光电三极管的伏安特性曲线。
② 测量光电三极管的集电极电流、基极电流和发射极电流。
③ 测试光电三极管的电流放大倍数。
3. 光电耦合器特性测试(1)测试前准备:将光电耦合器、放大器、示波器、万用表等仪器连接好。
(2)测试步骤:① 将光电耦合器的输入端和输出端分别连接到电路中,调整输入端电压,观察并记录光电耦合器的传输特性曲线。
光电探测器特性测量实验报告实验目的:1.了解光电探测器的基本原理和工作方式;2.掌握光电探测器的特性测量方法;3.分析光电探测器的特性曲线。
实验仪器:1.光电探测器:用于将光信号转换为电信号,并测量光电流的大小。
2.光源:用于提供光信号,可以调节光强度。
3.测量设备:包括电流表、电压表和电阻箱,用于测量和调节光电流、光电压和负载电阻。
实验原理:光电探测器是一种能够将光信号转换为电信号的器件,其基本原理是利用光电效应。
当光照射到光电探测器的光敏面时,光子的能量会使光敏物质中的电子获得足够的能量而逸出,形成电子空穴对。
通过施加电场,将电子和空穴分离,形成电流,即光电流。
光电探测器的输出信号主要有光电流和光电压两种形式。
实验步骤:1.将光电探测器连接到电流表,将电阻箱调节到最大电阻,打开光源,并调节光强度到合适的数值。
2.记录电流表的读数,即为光电流的大小。
3.将光电探测器连接到电压表和负载电阻,调节电阻箱的电阻,使光电压维持一定的数值。
4.记录电压表和电流表的读数,并计算光电阻和负载电阻之间的电流。
5.将光电压和光电流绘制成特性曲线。
实验结果:根据记录的数据,得到了光电流和光电压的大小,并绘制了光电流-光电压特性曲线。
实验讨论:通过特性曲线的分析,可以看出光电探测器的工作特性。
在一定范围内,光电流随光电压的增加而增加,并呈线性关系。
当光电压达到一定值时,光电流趋于饱和,不再随光电压的增加而增加。
这是因为在较低的光电压下,光电子所带的能量与光电子轰击表面所需的能量相差较大,导致轰击效率较低。
而当光电压增加到一定值时,光电子所带的能量与光电子轰击表面所需的能量相差较小,导致轰击效率接近极限,几乎所有的光电子都能够轰击表面,所以光电流趋于饱和。
实验结论:本实验中,我们通过测量光电流和光电压的大小,得到了光电探测器的特性曲线,并根据曲线分析得出了光电探测器的工作特性。
实验结果与理论相符合,证明了光电探测器的基本原理和工作方式。
常用光纤器件特性测试实验实验四光电探测器特性测试实验一、实验目的1、学习光电探测器响应度及量子效率的概念2、掌握光电探测器响应度的测试方法3、了解光电探测器响应度对光纤通信系统的影响二、实验内容1、测试1310nm 检测器I-P 特性2、根据I-P 特性曲线,得出检测器的响应度并计算其量子效率三、预备知识1、了解探测器的工作原理四、实验仪器1、ZY12OFCom13BG3型光纤通信原理实验箱 1台2、光功率计 1台3、FC/PC-FC/PC 单模光跳线 1根4、万用表1台5、连接导线20根五、实验原理在光纤通信工程中,光检测器(photodetector ),又称光电探测器或光检波器。
按其作用原理可分为热器件和光子器件两大类。
前者是吸收光子使器件升温,从而探知入射光能的大小,后者则将入射光转化为电流或电压,是以光子-电子的能量转换形式完成光的检测目的。
最简单的光检测器就是p-n 结,但它存在许多缺点,光纤通信系统中,较多采用p-i-n 光电二极管(简称PIN 管)及雪崩光电二极管(APD 管),都是实现光电转换的半导体器件。
在给定波长的光照射下,光检测器的输出平均电流与入射的光功率平均值之比称响应率或响应度。
简言之,即输入单位的光功率产生的平均输出电流,R 的单位为A/W 或uA/uW 。
其表达式为:P I R p =(4-1)响应率是器件外部电路中呈现的宏观灵敏特性,而量子效率是内部呈现的微观灵敏特性。
量子效率是能量为h υ的每个入射光子所产生的电子-空穴载流子对的数量:hvP eP //I =入射到器件上的光子数对数通过结区的光生载流子=η(×100%)(4-2)上式中,e 是电子电荷;υ为光的频率。
通过测试I P 与P 的关系,即可计算获得检测器的量子效率,其中光电检测器的量子效率与响应度的关系为:24.1ηλ=R (4-3)在波长确定的情况下,通过测试得到一定光功率下检测器输出的电流,即可获得检测器的响应度及量子效率的大小,从而了解检测器的性能指标。
光电探测器特性测量实验实验讲义大恒新纪元科技股份有限公司所有不得翻印光电探测器特性测量实验一、 引言光电探测器可将一定的光辐射转换为电信号,然后经过信号处理,去实现某种目的,它是光电系统的核心组成部分,其性能直接影响着光电系统的性能。
因此,无论是设计还是使用光电系统,深入了解光电探测器的性能参数都是很重要的。
通常,光电探测器的光电转换特性用响应度表示。
响应特性用来表征光电探测器在确定入射光照下输出信号和入射光辐射之间的关系。
主要的响应特征包括:响应度、光谱响应、时间响应特性等性能参数。
本实验内容主要是光电探测器性能参数测量和光电探测器的一般使用方法,并专门列举了几种常用的光电探测器的使用方法。
第一部分 光电探测器光谱响应度的测量光谱响应度是光电探测器的基本性能参数之一,它表征了光电探测器对不同波长入射辐射的响应。
通常热探测器的光谱响应较平坦,而光子探测器的光谱响应却具有明显的选择性。
一般情况下,以波长为横坐标,以探测器接收到的等能量单色辐射所产生的电信号的相对大小为纵坐标,绘出光电探测器的相对光谱响应曲线。
典型的光子探测器和热探测器的光谱响应曲线如图1-1所示。
一.基本原理光谱响应度是光电探测器对单色入射辐射的响应能力。
电压光谱响应度()λRv 定义为在波长为λ的单位入射辐射功率的照射下,光电探测器输出的信号电压,用公式表示,则为()()()λλλP V Rv = (1-1) 而光电探测器在波长为λ的单位入射辐射功率的作用下,其所输出的光电流叫做探测器的电流光谱响应度,用下式表示()()()λλλP I R i = (1-2) 式中,()λP 为波长λ时的入射光功率;()λV 为光电探测器在入射光功率()λP 作用下的输出信号电压;()λI 则为输出用电流表示的输出信号电流。
这里用响应度和波长无关的热释电探测器作参考探测器,测得入射光功率为()λP 时的输出电压为()λf V 。
若用f R 表示热释电探测器的响应度,则显然有()()f f f K R V P λλ=(1-3)这里f K 为热释电探测器前放和主放放大倍数的乘积,即总的放大倍数。
第十三章光电探测器参数测量实验光电探测器种类繁多,在工程上有着广泛的应用,是广电系统的核心组成部分,其性能直接影响着光电系统的性能。
因此无论是设计还是使用光电系统,深入了解光电探测器性能参数还是非常重要的。
其中光电探测器的响应度光谱响应特征,响应时间等性能参数又是应用一个探测器必须了解掌握的参数。
本实验通过测试来概念种不同性质光电探测器的响应度、光谱响应特征、响应时间,了解不同探测器的使用特性,让学生掌握光电探测器的测试方法。
学生通过实验可以加深对各种光电探测器的理解,同时根据自己设计改变光电探测器的参数性能。
本实验为光电技术实验的基础实验项目。
一、实验目的1.通过实验加深对各种光电探测器的理解。
2.根据自己的设计改变光电探测器参数性能。
二、实验内容1.加深对光谱响应概念夫人理解,掌握光栅干涉仪的使用。
2.熟悉热释电探测器和硅光电二极管的基本构造,掌握光谱响应的探测方法。
3.用热释电探测器测量钨丝灯的辐射特性曲线。
4.用比较测量硅光电二极管的光谱响应曲线。
5.掌握发光二极管的电流调制法,熟悉测量控制侧响应时间的方法。
6.用探测器的脉冲响应特性能够测量硅光电二极管光的响应时间。
7.利用探测器的辐射特性确定热敏探测器的响应时间。
三、实验仪器序号名称规格型号数量1 白光电光源100W GCI-0603 12 光栅单色仪1200/mm0.1nm13 选频放大器和调制盘驱动器25Hz选频放大器14 光电探测器时间常数实验仪GCS--GDTC 1 5 反射镜架组件040二维可调GCM-260254M 1 6 双凸透镜040 f150 GCL-010227 17 热释电探测器响应范围0.3-9μmCaF2窗口保护18 光电二极管探测器响应范围400-1100nm响应时间200ns暗电流≤-9A19 斩波器25Hz 1 注:20M数字示波器用户自备。
第十四章半导体泵浦固体激光器倍增与Q调实验半导体泵浦固体激光器十一激光二极管代替闪光灯泵浦固体激光节制的固体激光器,具有效率高、体积小、寿命长的一系列优点,在光通讯、激光雷达、激光医学、激光加工等方面有巨大的应用前景,是未来固体激光及发展的方向。
光电探测器实验报告光电探测器实验报告引言:光电探测器是一种能够将光信号转换为电信号的装置,广泛应用于光学通信、光电测量等领域。
本实验旨在通过实际操作,了解光电探测器的工作原理、特性以及应用。
一、实验目的本实验的目的是通过搭建实验电路,测量光电探测器的电流-电压特性曲线,了解其灵敏度、响应速度等参数,并探究不同波长光对光电探测器的影响。
二、实验装置与方法本实验所用的主要装置有光电探测器、光源、电流电压源、示波器等。
首先,将光电探测器与电流电压源相连接,然后将示波器与光电探测器并联,最后将光源对准光电探测器。
在实验过程中,我们将改变电流电压源的输出电压,记录光电探测器的输出电流,并观察示波器上的波形。
三、实验结果与分析通过实验测量,我们得到了光电探测器的电流-电压特性曲线,如图1所示。
从图中可以看出,当电压较小时,光电探测器的输出电流较小,随着电压的增加,输出电流逐渐增大。
当电压达到一定值后,输出电流基本保持稳定。
这是因为在低电压下,光电探测器的内部电场较弱,电子-空穴对的产生较少,因此输出电流较小。
随着电压的增加,内部电场增强,电子-空穴对的产生增多,导致输出电流增大。
当电压达到一定值后,内部电场已经达到饱和,此时输出电流基本保持稳定。
图1 光电探测器的电流-电压特性曲线另外,我们还对不同波长光对光电探测器的影响进行了实验。
通过改变光源的波长,我们测量了不同波长下光电探测器的输出电流。
实验结果显示,当光源的波长与光电探测器的工作波长匹配时,输出电流最大。
这是因为光电探测器对特定波长的光敏感度最高,其他波长的光则会引起较小的输出电流。
这一特性使得光电探测器在光学通信等领域中具有重要的应用价值。
四、实验总结通过本次实验,我们深入了解了光电探测器的工作原理和特性。
光电探测器的电流-电压特性曲线反映了其灵敏度、响应速度等重要参数。
同时,不同波长光对光电探测器的影响也得到了验证。
这些实验结果有助于我们更好地理解光电探测器的应用和优化设计。
光电探测器特性测量实验实验讲义大恒新纪元科技股份有限公司版权所有不得翻印光电探测器特性测量实验一、 引言光电探测器可将一定的光辐射转换为电信号,然后经过信号处理,去实现某种目的,它是光电系统的核心组成部分,其性能直接影响着光电系统的性能。
因此,无论是设计还是使用光电系统,深入了解光电探测器的性能参数都是很重要的。
通常,光电探测器的光电转换特性用响应度表示。
响应特性用来表征光电探测器在确定入射光照下输出信号和入射光辐射之间的关系。
主要的响应特征包括:响应度、光谱响应、时间响应特性等性能参数。
本实验内容主要是光电探测器性能参数测量和光电探测器的一般使用方法,并专门列举了几种常用的光电探测器的使用方法。
第一部分 光电探测器光谱响应度的测量光谱响应度是光电探测器的基本性能参数之一,它表征了光电探测器对不同波长入射辐射的响应。
通常热探测器的光谱响应较平坦,而光子探测器的光谱响应却具有明显的选择性。
一般情况下,以波长为横坐标,以探测器接收到的等能量单色辐射所产生的电信号的相对大小为纵坐标,绘出光电探测器的相对光谱响应曲线。
典型的光子探测器和热探测器的光谱响应曲线如图1-1所示。
一.基本原理光谱响应度是光电探测器对单色入射辐射的响应能力。
电压光谱响应度()λRv 定义为在波长为λ的单位入射辐射功率的照射下,光电探测器输出的信号电压,用公式表示,则为()()()λλλP V Rv = (1-1) 而光电探测器在波长为λ的单位入射辐射功率的作用下,其所输出的光电流叫做探测器的电流光谱响应度,用下式表示()()()λλλP I R i = (1-2) 式中,()λP 为波长λ时的入射光功率;()λV 为光电探测器在入射光功率()λP 作用下的输出信号电压;()λI 则为输出用电流表示的输出信号电流。
这里用响应度和波长无关的热释电探测器作参考探测器,测得入射光功率为()λP 时的输出电压为()λf V 。
若用f R 表示热释电探测器的响应度,则显然有()()f f f K R V P λλ=(1-3)这里f K 为热释电探测器前放和主放放大倍数的乘积,即总的放大倍数。
第1篇一、实验目的本次实验旨在通过实际操作,了解光电探测的基本原理和实验方法,掌握光电探测器的性能测试技术,并分析光电探测在现实应用中的重要性。
实验过程中,我们对光电探测器的响应特性、灵敏度、探测范围等关键参数进行了测试和分析。
二、实验原理光电探测器是一种将光信号转换为电信号的装置,广泛应用于光电通信、光电成像、环境监测等领域。
实验中,我们主要研究了光电二极管(Photodiode)的工作原理和特性。
光电二极管是一种半导体器件,当光照射到其PN结上时,会产生光生电子-空穴对,从而产生电流。
三、实验仪器与材料1. 光电二极管2. 光源(激光笔、LED灯等)3. 光电探测器测试仪4. 示波器5. 数字多用表6. 光纤连接器7. 光学平台8. 环境温度计四、实验步骤1. 光电二极管性能测试(1)将光电二极管与光源、测试仪连接,确保连接牢固。
(2)调整光源强度,观察光电探测器输出电流的变化,记录不同光照强度下的电流值。
(3)测试光电二极管在不同波长下的光谱响应特性,记录不同波长下的电流值。
2. 光电探测器灵敏度测试(1)调整环境温度,观察光电探测器输出电流的变化,记录不同温度下的电流值。
(2)改变光源距离,观察光电探测器输出电流的变化,记录不同距离下的电流值。
3. 光电探测器探测范围测试(1)在固定光源强度下,调整探测器与光源的距离,观察输出电流的变化,记录探测范围。
(2)在固定探测器与光源的距离下,调整光源强度,观察输出电流的变化,记录探测范围。
五、实验结果与分析1. 光电二极管性能测试实验结果表明,随着光照强度的增加,光电二极管输出电流逐渐增大。
在相同光照强度下,不同波长的光对光电二极管输出的电流影响不同,表明光电二极管具有光谱选择性。
2. 光电探测器灵敏度测试实验结果显示,随着环境温度的升高,光电二极管输出电流逐渐增大,表明光电探测器对温度具有一定的敏感性。
同时,在光源距离变化时,光电探测器输出电流也相应变化,说明光电探测器的探测范围与光源距离有关。
光电探测器特性测量实验实验讲义大恒新纪元科技股份有限公司版权所有不得翻印光电探测器特性测量实验一、 引言光电探测器可将一定的光辐射转换为电信号,然后经过信号处理,去实现某种目的,它是光电系统的核心组成部分,其性能直接影响着光电系统的性能。
因此,无论是设计还是使用光电系统,深入了解光电探测器的性能参数都是很重要的。
通常,光电探测器的光电转换特性用响应度表示。
响应特性用来表征光电探测器在确定入射光照下输出信号和入射光辐射之间的关系。
主要的响应特征包括:响应度、光谱响应、时间响应特性等性能参数。
本实验内容主要是光电探测器性能参数测量和光电探测器的一般使用方法,并专门列举了几种常用的光电探测器的使用方法。
二.实验目的1.加深对光谱响应概念的理解;2.掌握光谱响应的探测方法;3.了解对光电探测器的响应度的影响因素;4.掌握测量探测器响应时间的方法第一部分 光电探测器光谱响应度的测量光谱响应度是光电探测器的基本性能参数之一,它表征了光电探测器对不同波长入射辐射的响应。
通常热探测器的光谱响应较平坦,而光子探测器的光谱响应却具有明显的选择性。
一般情况下,以波长为横坐标,以探测器接收到的等能量单色辐射所产生的电信号的相对大小为纵坐标,绘出光电探测器的相对光谱响应曲线。
典型的光子探测器和热探测器的光谱响应曲线如图1-1所示。
一. 实验目的1.加深对光谱响应概念的理解;2.掌握光谱响应的探测方法;3.熟悉热释电探测器和硅光电二极管。
二.实验内容1.用热释电探测器测量钨丝灯的光谱辐射特性曲线;2.用比较法测量硅光电二极管的光谱响应曲线。
图1-1 典型光电探测器的光谱响应三.基本原理光谱响应度是光电探测器对单色入射辐射的响应能力。
电压光谱响应度()λRv 定义为在波长为λ的单位入射辐射功率的照射下,光电探测器输出的信号电压,用公式表示,则为()()()λλλP V Rv = (1-1) 而光电探测器在波长为λ的单位入射辐射功率的作用下,其所输出的光电流叫做探测器的电流光谱响应度,用下式表示()()()λλλP I R i = (1-2) 式中,()λP 为波长λ时的入射光功率;()λV 为光电探测器在入射光功率()λP 作用下的输出信号电压;()λI 则为输出用电流表示的输出信号电流。
光电探测器特性测量实验报告实验1 光电探测器光谱响应特性实验实验目的1. 加深对光谱响应概念的理解;2. 掌握光谱响应的测试方法;3. 熟悉热释电探测器和硅光电二极管的使用。
实验内容1. 用热释电探测器测量钨丝灯的光谱特性曲线;2. 用比较法测量硅光电二极管的光谱响应曲线。
实验原理光谱响应度是光电探测器对单色入射辐射的响应能力。
电压光谱响应度()v R λ定义为在波长为λ的单位入射辐射功率的照射下,光电探测器输出的信号电压,用公式表示,则为()()()v V R P λλλ=(1-1) 而光电探测器在波长为λ的单位入射辐射功率的作用下,其所输出的光电流叫做探测器的电流光谱响应度,用下式表示()()()i I R P λλλ=(1-2) 式中,()P λ为波长为λ时的入射光功率;()V λ为光电探测器在入射光功率()P λ作用下的输出信号电压;()I λ则为输出用电流表示的输出信号电流。
为简写起见,()v R λ和()i R λ均可以用()R λ表示。
但在具体计算时应区分()v R λ和()i R λ,显然,二者具有不同的单位。
通常,测量光电探测器的光谱响应多用单色仪对辐射源的辐射功率进行分光来得到不同波长的单色辐射,然后测量在各种波长的辐射照射下光电探测器输出的电信号()V λ。
然而由于实际光源的辐射功率是波长的函数,因此在相对测量中要确定单色辐射功率()P λ需要利用参考探测器(基准探测器)。
即使用一个光谱响应度为()f R λ的探测器为基准,用同一波长的单色辐射分别照射待测探测器和基准探测器。
由参考探测器的电信号输出(例如为电压信号)()f V λ可得单色辐射功率()=()()f P V R λλλ,再通过(1-1)式计算即可得到待测探测器的光谱响应度。
本实验采用单色仪对钨丝灯辐射进行分光,得到单色光功率()P λ ,这里用响应度和波长无关的热释电探测器作参考探测器,测得()P λ入射时的输出电压为()f V λ。
大恒实验产品-3光电器件与检测系列实验3-1 GCS-GDTC 光电探测器特性测量实验光电探测器是光电系统的核心组成部分,其性能直接影响着光电系统的性能。
因此,无论是设计还是使用光电系统,深入了解光电探测器的性能参数都是很重要的。
本实验研究光电二极管、热释电探测器、光敏电阻三种常用探测器的频率响应与时间响应特性。
主要实验内容如下:(1) 深入理解光电探测器的响应度、光谱响应等概念(2) 光电二极管光谱响应测量实验(3) 了解热释电探测器和硅光电二极管的原理和使用方法。
(4) 了解光电探测器的响应度与信号光的调制频率的关系。
(5) 脉冲响应法测量光电二极管的响应时间。
(6) 幅频响应法测量光敏电阻的响应时间。
(7) 偏置电压与负载电阻对光电二极管响应时间的影响。
3-2 GCS-LD/LED-I/II LD/LED 参数测量综合实验实验通过从LD/LED的光学特性(发射光谱、发射角、发散角)、电学特性(P-I特性和V-I 特性)、热学特性(温度对阈值电流和输出照度的影响)和色度学特性(发光体的单色性及颜色分布)5大特性进行描述,并通过对其工作原理的讲解,让学生对LD/LED有一个清晰认识。
主要实验内容如下:1.发光二极管光谱特性的研2.发光二极管响应时间的测试3.发光二极管发光亮度与电流关系4.LED发光法向光强及其角分布5.LED/LD光谱分析和色坐标测试实验(GCS-LED/LD-II可完成)3-3 GCS- BZG 光电倍增管特性及微弱光信号探测实验光电倍增管是基于外光电效应和二次电子发射效应的电子真空器件。
它利用二次电子发射使逸出的光电子倍增,获得远高于光电管的灵敏度,可以测量微弱的光信号。
主要实验内容如下:1.熟悉光电倍增管的基本构成和工作原理,掌握光电倍增管参数的测量方法2.学习光电倍增管输出信号的检测和变换处理方法3.验证光电倍增管的光照灵敏度4.测量光电倍增管在无光照射情况下的暗电流5.作出光电倍增管工作的光电特性曲线6.作出光电倍增管工作的伏安特性曲线7.作出光电倍增管在不同直接负载和I/V变换下的关系曲线8.了解光电倍增管在脉冲光时,经过运算放大器输出的电压波形变化3-4 GCS- RTC 热探测器参数测量实验热探测器是基于光辐射与物质相互作用的热效应制成的器件。
一、实验目的1. 了解光电探测的基本原理和电路组成。
2. 掌握光电探测器电路的设计方法和实验技能。
3. 熟悉光电探测器的性能测试方法,并分析实验结果。
二、实验原理光电探测器是将光信号转换为电信号的器件,其基本原理是光电效应。
当光照射到光电探测器上时,会产生光生电子,从而在探测器两端产生电信号。
本实验主要研究光电二极管和光敏电阻两种光电探测器。
三、实验仪器与设备1. 光源:LED灯、激光器等。
2. 光电探测器:光电二极管、光敏电阻等。
3. 放大器:低频放大器、高频放大器等。
4. 测量仪器:示波器、万用表、信号发生器等。
5. 实验电路板:包含光电探测器、放大器、电源等组件。
四、实验内容及步骤1. 光电二极管特性测试(1)搭建实验电路,将光电二极管与低频放大器相连,并接入电源。
(2)调整光源,使光照射到光电二极管上。
(3)使用示波器观察光电二极管输出信号的波形和幅度。
(4)改变光源强度,观察光电二极管输出信号的变化,分析光电二极管的响应特性。
2. 光敏电阻特性测试(1)搭建实验电路,将光敏电阻与低频放大器相连,并接入电源。
(2)调整光源,使光照射到光敏电阻上。
(3)使用示波器观察光敏电阻输出信号的波形和幅度。
(4)改变光源强度,观察光敏电阻输出信号的变化,分析光敏电阻的响应特性。
3. 光电探测器电路设计(1)根据实验要求,设计光电探测器电路,包括光电探测器、放大器、滤波器等组件。
(2)搭建实验电路,并接入电源。
(3)调整电路参数,使光电探测器电路满足实验要求。
4. 光电探测器电路性能测试(1)使用示波器观察光电探测器电路输出信号的波形和幅度。
(2)调整光源强度,观察光电探测器电路输出信号的变化,分析电路性能。
五、实验结果与分析1. 光电二极管特性测试结果(1)光电二极管输出信号随光源强度增加而增强,符合光电效应原理。
(2)光电二极管输出信号具有较好的线性关系,适合用于光电检测。
2. 光敏电阻特性测试结果(1)光敏电阻输出信号随光源强度增加而减小,符合光敏电阻特性。
光电探测实验目录实验一 LD/LED的P-I-V特性曲线测试...................... - 2 -实验二光电探测原理实验................................ - 11 -实验三光电探测器直流特性测试.......................... - 22 -实验四光纤端面处理、耦合及熔接........................ - 26 -实验五光纤衰减系数的测试............................. - 32 -实验六光电倍增管特性参数的测试........................ - 36 -实验一 LD/LED 的P-I-V 特性曲线测试一、实验目的1、通过测量LD 半导体激光器域值电流、LED 发光二极管和LD 半导体激光器的输出功率-电流(P-I )特性曲线和电压-电流(V -I )特性曲线,计算阈值电流(Ith )和外微分量子效率,从而对LED 发光二极管和LD 半导体激光器工作特性有个基本了解。
2、了解温度(T )对阈值电流(Ith )和光功率(P )的影响。
二、实验内容1、测试YSLED3215型LED 发光二极管的电压-电流(V -I )特性曲线。
2、测试YSLED3215型LED 发光二极管的输出功率与电流(P-I )特性曲线。
3、测试YSLD3125型半导体激光器电压-电流(V -I )特性曲线。
4、测试YSLD3125型半导体激光器输出功率与电流(P-I )特性曲线。
5、测试YSLD3125型半导体激光器工作域值电流。
6、测试LD 温度特性。
三、实验仪器1、YSLD3125型半导体激光二极管(带尾纤输出,FC 型接口) 1只2、YSLED3215型发光二极管 1只3、ZY606 LD/ LED 电流源 1台4、温控器(可选) 1台5、光功率计 1台6、万用表 1台四、实验原理1、激光器一般知识激光器是使工作物质实现粒子数反转分布产生受激辐射,再利用谐振腔的正反馈,实现光放大而产生激光振荡的。
光敏元件的特性测试-光敏二极管特性一.实验目的:1.熟悉光敏二极管的结构和光电转换原理。
2.掌握光敏二极管的暗电流及光电流的测试方法。
3.了解光敏二极管的特性,当光电管得工作偏压一定时,光电管输出光电流与入射光的照度(或通量)的关系。
二.实验原理:光敏二极管是一种光生伏特器件,用高阻P型硅作为基片,然后在基片表面进行掺杂形成PN结,N区扩散区很浅为1um左右,而空间电荷区(即耗尽层)较宽,所以保证了大部分光子入射到耗尽层内,光被吸收而激发电子——空穴对,电子——空穴对在外加反向偏压的作用下,空穴流向正极,形成了二极管的反向电流即光电流。
光电流通过外加负载电阻RL后产生电压信号输出。
光敏二极管原理如图(2)所示。
图(2)在无光照的情况下,若给P—N结一个适当的反向电压,则反向电压加强了内建电场,使P—N结空间电荷区拉宽,势垒增大,流过P—N结的电流(称反向饱和电流或暗电流)很小,它(反向电流)是由少数载流子的漂移运到形成的。
当光敏二极管被光照时,满足条件hv≧Eg时,则在结区产生的光生载流子将被内场拉开,光生电子被拉向N区,光生空穴被拉向P区,于是在外加电场的作用下以少数载流子漂移运动为主的光电流。
显然,光电流比无光照时的反向饱和电流大得多,如果光照越强,表示在同样条件下产生的光生载流子越多,光电流就越大,反之,则光电流越小。
当二极管与负载电阻RL串联时,则在RL的两端便可得到随光照度变化的电压信号,从而完成了将光信号转变成电信号的转换。
光敏二极管在无光照时,在所加反向电压作用下,仍会有反向电流流过,这种电流的数值很小,称为暗电流。
暗电流值是光敏二极管传感器的重要参数之一,它影响光敏二极管的光电变换质量和工作稳定性,因此希望它数值越小越好。
在无辐射作用的情况下,PN结硅光敏二极管的正、反向特性与普通PN结二极管基本一样,均为图(3)所示的伏安特性曲线,当有光照时,PN结硅光敏二极管的反向输出特性曲线如图(4)所示。
目录目录................................................. - 1 - 光电探测器特性测试实验仪说明 ............................. - 3 - 实验一光敏电阻特性测试 ................................ - 5 -一、实验目的..................................................... - 5 -二、实验内容..................................................... - 5 -三、实验仪器..................................................... - 5 -四、实验原理..................................................... - 5 -五、注意事项..................................................... - 7 -六、实验步骤..................................................... - 7 - 实验二光电二极管特性测试 ............................ - 11 -一、实验目的.................................................... - 11 -二、实验内容.................................................... - 11 -三、实验仪器.................................................... - 11 -四、实验原理.................................................... - 11 -五、注意事项.................................................... - 12 -六、实验步骤.................................................... - 12 - 实验三光电三极管特性测试 ............................. - 17 -一、实验目的.................................................... - 17 -二、实验内容.................................................... - 17 -三、实验仪器.................................................... - 17 -四、实验原理.................................................... - 17 -五、注意事项.................................................... - 18 -六、实验步骤.................................................... - 18 - 实验四硅光电池特性测试 ............................... - 21 -一、实验目的.................................................... - 21 -二、实验内容.................................................... - 21 -三、实验仪器.................................................... - 21 -四、实验原理.................................................... - 21 -五、注意事项.................................................... - 25 -六、实验步骤.................................................... - 25 - 实验五 PIN光电二极管特性测试.......................... - 31 -一、实验目的.................................................... - 31 -二、实验内容.................................................... - 31 -三、实验仪器.................................................... - 31 -四、实验原理.................................................... - 31 -五、实验准备.................................................... - 33 -六、实验步骤.................................................... - 33 - 实验六 APD光电二极管特性测试.......................... - 38 -一、实验目的.................................................... - 38 -二、实验内容.................................................... - 38 -三、实验仪器.................................................... - 38 -四、实验原理.................................................... - 38 -五、实验准备.................................................... - 40 -六、实验步骤.................................................... - 40 - 实验七色敏传感器特性测试 ............................. - 45 -一、实验目的.................................................... - 45 -二、实验内容.................................................... - 45 -三、实验仪器.................................................... - 45 -四、实验原理.................................................... - 45 -五、实验准备.................................................... - 45 -六、实验步骤.................................................... - 46 - 实验八光电倍增管特性测试 ............................. - 47 -一、实验目的.................................................... - 47 -二、实验内容.................................................... - 47 -三、实验仪器.................................................... - 47 -四、实验原理.................................................... - 47 -五、实验准备.................................................... - 56 -六、实验步骤.................................................... - 56 -光电探测器特性测试实验仪说明光电探测器特性测试实验仪是光电检测器件特性测试的实验仪,主要研究光电检测器件的基本特性,如光电特性、伏安特性、光谱特性、时间响应特性等。
光电探测器特性实验安全操作及保养规程前言本文档旨在介绍光电探测器特性实验的安全操作与保养规程,以确保实验人员的人身安全和仪器设备的正常运行,同时延长仪器的使用寿命。
在进行实验时,请严格按照本文档的规程操作,如有任何疑问请及时向实验室负责人或教师咨询。
实验前准备1.实验人员需认真阅读光电探测器的技术手册、使用说明书及本文档的内容,掌握仪器的基本特性、结构和使用方法。
2.实验室负责人或教师需检查仪器的电气安全性、地线的接地情况、电缆和插头是否正常,在确认无异常情况后方可进行实验。
3.实验人员需佩戴防护手套、护目镜和防护服等必要的防护设施。
4.实验室应设置明显的紧急停机开关,以应对可能发生的突发情况。
实验操作1.实验人员在开机前,必须确认仪器的所有部件已经牢固地安装好,电缆及插头无故障。
2.在开机后,实验人员需按照仪器的说明书操作,确认设备已启动,然后按照实验操作要求继续进行实验。
3.实验室应设置明显的实验流程图或操作步骤,实验人员需严格按照要求进行实验。
4.过程中如发现异常情况,如设备发出异常声响、气味、烟雾等,实验人员应立即关机,并将异常情况及时报告实验室负责人或教师。
5.实验人员在使用完毕后,需将仪器关机并拔掉电源插头,保持实验室的清洁和整洁。
仪器保养1.仪器在实验前,应清洁仪器表面和插头、接头,确保仪器干净整洁。
2.实验结束后,应清洁仪器表面和插头、接头等部件,并进行仪器的自检和校准,以确保仪器运行正常。
3.仪器在长期存放前,应清洁表面,保护各种接口、轴承、螺丝等零部件,避免进水、进尘、进油,以免影响仪器的精度和寿命。
4.仪器应放置于干燥、通风、无腐蚀性、无振动的地方,避免震动和振动对仪器造成损害。
总结本文档介绍了光电探测器特性实验的安全操作和保养规程,着重强调了对仪器的安全性、电气性、操作规程和仪器的保养要点。
希望实验人员在实验前一定做好充分的准备工作,严格按照实验规程进行操作,确保实验的精度和安全,同时保护好仪器设备,延长仪器的使用寿命。
光电探测器特性测试王凤鹏编写实验教学目的:1、学习常见光电光电探测器的工作原理和使用方法;2、掌握光电二极管、光电池的光照度特性及其测试方法;3、掌握光电二极管、光电池的伏安特性并其测试方法;4、了解光照度的基本知识和测量原理、方法。
学生实验内容:1、光电二极管的光照度特性测试2、光电二极管伏安特性测试3、光电池的光电特性测试4、光电池负载特性测试实验教学仪器:光电二极管,电压源,发光二极管,光电池,照度计,电流表,电压表。
实验教学课时:4学时(其中讲授及演示1学时,学生实验及指导3学时)实验教学方式:理论讲授、指导学生实验,以指导为主,培养学生动手操作能力、独立思考能力和创新能力。
教学重点:光电效应及其分类、光电探测器特性的测试方法、光电探测器特性的意义。
实验教学内容:一、实验原理1、光电效应光电探测器件的物理基础是光电效应。
光电效应分为外光电效应和内光电效应两大类。
在光线作用下,物体的电子逸出物体表面、向外发射的现象称为外光电效应。
基于外光电效应的光电器件有光电管、光电倍增管等。
内光电效应是指光与物体内的电子作用后,电子不逸出物体外,而是在物体内使导电率发生变化(光电导效应)或产生电动势(光生伏特效应)的现象。
光敏电阻就是基于光电导效应的。
本实验所研究的光电二极管和光电池则是基于光生伏特效应的光电探测器。
2、光电二极管工作原理和特性光敏二极管是一种PN结单向导电性的结型光电器件,在电路中通常工作在反向偏压状态,其原理电路如图5.1所示。
图5.1 光电二极管工作原理当无光照时,处于反偏的光电二极管工作在截止状态,这时只有少数载流子在反向偏图5.2 光电二极管光照特性 图5.3 光电二极管伏安特性 当光电二极管受到光照时,PN 结附近受光子轰击,吸收光子能量后产生电子-空穴对,从而使P 区和N 区的少数载流子浓度大大增加。
因此在外加反偏电压和内电场的作用下,P 区少数载流子(电子)渡过势垒区进入N 区,同样N 区的少数载流子(空穴)也渡过势垒区进入P 区,从而形成光电流。
光电探测器特性测试实验
光电探测器是一种将辐射能转换成电讯号的器件,是光电系统的核心组成部分,在光电系统中的作用是发现信号、测量信号,并为随后的应用提取某些必要的信息。
光电探测器的种类很多,新的器件也不断出现,按探测机理的物理效应可分为两大类:一类是利用各种光子效应的光子探测器,另一类是利用温度变化的热探测器。
1、光敏电阻
光敏电阻是用光电导体制成的光电器件,又称光导管.它是基于半导体光电效应工作的。
光敏电阻没有极性,纯粹是一个电阻器件,使用时可加直流电压,也可以加交流电压。
当无光照时,光敏电阻值(暗电阻)很大,电路中电流很小。
当光敏电阻受到一定波长范围的光照时,它的阻值(亮电阻)急剧减少,因此电路中电流迅速增加。
光敏电阻的暗电阻越大.而亮电阻越小.则性能越好,也就是说,暗电流要小,光电流要大,这样的光敏电阻的灵敏度就高。
实际上,大多数光敏电阻的暗电阻往往超过1M欧,甚至高达100MΩ,而亮电阻即使在正常白昼条件下也可降到1kΩ以下,可见光敏电阻的灵敏度是相当高的。
频率特性:非平衡载流子的产生与复合都有一个时间过程,在一定程度上影响了光敏电阻对变化光照的响应。
光谱响应特性:由所用半导体材料的禁带宽度决定。
PbS
2、 光敏二极管
光敏二极管是一种光伏探测器,主要利用了PN 结的光伏效应。
对光伏探测器总的伏安特性可表达为
s kT qV s s D I e I I I I --=-=)1(0
式中I 中是流过探测器总电流,I so 二极管反向饱和电流,I s 是光照时的光电流,q 是电子电荷,V 是探测器两端电压,k 为玻耳兹曼常数,T 器件绝对温度。
当入射光的强度发生变化,通过光敏二极管的电流随之变化,于是在光敏二极管的二端电压也发生变化。
光照时导通,光不照时,处于截止状态,并且光电流和照度成线性关系。
光照特性:输出的饱和光电流与光照度之间的关系。
光谱特性:取决于所采用材料的禁带宽度,同事也与结构工艺有着密切的关系。
频率特性:由光生载流子的渡越时间和L R j C 的乘积决定。
伏安特性:在零偏压下,光电二极管仍有光电流,这是光生伏特效应所产生的短路电流。
3、 光敏三极管
在光敏二极管的基础上,为了获得内增益,就利用了晶体三极管的电流放大作用,用Ge 或Si 单晶体制造NPN 或PNP 型光敏三极管。
光敏三极管可以等效一个光电二极管与另一个一般晶体管基极和集电极并联:集电极-基极产生的电流,输入到三极管的基极再放大。
不同之处是,集电极电流(光电流)由集电结上产生的I φ控制。
集电极起双重作用:把光信号变成电信号起光电二极管作用;使光电流再放大起一般三极管的集电结作用。
一般光敏三极管只引出E 、C 两个电极,体积小,光电特性是非线性的,广泛应用于光电自动控制作光电开关应用。
光照特性:在弱光时电流增长缓慢,在强光时,将出现饱和现象,光电流与光照不成线性,β也不为线性。
图2-42
伏安特性:在照度低时比较均匀,而随照度增加曲线变密。
图2-44
频率特性:与结的结构、负载及结电容有关。
4、光电池
当光照射到光电池P-N结上时,便在P-N结两端产生电动势。
这种现象叫“光生伏特效应”,将光能转化为电能。
该效应与材料、光的强度、波长等有关。
光照特性:即光生电动势,光电流与照度的关系。
光谱特性:取决于所采用的材料与制作工艺,同时也与温度有关。
频率特性:除了载流子运动因素外,还与材料,结构,光敏面的大小及使用条件有关。
负载电阻越大、光敏面积越大、结电容越大,频率响应越差。