高二数学 频率分别直方图
- 格式:ppt
- 大小:511.00 KB
- 文档页数:10
专题十概率、统计问题二:统计图表的应用一、考情分析统计图表有频率分布直方图、茎叶图、折线图、条形图、饼形图、雷达图等,它们广泛应用于实际生活之中,也是历年高考的热点,求解此类的关键是由图表读出有用的数据,再根据数据进行分析.二、经验分享1.明确频率分布直方图的意义,即图中的每一个小矩形的面积是数据落在该区间上的频率,所有小矩形的面积和为1.学科-网2.对于统计图表类题目,最重要的是认真观察图表,从中提炼有用的信息和数据.由茎叶图可以清晰地看到数据的分布情况,这一点同频率分布直方图类似.它优于频率分布直方图的第一点是从茎叶图中能看到原始数据,没有任何信息损失,第二点是茎叶图便于记录和表示.其缺点是当样本容量较大时,作图较烦琐.3.频率分布直方图是高考考查的热点,考查频率很高,题型有选择题、填空题,也有解答题,难度为低中档.用样本频率分布来估计总体分布的重点是频率分布表和频率分布直方图的绘制及用样本频率分布估计总体分布;难点是频率分布表和频率分布直方图的理解及应用.在计数和计算时一定要准确,在绘制小矩形时,宽窄要一致.通过频率分布表和频率分布直方图可以对总体作出估计.频率分布直方图的纵坐标为频率/组距,每一个小长方形的面积表示样本个体落在该区间内的频率;条形图的纵坐标为频数或频率,把直方图视为条形图是常见的错误.三、知识拓展统计图是利用点、线、面、体等绘制成几何图形,以表示各种数量间的关系及其变动情况的工具。
表现统计数字大小和变动的各种图形总称。
其中有条形统计图、扇形统计图、折线统计图、象形图等。
在统计学中把利用统计图形表现统计资料的方法叫做统计图示法。
其特点是:形象具体、简明生动、通俗易懂、一目了然。
其主要用途有:表示现象间的对比关系;揭露总体结构;检查计划的执行情况;揭示现象间的依存关系,反映总体单位的分配情况;说明现象在空间上的分布情况。
一般采用直角坐标系.横坐标用来表示事物的组别或自变量x,纵坐标常用来表示事物出现的次数或因变量y;或采用角度坐标(如圆形图)、地理坐标(如地形图)等。
高考数学微专题突破利用频率分布直方图求中位数、平均数、总数一、单选题1.某校为了解高二年级学生某次数学考试成绩的分布情况,从该年级的1120名学生中随机抽取了100名学生的数学成绩,发现都在[]80,150内现将这100名学生的成绩按照[)8090,,[)90100,,[)100110,,[)110120,,[)120130,,[)130140,,[]140150,分组后,得到的频率分布直方图如图所示,则下列说法正确的是()A .频率分布直方图中a 的值为0.040B .样本数据低于130分的频率为0.3C .总体的中位数(保留1位小数)估计为123.3分D .总体分布在[)90100,的频数一定与总体分布在[)100110,的频数相等2.2020年,一场突如其来的“新型冠状肺炎”使得全国学生无法在春季正常开学,不得不在家“停课不停学”.为了解高三学生居家学习时长,从某校的调查问卷中,随机抽取n 个学生的调查问卷进行分析,得到学生可接受的学习时长频率分布直方图(如下图所示),已知学习时长在[)9,11的学生人数为25,则n 的值为()A .40B .50C .80D .1003.某地工商局对辖区内100家饭店进行卫生检查并评分,分为甲、乙、丙、丁四个等级,其中分数在[)60,70,[)70,80,[)80,90,[]90,100内的等级分别为:丁、丙、乙、甲,对饭店评分后,得到频率分布折线图,如图所示,估计这些饭店得分的平均数是()A .80.5B .80.6C .80.7D .80.84.下面是甲、乙两位同学高三上学期的5次联考数学成绩,现在只知其从第1次到第5次分数所在区间段分布的条形图(从左至右依次为第1至第5次),则从图中可以读出一定正确的信息是()A .甲同学的成绩的平均数大于乙同学的成绩的平均数B .甲同学的成绩的方差大于乙同学的成绩的方差C .甲同学的成绩的极差小于乙同学的成绩的极差D.甲同学的成绩的中位数小于乙同学的成绩的中位数5.下面是追踪调查200个某种电子元件寿命(单位:h)频率分布直方图,如图:其中300-400、400-500两组数据丢失,下面四个说法中有且只有一个与原数据相符,这个说法是①寿命在300-400的频数是90;②寿命在400-500的矩形的面积是0.2;③用频率分布直方图估计电子元件的平均寿命为:⨯+⨯+⨯+⨯+⨯1500.12500.153500.454500.155500.15④寿命超过400h的频率为0.3A.①B.②C.③D.④6.为了解某电子产品的使用寿命,从中随机抽取了100件产品进行测试,得到图示统计图.依据统计图,估计这100件产品使用寿命的中位数为()A.218.25B.232.5C.231.25D.241.25 7.为了让学生了解社会,拓宽视野,丰富知识,提高社会实践能力和综合素质,哈三中团委组织学生参加了抽测一批棉花的纤维长度(单位:cm)的社会实践活动.利用所学习的数学知识,同学们作出了样本的频率分布直方图.现在,由于原始数据不全,只能通过直方图来估计这一批棉花的纤维长度的平均值(同一组数据用这组数据所在区间的中点的值代替).则估计的平均值为()A.21.75B.22.25C.23.75D.20.75 8.为了了解某校九年级1600名学生的体能情况,随机抽查了部分学生,测试1分钟仰卧起坐的成绩(次数),将数据整理后绘成如图所示的频率分布直方图,根据统计图的数据,下列结论错误的是()A.该校九年级学生1分钟仰卧起坐的次数的中位数为26.25次B.该校九年级学生1分钟仰卧起坐的次数的众数为27.5次C.该校九年级学生1分钟仰卧起坐的次数超过30次的人数约有320人D.该校九年级学生1分钟仰卧起坐的次数少于20次的人数约有32人9.某地气象局把当地某月(共30天)每一天的最低气温作了统计,并绘制了如下图所示的统计图.记这组数据的众数为M,中位数为N,平均数为P,则()A .M N P <<B .N M P <<C .P M N <=D .P N M<<10.在某次高中学科竞赛中,4000名考生的参赛成绩按[)40,50,[)50,60,[)60,70,[)70,80,[)80,90,[)90,100分成六组,其频率分布直方图如图所示,则下列说法中错误的是().A .成绩在[)70,80内的考生人数最多B .不及格(60分以下)的考生人数约为1000人C .考生竞赛成绩平均分的估计值为70.5分D .考生竞赛成绩中位数的估计值为75分11.在2019年某省普通高中学业水平考试(合格考)中,对全省所有考生的物成绩进行统计,可得到如图所示的频率分布直方图,其中分组的区间为[)40,50,[)50,60,[)60,70,[)80,90,[]90,100,90分以上为优秀,则下列说法中不正确的是()A .从全体考生中随机抽取1000人,则其中得优秀考试约有100人B .若要全省的合格考通过率达到96%,则合格分数线约为44分C .若同一组中数据用该组区间中间值作代表值,可得考试物理成绩的平均分约为70D .该省考生物理成绩的中位数为75分第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题12.某中学举行电脑知识竞赛,现将高一参赛学生的成绩进行整理后分成五组,绘制成如图所示的频率直方图,已知图中从左到右的第一、二、三、四、五小组的频率分别是0.30,0.40,0.15,0.10,0.05.则估计高一参赛学生的成绩的众数、中位数分别为____________.13.某仪器厂从新生产的一批零件中随机抽取40个检测,如图是根据抽样检测后零件的质量(单位:g )绘制的频率分布直方图,样本数据分为8组,分别为[)80,82,[)82,84,[)84,86,[)86,88,[)88,90,[)90,92,[)92,94,[]94,96,则样本的中位数在第______组14.某中学举行了一场音乐知识竞赛,将参赛学生的成绩进行整理后分为5组,绘制如图所示的频率分布直方图.根据频率分布直方图,同一组数据用该区间的中点值代替,估计这次竞赛的平均成绩为______分.三、双空题15.根据高二某班50名同学的数学成绩,绘制频率分布直方图如图所示,虽不小心将其中一个数据污染了,但依然可以推断这个被污染的数据为_________,该班同学的成绩众数为_________.16.中小学生的视力状况受到社会的广泛关注,某市有关部门从全市6万名高一学生中随机抽取了400名,对他们的视力状况进行一次调查统计,将所得到的有关数据绘制成频率分布直方图,如图所示.从左至右五个小组的频率之比依次是5∶7∶12∶10∶6,则这400名学生视力的众数为________,中位数为________.四、解答题17.有一种鱼的身体吸收汞,一定量身体中汞的含量超过其体重的61.0010-⨯的鱼被人食用后,就会对人体产生危害.某海鲜市场进口了一批这种鱼,质监部门对这种鱼进行抽样检测,在30条鱼的样本中发现的汞含量(乘以百万分之一)如下:0.070.340.950.98 1.020.98 1.37 1.400.39 1.021.44 1.580.54 1.080.710.70 1.20 1.24 1.62 1.681.85 1.300.810.820.84 1.39 1.262.200.91 1.31(1)完成下面频率分布表,并画出频率分布直方图;频率分布表:分组频数频率[)0,0.50[) 0.50,1.001 3[) 1.00,1.50[) 1.50,2.002 15[)2.00,2.5011 30合计301频率分布直方图:(2)根据频率分布直方图估算样本数据的平均值(保留小数点后两位,同一组中的数据用该组区间中点值代表),并根据频率分布直方图描述这批鱼身体中汞含量的分布规律.18.经历过疫情,人们愈发懂得了健康的重要性,越来越多的人们加入了体育锻炼中,全民健身,利国利民,功在当代,利在千秋.一调研员在社区进行住户每周锻炼时间的调查,随机抽取了300人,并对这300人每周锻炼的时间(单位:小时)进行分组,绘制成了如图所示的频率分布直方图:(1)补全频率分布直方图,并估算该社区住户每周锻炼时间的中位数(精确到0.1);(2)若每周锻炼时间超过6小时就称为运动卫士,超过8小时就称为运动达人.现利用分层抽样的方法从运动卫士中抽取5人,再从这5人中抽取2人做进一步调查,求抽到的2人中恰有1人为运动达人的概率.19.经历过疫情,人们愈发懂得了健康的重要性,越来越多的人们加入了体育锻炼中,全民健身,利国利民,功在当代,利在千秋.一调研员在社区进行住户每周锻炼时间的调查,随机抽取了300人,并对这300人每周锻炼的时间(单位:小时)进行分组,绘制成了如图所示的频率分布直方图:(1)补全频率分布直方图,并估算该社区住户每周锻炼时间的中位数(精确到0.1);(2)若每周锻炼时间超过6小时就称为运动卫士,超过8小时就称为运动达人.现利用分层抽样的方法从运动卫士中抽取10人,再从这10人中抽取3人做进一步调查,设抽到的人中运动达人的人数为X ,求随机变量X 的分布列及期望.20.某贫困地区经过不懈的奋力拼搏,新农村建设取得巨大进步,农民年收入也逐年增加,为了制定提升农民收入、实现2020年脱贫的工作计划,该地扶贫办统计了2019年50位农民的年收入并制成如图频率分布直方图:(1)根据频率分布直方图,估计这50位农民的平均年收入x (单位:千元,同一组数据用该组数据区间的中点值表示);(2)为推进精准扶贫,某企业开设电商平台,让越来越多的农村偏远地区的农户通过经营网络商城脱贫致富.甲计划在A 店,乙计划在B 店同时参加一个订单“秒杀”抢购活动,其中每个订单由()*2,n n n N ≥∈个商品W 构成,假定甲、乙两人在A 、B 两店订单“秒杀”成功的概率分别为p 、q ,记甲、乙两人抢购成功的订单总数量、商品W 总数量分别为X 、Y .①求X 的分布列及数学期望()E X ;②若27sin4n p n n ππ=-,sin4n q nπ=,求当Y 的数学期望()E Y 取最大值时正整数n 的值.21.某地处偏远山区的古镇约有人口5000人,为了响应国家号召,镇政府多项并举,鼓励青壮劳力外出务工的同时发展以旅游业为龙头的乡村特色经济,到2020年底一举脱贫.据不完全统计该镇约有20%的人外出务工,下图是根据2020年扶贫工作期间随机调查本地100名在外务工人员的年收入(单位:千元)数据绘制的频率分布直方图.(1)根据样本数据估计该镇外出务工人员的创收总额(同一组中的数据用该组区间的中点值为代表);(2)完成脱贫任务后,古镇党政班子并不懈怠,决心带领全镇人民在奔小康道路上再上一个新台阶,出台了多项优惠政策,鼓励本地在外人员返乡创业,调查显示年收入在35千元(含35千元)以上的人中有60%的人愿意返乡投资创业,年收入在35千元以下的人中有40%的人愿意返乡投资创业,请从样本数据中完成下面的22⨯列联表,并判断能否在犯错误的概率不超过0.1的前提下认为“是否愿意返乡投资创业和年收入有关”.35千元(含35千元)以上35千元以下愿意返乡投资创业不愿意返乡投资创业附:()()()()()22n ad bc X a b c d a c b d -=++++,()20P X k ≥0.100.050.0250.0100k 2.7063.8415.0246.63522.某市为大力推进生态文明建设,把生态文明建设融入市政建设,打造了大型植物园旅游景区.为了了解游客对景区的满意度,市旅游部门随机对景区的100名游客进行问卷调查(满分100分),这100名游客的评分分别落在区间[)50,60,[)60,70,[)70,80,[)80,90,[]90,100内,且游客之间的评分情况相互独立,得到统计结果如频率分布直方图所示.(1)求这100名游客评分的平均值(同一区间的数据用该区间数据的中点值为代表);(2)视频率为概率,规定评分不低于80分为满意,低于80分为不满意,记游客不满意的概率为p .(ⅰ)若从游客中随机抽取m 人,记这m 人对景区都不满意的概率为m a ,求数列{}m a 的前4项和;(ⅱ)为了提高游客的满意度,市旅游部门对景区设施进行了改进,游客人数明显增多,对游客进行了继续旅游的意愿调查,若不再去旅游记1分,继续去旅游记2分,每位游客有继续旅游意愿的概率均为p ,且这次调查得分恰为n 分的概率为n B ,求4B .23.2016年春节期间全国流行在微信群里发、抢红包,现假设某人将688元发成手气红包50个,产生的手气红包频数分布表如下:金额分组[)1,5[)5,9[)9,13[)13,17[)17,21[)21,25频数39171182(1)求产生的手气红包的金额不小于9元的频率;(2)估计手气红包金额的平均数(同一组中的数据用该组区间的中点值作代表);(3)在这50个红包组成的样本中,将频率视为概率.①若红包金额在区间[]21,25内为最佳运气手,求抢得红包的某人恰好是最佳运气手的概率;②随机抽取手气红包金额在[)[]1,521,25⋃内的两名幸运者,设其手气金额分别为m ,n ,求事件“16m n ->”的概率.24.绿色已成为当今世界主题,绿色动力已成为时代的驱动力,绿色能源是未来新能源行业的主导.某汽车公司顺应时代潮流,最新研发了一款新能源汽车,并在出厂前对100辆汽车进行了单次最大续航里程(理论上是指新能源汽车所装载的燃料或电池所能够提供给车行驶的最远里程)的测试.现对测试数据进行分析,得到如图所示的频率分布直方图.(1)估计这100辆汽车的单次最大续航里程的平均值x (同一组中的数据用该组区间的中点值代表);(2)根据大量的汽车测试数据,可以认为这款汽车的单次最大续航里程X 近似地服从正态分布()2,N μσ,经计算第(1)问中样本标准差s 的近似值为50.用样本平均数x作为μ的近似值,用样本标准差s 作为σ的估计值;(ⅰ)现从该汽车公司最新研发的新能源汽车中任取一辆汽车,求它的单次最大续航里程恰好在200千米到350千米之间的概率;(ⅱ)从该汽车公司最新研发的新能源汽车中随机抽取10辆,设这10辆汽车中单次最大续航里程恰好在200千米到350千米之间的数量为Y ,求()E Y ;(3)某汽车销售公司为推广此款新能源汽车,现面向意向客户推出“玩游戏,送大奖”活动,客户可根据抛掷硬币的结果,操控微型遥控车在方格图上行进,若遥控车最终停在“胜利大本营”,则可获得购车优惠券.已知硬币出现正、反面的概率都是12,方格图上标有第0格、第1格、第2格、…、第50格.遥控车开始在第0格,客户每掷一次硬币,遥控车向前移动一次,若掷出正面,遥控车向前移动一格(从k 到1k +),若掷出反面,遥控车向前移动两格(从k 到2k +),直到遥控车移到第49格(胜利大本营)或第50格(失败大本营)时,游戏结束.设遥控车移到第n 格的概率为(1,2,,50)n P n = ,其中01P =,试说明{}1n n P P --是等比数列,并解释此方案能否成功吸引顾客购买该款新能源汽车.参考数据:若随机变量ξ服从正态分布()2,N μσ,则()0.6827P μσξμσ-<+≈ ,(22)0.9545P μσξμσ-<+≈ ,(33)0.9973P μσξμσ-<+≈ .25.某地处偏远山区的古镇约有人口5000人,为了响应国家号召,镇政府多项并举,鼓励青壮劳力外出务工的同时发展以旅游业为龙头的乡村特色经济,到2020年底一举脱贫.据不完全统计该镇约有20%的人外出务工.下图是根据2020年扶贫工作期间随机调查本地100名在外务工人员的年收入(单位:千元)数据绘制的频率分布直方图.(1)根据样本数据怙计该镇外出务工人员的创收总额(同一组中的数据用该组区间的中点值为代表);(2)假设该镇外出务工人员年收入服从正态分布()2,N μσ,其分布密度函数为22()2()x f x μσ--=,其中μ为样本平均值.若()f x 的最大值为10π,求σ的值;(3)完成脱贫任务后,古镇党政班子并不懈怠,决心带领全镇人民在奔小康道路上再上一个新台阶,出台了多项优惠政策,鼓励本地在外人员返乡创业.调查显示务工收入在[],2μσμσ++和[]2,3μσμσ++的人群愿意返乡创业的人数比例分别为15%和20%.从样本人群收入在[],3μσμσ++的人中随机抽取3人进行调查,设X 为愿意返乡创业的人数,求随机变量X 的分布列和数学期望.参考答案1.C 【分析】对于A :由频率分布直方图中所有小矩形面积之和为1,列出等式可求得a 的值,进而作出判断;对于B :先计算高于130分的频率,然后再用1减去于高于130分的频率即可得到低于130分的频率,进而作出判断;对于C :先计算[)80,120的频率和[)120130,的频率,再求出总体的中位数,进而作出判断;对于D :根据样本分布在[)90,100的频数一定与样本分布在[)100,110的频数相等,总体分布在[)90,100的频数不一定与总体分布在[)100,110的频数相等作出判断即可.【详解】由频率分布直方图得:()0.0050.0100.0100.0150.0250.005101a ++++++⨯=,解得0.030a =,故A 错误;样本数据低于130分的频率为:()10.0250.005100.7-⨯+=,故B 错误;[)80,120的频率为:()0.0050.0100.0100.015100.4+++⨯=,[)120130,的频率为:0.030100.3⨯=,∴总体的中位数(保留1位小数)估计为:0.50.412010123.30.3-+⨯≈分,故C 正确;样本分布在[)90,100的频数一定与样本分布在[)100,110的频数相等,总体分布在[)90,100的频数不一定与总体分布在[)100,110的频数相等,故D 错误.故选:C .【点睛】本题考查频率分布直方图的应用,考查逻辑思维能力和计算能力,属于基础题.2.B 【分析】由频率分布直方图的性质,求得0.25x =,再结合频率分布直方图的频率的计算方法,即可求解.由频率分布直方图的性质,可得()20.050.150.051x +++=,解得0.25x =,所以学习时长在[)9,11的频率2520.5x n==,解得50n =.故选:B .【点睛】本题主要考查了频率分布直方图性质及其应用,其中解答中熟记频率分布直方图的性质是解答的关键,着重考查了数据分析能力,以及计算能力.3.A 【分析】根据频率分布折线图计算该组数据的平均数为650.15750.4850.2950.25⨯+⨯+⨯+⨯.【详解】由折线图可知,该组数据的平均数为650.15750.4850.2950.2580.5⨯+⨯+⨯+⨯=.故选:A.【点睛】此题考查根据频率分布折线图求平均数,关键在于熟练掌握平均数的求解公式.4.D 【分析】根据频数分布表中的数据,对选项中的命题进行分析,判断正误,即可得到本题答案.【详解】甲同学的成绩的平均数1051201201301401235x ++++<=,乙同学的成绩的平均数1051151251351451255y ++++>=,所以A 错误;甲同学的成绩从第1次到第5次变化波动比乙同学的成绩的变化波动更小一些,所以甲同学的成绩的方差小于乙同学的成绩的方差,所以B 错误;甲同学的成绩的极差介于()30,40之间,乙同学的成绩的极差介于()35,45之间,所以甲同学的成绩的极差不一定小于乙同学的成绩的极差,所以C 错误;甲同学的成绩的中位数介于()115,120之间,乙同学的成绩的中位数介于()125,130之间,所以D 正确.故选:D本题主要考查频数直方图的相关问题,其中涉及中位数、平均数、方差、极差的求解. 5.B【详解】若①正确,则300400-对应的频率为0.45,则400500-对应的频率为0.15,则②错误;电子元件的平均寿命为1500.12500.153500.454500.155500.15⨯+⨯+⨯+⨯+⨯,则③正确;寿命超过400h的频率为0.150.150.3+=,则④正确,故不符合题意;若②正确,则300400-对应的频率为0.4,则①错误;电子元件的平均寿命为1500.12500.153500.44500.25500.15⨯+⨯+⨯+⨯+⨯,则③错误;寿命超过400h的频率为0.20.150.35+=,则④错误,故符合题意.故选:B.6.C【分析】设中位数为x,根据中位数左边的频数为50列等式可求得x的值.【详解】设中位数为x,前2组的频数之和为25,前3组的频数之和为65,由题意可得20025405050x-+⨯=,解得231.25x=.故选:C.7.A【分析】利用频率分布直方图计算平均数的方法求解即可.【详解】所给数据频率之和为(0.010.070.080.020.02)51++++⨯=则估计的平均值为5(12.50.0117.50.0722.50.0827.50.0232.50.02) 4.35521.75⨯+⨯+⨯+⨯+⨯=⨯=故选:A8.D 【分析】根据样本估计总体的知识依次判断各个选项即可得到结果.【详解】对于A ,设中位数为x ,则()()0.020.065250.080.5x +⨯+-⨯=,解得:26.25x =,即该校九年级学生1分钟仰卧起坐的次数的中位数为26.25次,A 正确;对于B ,根据频率分布直方图知众数为:253027.52+=次,B 正确;对于C ,该校九年级学生1分钟仰卧起坐的次数超过30次的人数约有16000.045320⨯⨯=人,C 正确;对于D ,该校九年级学生1分钟仰卧起坐的次数少于20次的人数约有16000.025160⨯⨯=人,D 错误.故选:D.9.A 【分析】由统计图分别求出该月温度的中位数,众数,平均数,由此能求出结果.【详解】解:由统计图得:该月温度的中位数为565.52N +==,众数为5M =,平均数为1(233410566372829210) 5.9730P =⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯≈.∴M N P <<.故选:A .10.D 【分析】A .根据频率分布直方图中哪一组数据的频率除以组距的值最大进行分析;B .先分析60分以下对应的频率,再利用总体数量乘以所求频率即可得到结果;C .利用每组数据的组中值乘以对应频率并将每组计算结果相加即可得到结果;D .分析频率为0.5时对应的横坐标的值即为中位数.【详解】A .根据统计图可知:[)70,80对应的频率除以组距的值最大,即频率最大,所以人数最多,故正确;B .不及格的频率为:()0.0100.015100.25+⨯=,所以不及格的人数约为40000.25=1000⨯人,故正确;C .根据频率分布直方图可知平均数为:()450.01550.015650.02750.03850.015950.011070.5⨯+⨯+⨯+⨯+⨯+⨯⨯=,故正确;D .前三组的频率之和为:()0.01+0.0150.02100.450.5+⨯=<,前四组的频率之和为:()0.01+0.0150.020.03100.750.5++⨯=>,所以中位数在第四组数据中,且中位数为:0.50.45701071.70.0310-+⨯≈⨯,故错误;故选:D.11.D 【分析】利用频率分布直方图的性质直接求解.【详解】解:对于A ,90分以上为优秀,由频率分布直方图得优秀的频率为0.010100.1⨯=,∴从全体考生中随机抽取1000人,则其中得优秀考试生约有:10000.1100⨯=人,故A 正确;对于B ,由频率分布直方图得[40,50)的频率为0.01100.1⨯=,[50,100)的频率为:10.10.9-=,∴若要全省的合格考通过率达到96%,则合格分数线约为44分,故B 正确;对于C ,若同一组中数据用该组区间中间值作代表值,可得考试物理成绩的平均分约为:450.01010550.01510650.02010750.03010850.01510950.0101070.5⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯=分,故C 正确;对于D ,[40,70)的频率为:(0.0100.0150.020)100.45++⨯=,[70,80)的频率为0.030100.3⨯=,∴该省考生物理成绩的中位数为:0.50.45701071.670.3-+⨯≈分,故D 错误.故选:D .【点睛】本题考查频数、合格分数线、平均数、中位数的求法,考查频率分布直方图的性质等基础知识,考查运算求解能力,属于基础题.12.65,65【分析】频率分布直方图中最高矩形的中点横坐标即为众数,利用平分矩形面积可得中位数.【详解】由题图可知众数为65,又∵第一个小矩形的面积为0.3,∴设中位数为60+x ,则0.3+x ×0.04=0.5,得x =5,∴中位数为60+5=65.故答案为:65,6513.四【分析】计算前几组的频率之和,判断频率为0.5在哪个区间即可判断中位数.【详解】根据频率分布直方图可知,前三组的频率之和为()0.03750.06250.07520.350.5++⨯=<,前四组的频率之和为()0.03750.06250.0750.120.550.5+++⨯=>,则可以判断中位数在第四组.故答案为:四.【点睛】本题考查根据频率分布直方图判断中位数所在区间,属于基础题.14.67.【分析】本题根据频率分布直方图直接求平均数即可.【详解】解:这次竞赛的平均成绩为:0.03055100.04065100.01575100.01085100.005951067⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯=故答案为:67.【点睛】本题考查根据频率分布直方图求平均数,是基础题.15.0.016130【分析】利用频率分布直方图中所有矩形的面积之和为1可求得污染的数据;利用最高矩形底边的中点值可求得众数.【详解】设被污染的数据为a ,利用频率分布直方图中所有矩形的面积之和为1可得0.004100.02100.028100.03210101a ⨯+⨯+⨯+⨯+⨯=,解得0.016a =.由图可知,该班同学的成绩众数为130.故答案为:0.016,13016.4.7 4.75【分析】根据频率分布直方图,取最高矩形底边中点的横坐标即可求出众数,求出第三小组矩形的高,设中位数为x ,由()0.1250.175 4.5510.5x ++-⨯=,解方程即可求解.【详解】由图可知,众数为4.7,第五小组的频率为0.50.30.15⨯=从左至右五个小组的频率之比依次是5∶7∶12∶10∶6,可得第一小组的频率为50.150.1256⨯=,第二小组的频率为70.150.1250.1756⨯==,第三小组的频率为120.150.36⨯=,所以中位在第三小组,第三小组矩形面积为0.3,则第三小组的高为0.310.3=设中位数为x ,则()0.1250.175 4.5510.5x ++-⨯=,解得 4.75x =故答案为:4.7;4.75【点睛】本题考查了根据频率分布直方图求众数、中位数,考查了运算求解能力,属于基础题. 17.(1)填表见解析;作图见解析;(2)平均值为:1.08,答案见解析.【分析】(1)由样本数据,即可完善频率分布表中的数据,并画出频率直方图.(2)由(1)的频率直方图计算样本均值,进而描述汞含量分布规律.【详解】(1)由题设样本数据,则可得频率分布表如下,分组频数频率[)0,0.5031 10[)0.50,1.00101 3[)1.00,1.50122 5[)1.50,2.0042 15[)2.00,2.5011 30合计301(2)根据频率分布直方图估算平均值为:112210.250.75 1.25 1.75 2.25 1.0810351530⨯+⨯+⨯+⨯+⨯≈,分布规律:①该频率分布直方图呈中间高,两边低,大多数鱼身体中汞含量主要集中在区间[]0.5,1.5;②汞含量在区间[]1,1.5的鱼最多,汞含量在区间[]0.5,1的次之,在区间[]2,2.5的最少;③汞含量超过61.0010-⨯的数据所占比例较大,这说明这批鱼被人食用,对人体产生危害的可能性比较大.18.(1)作图见解析;中位数为4.3;(2)35.【分析】(1)设中位数为x ,则有()40.150.05x -⨯=,故可求中位数.(2)利用古典概型的概率公式可求概率.【详解】解:(1)第二组的频率为()120.150.0750.050.10.25-⨯+++=,故第二组小矩形的高为0.125频率分布直方图如图所示,由频率分布直方图可得,第一组和第二组的频率之和为0.20.250.450.5+=<,前三组的频率之和为0.20.250.30.750.5++=>,可知中位数在第三组,设中位数为x ,则有()40.150.50.450.05x -⨯=-=,解得134.33x =≈,所以该社区住户每周锻炼时间的中位数为4.3;。
【知识要点】一、用样本估计总体的两个手段(用样本的频率分布估计总体的分布;用样本的数字特征估计总体的数字特征),需要从总体中抽取一个质量较高的样本,才能不会产生较大的估计偏差,且样本容量越大,估计的结果也就越精确,分析数据的一种基本方法是用图将它们画出来,或者用紧凑的表格改变数据的排列方式,作图可以达到两个目的,一是从数据中提取信息,二是利用图形传递信息.二、频率分布是指一个样本数据在各个小范围内所占比例的大小.一般是用频率分布直方图反映样本频率分布.三、样本的数字特征众数:就是数据中出现次数最多的那个,比其他的都多,如果几个数据出现的次数都是最多,则它们都是众数;每个数据都只有一次,那么数据没有众数.所以众数可以不止一个或者没有.中位数:就是这些数据排列好了以后中间的那个数字,那么如果有偶数个数据,那么就是中间两个数字的平均数,如果有奇数个数据,则中间那个就是数据的中位数.所以数据的中位数不一定在数据中.平均数:这个就是把所有数据相加,除以个数,就是数据的平均数. nx n++(n x x ++-(n x x ++-四、茎叶图茎叶图又称“枝叶图”,它的思路是将数组中的数按位数进行比较,将数的大小基本不变或变化不大的位作为一个主干(茎),将变化大的位的数作为分枝(叶),列在主干的后面,这样就可以清楚地看到每个主干后面的几个数,每个数具体是多少.当数据是两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出的叶子,因此通常把这样的图叫做茎叶图.【方法讲评】【例1】对某小区100户居民的月均用水量进行统计,得到样本的频率分布直方图如图,则估计此样本的众数、中位数分别为()A. 2.25,2.5 B.2.25,2.02 C.2,2.5 D.2.5,2.25【点评】(1)求频率分布图中的众数,一般先计算出频率分布直方图中的每个小矩形的面积,找到面积最大的那个矩形,取该矩形的横边中点对应的数为众数.(2)求众数也可以直接找最高矩形的横边的中点.【反馈检测1】某学校900名学生在一次百米测试中,成绩全部介于13秒与18秒之间,抽取其中50个样本,将测试结果按如下方式分成五组:第一组[13,14],第二组[14,15),…,第五组[17,18],如图是按上述分组方法得到的频率分布直方图.(1)若成绩小于14秒认为优秀,求该样本在这次百米测试中成绩优秀的人数;(2)请估计学校900名学生中,成绩属于第四组的人数;(3)请根据频率分布直方图,求样本数据的众数和中位数.【例2】高二某班50名学生在一次百米测试中,成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组[13,14),第二组[14,15)…第五组[17,18],如图是按上述分组方法得到的频率分布直方图.(1)若成绩大于等于14秒且小于16秒规定为良好,求该班在这次百米测试中成绩为良好的人数. (2)请根据频率分布直方图,估计样本数据的众数和中位数(精确到0.01).(3)设n m ,表示该班两个学生的百米测试成绩,已知[)[]18,1714,13, ∈n m ,.6个基本事件组成.【点评】求频率分布直方图中的中位数,一般先计算出每个小矩形的面积,通过解方程找到左边面积为0.5的点P ,点P 对应的数就是中位数.【反馈检测2】某公路段在某一时刻内监测到的车速频率分布直方图如图所示. (Ⅰ)求纵坐标中参数h 的值及第三个小长方形的面积; (Ⅱ)求车速的众数1v ,中位数2v 的估计值;1122n n xx p x p x p 计算.的中点对应的数,n p 代表第n 个矩形的面积【例3】某校从参加考试的学生中抽出60名学生,将其成绩(均为整数)分成六组[40,50),[50,60)...[90,100]后画出如下部分频率分布直方图.观察图形的信息,回答下列问题: (Ⅰ)求成绩落在[70,80)上的频率,并补全这个频率分布直方图; (Ⅱ) 估计这次考试的及格率(60分及以上为及格)和平均分;(Ⅲ) 从成绩是70分以上(包括70分)的学生中选两人,求他们在同一分数段的概率.【解析】(Ⅰ)成绩落在[70,80)上的频率是0.3,频率分布直方图如下图.(Ⅲ) 成绩是70分以上(包括70分)的学生人数为(0.03+0.025+0.005)×10×60=36 所以所求的概率为【点评】求频率分布直方图中的平均数,1122n n x x p x p x p 计算.其中nx 代表第n 个矩形的横边的中点对应的数,n p 代表第n 个矩形的面积.【反馈检测3】某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100]. (1)求图中a 的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数(x )与数学成绩相应分数段的人数(y )之比如下表所示,求数学成绩在[50,90)之外的人数.高中数学常见题型解法归纳及反馈检测第63讲: 根据频率分布直方图求中位数众数和平均数参考答案【反馈检测1答案】(1)3;(2)288;(3)15.5,15.74.【反馈检测2答案】(1)0.01h =,第三个小长方形的面积为65;(2)1265,62.5v v ==;(3【反馈检测2详细解析】(Ⅰ)∵所有小长形面积之和为1,∴10h +10×3h +10×4h +10×2h =1, 解得h =0.01, ∴第三个小长方形的面积为:10×4h =10×0.04=0.4. (Ⅱ)车速的众数1v =,车速的中位数是两边直方图的面积相等, 于是得:10×0.01+10×0.03+(2v ﹣60)×0.04=0.5,解得2v =62.5.×10×45+0.03×10×55+0.04×10×65+0.02×10×75=62. 【反馈检测3答案】(1)005.0=a ;(2)73;(3)10.【反馈检测3详细解析】(1)依题意得,()104.003.002.0210=+++a ,解得005.0=a(2)这100名学生语文成绩的平均分为:()分7305.0952.0853.0754.06505.055=⨯+⨯+⨯+⨯+⨯ (3)数学成绩在[50,60)的人数为:100×0.05=5数学成绩在[60,70[70,80数学成绩在[80,90所以数学成绩在[50,90)之外的人数为:102540205100=----。
2022~2023学年度上期期末高二年级调研考试数学(理科)第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.双曲线2214y x -=的渐近线方程为( ) A .14y x =± B .12y x =± C .4y x =± D .2y x =±2.在空间直角坐标系Oxyz 中,点(4,1,9)P 到点(2,4,3)Q 的距离为( )A .5B .6C .7D .83.在一次游戏中,获奖者可以获得5件不同的奖品,这些奖品要从编号为1-50号的50种不同奖品中随机抽取确定,用系统抽样的方法为获奖者抽取奖品编号,则5件奖品的编号可以是( ) A .3,13,23,33,43 B .11,21,31,41,50 C .3,6,12,24,48D .3,19,21,27,504.命题“0m ∀∈≤N ”的否定是( )A .00m ∃∉≥NB .00m ∃∈>NC .00m ∃∈≤ND .0m ∀∈>N5.若,,a b c ∈R ,则“a b >”是“a c b c +>+”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.已知直线:0l Ax By C ++=(A ,B 不同时为0),则下列说法中错误的是( ) A .当0B =时,直线l 总与x 轴相交 B .当0C =时,直线l 经过坐标原点O C .当0A C ==时,直线l 是x 轴所在直线 D .当0AB ≠时,直线l 不可能与两坐标轴同时相交7.执行如图所示的程序语句,若输入5x =,则输出y 的值为( )B .7C .22-D .28-8.已知F 是抛物线24y x =的焦点,M 是抛物线上一点,且满足120OFM ∠=︒(O 为坐标原点),则FM 的值为( )A .4B .3C .D .29.已知圆221:(2)(1)9O x y -+-=和直线:10l x y -+=.若圆2O 与圆1O 关于直线l 对称,则圆2O 的方程为( ) A .22(3)9x y -+=B .22(3)9x y +-= C .22(2)(3)9x y -+-=D .22(3)(2)9x y -+-=10.已知13,22m ⎡⎤∈-⎢⎥⎣⎦,命题2:2320p m m --≤,命题22:1623x y q m m +=--表示焦点在x 轴上的椭圆.则下列命题中为假命题的是( ) A .p q ∧ B .p q ∨ C .p q ⌝∨ D .p q ⌝∨11.在平面直角坐标系xOy 内,对任意两点()11,A x y ,()22,B x y ,定义A ,B 之间的“曼哈顿距离”为1212AB x x y y =-+-,记到点O 的曼哈顿距离小于或等于1的所有点(,)x y 形成的平面区域为Ω.现向221x y +=的圆内随机扔入N 粒豆子,每粒豆子落在圆内任何一点是等可能的,若落在Ω内的豆子为M 粒,则下面各式的值最接近圆周率的是( ) A .NMB .2NMC .3NMD .4NM12.已知有相同焦点1F ,2F 的椭圆22122:1(0)x y C a b a b +=>>与双曲线22222:1(0,0)x y C m n m n -=>>在第一象限的交点为A ,若2AOF △(O 为坐标原点)是等边三角形,则ab mn的值为( )A .2+B .2-CD 第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡上.13.已知椭圆22110036x y +=上一点P 到一个焦点的距离为6,那么点P 到另一个焦点的距离为______. 14.为了解某校高三学生的数学成绩,随机地抽查了该校100名高三学生的期中考试数学成绩,得到频率分布直方图如图所示.请根据以上信息,估计该校高三学生数学成绩的中位数为______.(结果保留到小数点后两位)15.甲,乙两人下棋,若两人下成和棋的概率是13,甲获胜的概率是14,则乙获胜的概率是______.16.已知双曲线22221(0,0)x y a b a b-=>>的左,右焦点1F ,2F ,经过1F 斜率为l 与双曲线的左支相交于P ,Q 两点.记12PF F △的内切圆的半径为a ,则双曲线的离心率为______.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)已知点(4,2)P -,直线:3450l x y --=. (Ⅰ)求经过点P 且与直线l 平行的直线的方程; (Ⅱ)求经过点P 且与直线l 垂直的直线的方程. 18.(本小题满分12分)甲,乙两台机床同时生产一种零件,统计5天中两台机床每天所出的次品件数,数据如下图:(Ⅰ)判断哪台机床的性能更稳定,请说明理由;(Ⅱ)从甲机床这五天的数据中任意抽取两天的数据,求至多有一天的次品数超过1件的概率. 19.(本小题满分12分)已知圆22:60A x y x +-=与直线32x =相交于M ,N 两点. (Ⅰ)求||MN 的长;(Ⅱ)设圆C 经过点M ,N 及(2,2)B .若点P 在圆C 上,点Q 在圆A 上,求||PQ 的最大值. 20.(本小题满分12分)某工厂统计2022年销售网点数量与售卖出的产品件数的数据如下表:(Ⅰ)求2022年售卖出的产品件数y (单位:万件)关于销售网点数x (单位:个)的线性回归方程; (Ⅱ)根据(Ⅰ)中求出的线性回归方程,预测2022年该工厂建立40个销售网点时售卖出的产品件数.参考公式:()()()1122211ˆnnii i ii i nni ii i xx y y x ynxy bx x xnx ====---==--∑∑∑∑,ˆˆay bx =-. 21.(本小题满分12分)已知椭圆2222:1(0)x y E a b a b +=>>经过点12⎫⎪⎭(Ⅰ)求椭圆E 的方程;(Ⅱ)设经过右焦点2F 的两条互相垂直的直线分别与椭圆E 相交于A ,B 两点和C ,D 两点.求四边形ACBD 的面积的最小值. 22.(本小题满分12分)已知点(1,0)F ,经过y 轴右侧一动点A 作y 轴的垂线,垂足为M ,且||||1AF AM -=.记动点A 的轨迹为曲线C . (Ⅰ)求曲线C 的方程;(Ⅱ)设经过点(1,0)B -的直线与曲线C 相交于P ,Q 两点,经过点(1,)((0,2)D t t ∈,且t 为常数)的直线PD 与曲线C 的另一个交点为N ,求证:直线QN 恒过定点.。
高二理科数学(2)一、选择题(本大题共12小题,共60.0分)1.若复数(i是虚数单位)为纯虚数,则实数a的值为()A. 2 B. C. D.2.若函数的极小值为﹣1,则函数的极大值为()A. 3 B. C. D. 23.从甲、乙等5名学生中随机选出2人,则甲被选中的概率为()A. B. C. D.4.已知函数f(x)的导函数为f′(x),且满足f(x)=2xf′(2)+cos x,则f′(2)=()A. B. C. D.5.定义在R上的函数y=f(x)满足:f(x)+f′(x)>1,f(0)=2017,则不等式e x f(x)-e x>2016(其中e为自然对数的底数)的解集为()A. B. C. D.6.用反证法证明某命题时,对结论:“自然数a,b,c中恰有一个偶数”正确的反设为()A. a,b,c都是奇数B. a,b,c都是偶数C. a,b,c中至少有两个偶数D. a,b,c中至少有两个偶数或都是奇数7.定积分的值为()A. 1 B. C. D.8.已知函数ƒ(x)=ax3+bx2+cx的图象如图所示,则有()A. ,B. ,C. ,D. ,9.利用回归分析的方法研究两个具有线性相关关系的变量时,下面说法:①相关关系r满足|r|≤1,而且|r|越接近1,变量间的相关程度越大;|r|越接近0,变量间的相关程度越小;②可以用R2来刻画回归效果,对于已获取的样本数据,R2越小,模型的拟合效果越好;③如果残差点比较均匀地落在含有x轴的水平的带状区域内,那么选用的模型比较合适;这样带状区域越窄,回归方程的预报精度越高;④不能期望回归方程得到的预报值就是预报变量的精确值;⑤随机误差e是衡量预报精确度的一个量,它满足E(e)=0.其中正确的结论为( )A. ①②③ B. ①②④ C. ③④⑤ D. ①③④⑤10.箱子里有5个黄球,4个白球,每次随机取一个球,若取出黄球,则放回箱中重新取球,若取出白球,则停止取球,那么在4次取球之后停止取球的概率为()A. B. C. D.11.如图,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,则不同的染色方法总数为()A. 60B. 480C. 420D. 7012.对同一样本,以下数据能说明X与Y有关系的可能性最大的一组为()A. ,B. ,C. ,D. ,二、填空题(本大题共4小题,共20.0分)13.圆ρ=4cosθ的圆心到直线tan()=1的距离为______ .14.(1-)4展开式中含x-3项的系数是______.15.已知,则的值是______ .16.为了判断高中三年级学生是否选修文科与性别的关系,现随机抽取50名学生,得到如下2×2列联表:已知P(K2≥3.841)≈0.05,P(K2≥5.024)≈0.025.根据表中数据,得到.则认为选修文科与性别有关系出错的可能性为________.三、解答题(本大题共7小题,共84.0分)17.已知m∈R,复数.(1)若z是纯虚数,求m的值;(2)当m为何值时,z对应的点在直线x+y+3=0上?18.3名女生和5名男生排成一排(Ⅰ)如果女生必须全排在一起,可有多少种不同的排法?(Ⅱ)如果女生必须全分开,可有多少种不同的排法?(Ⅲ)如果两端都不能排女生,可有多少种不同的排法?(Ⅳ)如果两端不能都排女生,可有多少种不同的排法?19.在数列{a n}中,a1=2,a n+1=(n∈N+),(1)计算a2、a3、a4并由此猜想通项公式a n;(2)证明(1)中的猜想.20.某城市的华为手机专卖店对该市市民使用华为手机的情况进行调查.在使用华为手机的用户中,随机抽取100名,按年龄(单位:岁)进行统计的频率分布直方图如图:(1)根据频率分布直方图,分别求出样本的平均数(同一组数据用该区间的中点值作代表)和中位数的估计值(均精确到个位);(2)在抽取的这100名市民中,按年龄进行分层抽样,抽取20人参加华为手机宣传活动,现从这20人中,随机选取2人各赠送一部华为手机,求这2名市民年龄都在[40,45)内的人数为X,求X的分布列及数学期望.21.某中学研究性学习小组,为了研究高中理科学生的物理成绩是否与数学成绩有关系,在本校高三年级随机调查了50名理科学生,调查结果表明:在数学成绩优秀的25人中16人物理成绩优秀,另外9人物理成绩一般;在数学成绩一般的25人中有6人物理成绩优秀,另外19人物理成绩一般.(Ⅰ)试根据以上数据完成以下2×2列联表,并运用独立性检验思想,指出有多大把握认为高中理科学生的物理成绩与数学成绩有关系;(Ⅱ)以调查结果的频率作为概率,从该校数学成绩优秀的学生中任取100人,求100人中物理成绩优秀的人数的数学期望和标准差.参考公式:K2=,其中n=a+b+c+d.22.已知曲线的极坐标方程为,直线∈,直线∈.以极点为原点,极轴为轴的正半轴建立平面直角坐标系.(1)求直线,的直角坐标方程以及曲线的参数方程;(2)已知直线与曲线交于,两点,直线与曲线交于,两点,求的面积.23.已知函数f(x)=ln(2x+a)-e2x-1.(1)若函数f(x)在x=处取得极值,求f(x)的单调区间;(2)当a≤1时,f(x)<0,求x的取值范围.高二理科数学(2)答案和解析1.【答案】A解:复数=为纯虚数,∴,≠0,解得a=2.故选A.2.【答案】A解:f′(x)=3x2-3,令f′(x)=0,解得x=±1,当x>1或x<-1时,f′(x)>0,当-1<x<1时,f′(x)<0.故f(x)在(-∞,-1),(1,+∞)上是增函数,在(-1,1)上是减函数,故f(x)在x=1处有极小值f(1)=1-3+m=-1,解得m=1.所以f(x)在x=-1处有极大值f(-1)=-1+3+1=3.故选A.3.【答案】B解:从甲、乙等5名学生中随机选出2人,基本事件总数n==10,甲被选中包含的基本事件的个数m==4,∴甲被选中的概率p===.故选:B.4.【答案】A解:∵f(x)=2xf′(2)+cosx,∴f'(x)=2f′(2)-sinx,令x=2,则f'(2)=2f′(2)-sin2,即f′(2)=sin2,故选:A.5.【答案】D解:设g(x)=e x f(x)-e x,(x∈R),则g′(x)=e x f(x)+e x f′(x)-e x=e x[f(x)+f′(x)-1],∵f(x)+f′(x)>1,∴f(x)+f′(x)-1>0,∴g′(x)>0,∴y=g(x)在定义域上单调递增,∵e x f(x)-e x>2016,∴g(x)>2016,又∵g(0)=e0f(0)-e0=2017-1=2016,∴g(x)>g(0),∴x>0,∴不等式的解集为(0,+∞),故选D.6.【答案】D解:用反证法证明某命题时,对结论:“自然数a,b,c中恰有一个偶数”正确的反设是:a,b,c中至少有两个偶数或都是奇数.故选:D.7.【答案】C解: ,因为,所以x2+y2=1,y≥0,即等于圆心在原点,半径为1的圆的面积的,所以,又,所以.故选C.8.【答案】A解:由函数f(x)的图象知f(x)先递增,再递减,再递增∴f′(x)先为正,再变为负,再变为正∵f′(x)=3ax2+2bx+c∴a>0∵在递减区间内∴f′(0)<0即c<0故选A9.【答案】D解:相关系数r是用来衡量两个变量之间线性相关关系的方法,当r=0时,表示两变量间无线性相关关系,当0<|r|<1时,表示两变量存在一定程度的线性相关.且|r|越接近1,两变量间线性关系越大.故①正确;由R2计算公式可知,R2越小,说明残差平方和越大,则模型拟合效果越差.故②错误;由残差图的定义可③正确;在利用样本数据得到回归方程的过程中,不可避免的会产生各种误差,因此用回归方程得到的预报值只能是实际值的近似值.故④正确.随机误差e是衡量预报精确度的一个量,它满足E(e)=0.正确.故答案为:D.10.【答案】B解:第四次取球之后停止表示前三次均取到黄球,第四次取到白球,由题意知本题是一个有放回的取球,是一个相互独立事件同时发生的概率,取到一个白球的概率是,去到一个黄球的概率是其概率为()3×,故选:B.11.【答案】C解:分两步,先将四棱锥一侧面三顶点染色,然后再分类考虑另外两顶点的染色数,用乘法原理可求解.由题设,四棱锥S-ABCD的顶点S,A,B所染的颜色互不相同,它们共有5×4×3=60种染色方法.当S,A,B染好时,不妨设所染颜色依次为1,2,3,若C染2,则D可染3或4或5,有3种染法;若C 染4,则D可染3或5,有2种染法;若C染5,则D可染3或4,有2种染法,即当S,A,B染好时,C,D还有7种染法.故不同的染色方法有60×7=420种.故选:C.12.【答案】A解:根据2×2列联表与独立性检验的应用问题,当与相差越大,X与Y有关系的可能性越大;即a、c相差越大,与相差越大;故选:A.13.【答案】解:圆ρ=4cosθ为ρ2=4ρcosθ,化为直角坐标方程为:x2+y2-4x=0,圆心坐标为C(2,0),直线tan()=1,即cotθ=1,即=1,化为直角坐标方程为:x-y=0,∴圆心C(2,0)到直线的距离d==.故答案为:.14.【答案】解:由,令-r=-3,得r=3.∴(1-)4展开式中含x-3项的系数是.故答案为:.15.【答案】()2018解:∵(x+1)2(x+2)2016=a0+a1(x+2)+a2(x+2)+…+a2018(x+2)2018,∴令x=-2,得a0=0再令x=-,得到a0+=(-+1)2(-+2)2016=()2018,∴=,故答案为:()2018,16.【答案】%解:∵根据表中数据,得到K2的观测值解,因为4.844>3.841,∴认为选修文科与性别有关系出错的可能性为5%.故答案为5%.17.【答案】解:(1)当z为纯虚数时,则,解得m=0,∴当m=0时,z为纯虚数;(2)当z对应的点在直线x+y+3=0上时,则,即,解得m=0或,∴当m=0或时,z对应的点在直线x+y+3=0上.18.【答案】解:(1)女生全部排在一起有A66A33=4320种.(2)女生必须全分开有A55A63=14400种.(3)因为两端都不能排女生,所以两端只能从5个男生中选2个排在两端,有A52种排法,其余6人有A66种排法,所以共有A52•A66=14400种排法.(4)8个人站成一排共有A88种不同的排法,排除掉两端都是女生的排法有A32•A66种,所以符合条件的排法有A88-A32•A66=36000种.19.【答案】解:(1)在数列{a n}中,∵a1=2,a n+1=(n∈N*)∴a1=2=,a2==,a3==,a4==,∴可以猜想这个数列的通项公式是a n=;(2)下面利用数学归纳法证明:①当n=1时,成立;②假设当n=k时,a k=,则当n=k+1(k∈N*)时,a k+1===,因此当n=k+1时,命题成立,综上①②可知:∀n∈N*,a n=都成立.20.【答案】解:(1)根据题意,计算平均数的估计值为=(27.5×0.01+32.5×0.04+37.5×0.07+42.5×0.06+47.5×0.02)×5=38.5≈39;中位数的估计值为:因为5×0.01+5×0.04=0.25<0.5,5×0.06+5×0.02=0.4<0.5,所以中位数位于区间[35,40)年龄段中,设中位数为x,所以0.24+0.07×(x-35)=0.5,x≈39;(2)用分层抽样的方法,抽取的20人,应有6人位于[40,45)年龄段内,14人位于[40,45)年龄段外;依题意,X的可能值为0,1,2;P(X=0)==,P(X=1)==,P(X=2)==;X数学期望为EX=0×+1×+2×=.所以K2=≈8.117>7.879,所以有99.5%把握认为高中理科学生的物理成绩与数学成绩有关系;(Ⅱ)由题意可得,数学成绩优秀的学生中物理成绩优秀的概率为,随机变量X符合二项分布,所以数学期望E(X)=100×=64,标准差==.22.【答案】解:(1)依题意,直线l1的直角坐标方程为,直线l2的直角坐标方程为,因为为+,故ρ2=ρcosθ+2ρsinθ,故x2+y2=x+2y,故(x-)2+(y-1)2=4,故曲线C的参数方程为++(α为参数).(2)∵联立,∴得到|OA|=4,同理,又∵,∴,∴ AOB的面积为.23.【答案】解:(1)f′(x)=-2e2x-1,由已知得f′()=0,即-1=0,所以a=0,所以f(x)=ln2x-e2x-1,函数f(x)的定义域为(0,+∞),f′(x)=-2e2x-1,由于f′(x)在(0,+∞)上为减函数,而f′()=0,所以当x∈(0,)时,f′(x)>0;当x∈(,+∞)时,f′(x)<0,所以f(x)的单调递增区间为(0,),单调递减区间为(,+∞).(2)由于a≤1,所以ln(2x+a)≤ln(2x+1),所以f(x)≤ln(2x+1)-e2x-1,令g(x)=ln(2x+1)-2x(x>-),则g′(x)=,所以,当-<x<0时,g′(x)>0,当x>0时,g′(x)<0,所以g(x)≤g(0)=0,即:ln(2x+1)≤2x令h(x)=e2x-1-2x,则h′(x)=2(e2x-1-1),所以,当x>时,h′(x)>0,当-<<时,h′(x)<0,所以h(x)≥h(),即:e2x-1≥2x.所以,对任意x>,ln(2x+1)-e2x-1<0,因此,当a≤1时,对任意x>-,ln(2x+1)-e2x-1<0,所以x的取值范围为(-,+∞)。
频率分布直方图作频率分布直方图的方法为:(1)把横轴分成若干段,每一线段对应一个组的组距;(2)以此线段为底作矩形,它的高等于该组的组距频率,这样得出一系列的矩形;(3)每个矩形的面积恰好是该组上的频率.频率折线图:如果将频率分布直方图中各相邻的矩形的上底边的中点顺次连接起,就得到一条折线,称这条折线为本组数据的频率折线图.作茎叶图的方法是:将所有两位数的十位数字作为“茎”,个位数字作为“叶”,茎相同者共用一个茎,茎按从小到大的顺序从上向下列出,共茎的叶一般按从大到小(或从小到大)的顺序同行列出.知识点1:利用频率分布直方图分析总体分布例题1: 2000辆汽车通过某一段公路时的时速的频率分布直方图如右图所示,时速在[50,60)的汽车大约有 A .30辆 B .60辆 C .300辆 D .600辆变式:某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是 [96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是A.90B.75C. 60D.45变式:某初一年级有500名同学,将他们的身高(单位:cm )数据绘制成频率分布直方图(如图),若要从身高在[)120,130,[)130,140,[]140,150三组内的学生中,用分层抽样的方法选取30人参加一项活动,则从身高在[)130,140内的学生中选取的人数为 .知识点2:用样本分估计总体例题2某市2010年4月1日—4月30日对空气污染指数的监测数据如下(主要污染物为可吸入颗粒物):61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,77,86,81,83,82,82,64,79,86,85,75,71,49,45,96 98 100 102 104 106 0.1500.125 0.1000.0750.050 克 频率/组距100 110 120130 140 150 身高频率|组距0.0050.0100.020a0.035(Ⅰ) 完成频率分布表;(Ⅱ)作出频率分布直方图;(Ⅲ)根据国家标准,污染指数在0~50之间时,空气质量为优:在51~100之间时,为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染。
四川省成都市第七中学2024-2025学年高二上学期十月阶段测试数学试题一、单选题1.已知点((,A B ,若向量AB u u u r是直线l 的方向向量,则直线l 的倾斜角为( ) A .30o B .60o C .120o D .150o 2.方程2222x y x y a +-+=表示圆,则实数a 的取值范围是( )A .[)2,+∞B .()2,+∞C .[)2,-+∞D .()2,-+∞3.已知向量()()1,21,0,2,,a t t b t t =--=r r ,则b a -r r 的最小值为( )ABCD4.已知直线()1111111:0,,,0l A x B y C A B C ++=≠与直线()2222222:0,,,0l A x B y C A B C ++=≠,则直线12,l l 关于y 轴对称的充要条件是( )A .1122BC B C = B .1122A B A B -= C .111222A B C A B C -=≠ D .111222A B C A B C -== 5.在空间直角坐标系中,点()()()1,2,1,2,2,1,0,0,2A B C --,向量a r 是平面ABC 的法向量,则向量a r 的坐标可以是( )A .()8,5,6B .()8,6,5C .()6,5,8D .()5,8,6 6.已知平面上两点()()4,1,0,4,A B M 是直线310x y --=上一动点,则MA MB -的最大值为( )A .52 BC.D .57.在长方体1111ABCD A B C D -中,13,2,3AB BC AA ===,点M 满足()11AM AB AC λλ=+-u u u u r u u u r u u u u r ,()λ∈R ,点N 满足()()11,AN AC AD μμμ=+-∈R u u u r u u u r u u u u r ,则向量MN u u u u r 模的最小值为( ) ABCD8.平面内四个点()()()()12340,3,2,0,4,1,6,4M M M M 分布在直线:0l Ax By C ++=的两侧,且两侧的点到直线l 的距离之和相等,则直线l 过定点( )A .()2,3B .()3,2C .()2,3--D .()3,2--二、多选题9.记空间向量,,OA a OB b OC c ===u u u r u u u r u u u r r r r ,向量,,a b c r r r 均为单位向量且两两夹角为60o .则下列命题中,正确的是( )A .向量,,a b b c a c +++r r r r r r 不能作为空间向量的基底B .向量a b c ++r r r 是平面ABC 的法向量C .向量171362OD a b c =+-u u u r r r r ,则D 点在ABC V 内D .向量c r 在向量a b +r r 10.已知直线:sin cos 1l x y αα-=,其中[)0,2πα∈.有以下命题正确的有( )A .直线l 的倾斜角为αB .若(),P x y 是直线l 上的任意一点,则221x y +≥C.当π,π2α⎛⎫∈ ⎪⎝⎭时,直线l 与两坐标轴的截距之和的最小值为D .集合{}PP l ∈∣,当α变化时,该集合在坐标平面内的补集构成的图形面积为π 11.在平面直角坐标系中,点A 关于直线y x =的对称点为A ',向量2||OA OA 'u u u r u u u r 对应的点叫做点A 的仿射点,在下列选项中,对点A 的仿射点的描述,正确的是( )A .若点A 在圆221x y +=上,则点A 到仿射点的距离的最大值为2B .点A 的仿射点的仿射点是AC .若点A 的轨迹是一条不过原点的直线,则其仿射点的轨迹是圆D .若点A 的轨迹是圆,则其仿射点的轨迹是一条直线三、填空题12.在空间直角坐标系Oxyz 中,已知点()()2,0,2,1,2,4A B ,则直线AB 与坐标平面Oxy 的交点坐标为.13.已知直线12:220,:220l x y l x y -+=--=,若直线1l 与2l 关于直线l 对称,则直线l 的方程为.14.已知棱长为2的正四面体ABCD ,动点P 是正四面体ABCD 内切球上一动点,则()()PA PB PC PD +⋅+u u u r u u u r u u u r u u u r 的值等于.四、解答题15.某保险公司在2023年度给年龄在20~70岁的民众提供某种疾病的医疗保障,设计了一款针对该疾病的保险,现从10000名参保人员中随机抽取100名进行分析,这100个样本按年龄段[)[)[)[)[]20,30,30,40,40,50,50,60,60,70分成了五组,其频率分布直方图如下图所示,每人每年所交纳的保费与参保年龄如下表格所示.(保费:元)据统计,该公司每年为该项保险支出的各种费用为一百万元.(1)用样本的频率分布估计总体的概率分布,判断该公司本年度是亏本还是盈利?(2)经调查,年龄在[)30,50之间的中年人对该疾病的防范意识还比较弱,为加强宣传,按分层抽样的方法从年龄在[)30,40和 40,50 的中年人中选取6人进行教育宣讲,再从选取的6人中随机选取2人,被选中的2人免一年的保险费,求被免去的保费超过150元的概率. 16.已知ABC V 的顶点()5,1A ,边AB 上的中线CM 所在直线方程为250x y --=,边AC 上的高BH 所在直线方程为250x y --=.(1)求顶点,B C 的坐标;(2)求过ABC V 三个顶点的圆的方程,并求出该圆的圆心和半径. 17.已知点()3,1M ,直线()1:2140l ax a y -++=,()a ∈R ,2:210l x y ++=,3:20l x y --=.(1)若这三条直线不能围成三角形,求实数a 的值;(2)点M 关于直线1l 的对称点为N ,求OM ON ⋅u u u u r u u u r 的取值范围.18.如图,在三棱柱111ABC A B C -中,1AA ⊥平面1,90,2ABC ABC BA AA ∠==o ,D 是棱AC 的中点,E 在棱1BB 上,且1AE AC ⊥.(1)证明:BD ∥平面1AEC ;(2)若点1C 到平面11ABB A①求直线BD 到平面1AEC 的距离;②求平面1AEC 与平面11ABB A 的夹角.19.在棱长为1的正方体1111ABCD A B C D -中,点,E F 分别是棱11,CC AA 的中点,点P 是正方形ABCD 内一动点(包括正方形ABCD 边界).(1)当1A PF ∠取得最大值时,求点P 在正方形ABCD 内轨迹的长度;(2)在(1)的条件下,求向量BP u u u r 在向量1BD u u u u r 上投影的取值范围;(3)当1A PE 取得最大值时,求线段AP 的长度.。