当前位置:文档之家› 实时仿真系统介绍

实时仿真系统介绍

实时仿真系统介绍
实时仿真系统介绍

ADPSS-LAB

电力电子、电力系统实时仿真方案

中国电力科学研究院

2012年10月

目录

1 系统综述- 0 -

2 系统组成- 0 -

3 电力电子、电力系统实时仿真存在的问题- 1 -

4 解决方法- 2 -

5 ADPSS-LAB实时仿真系统的功能- 7 -

电力电子系统实时仿真方案

1 系统综述

实时仿真是研究电力电子、电力系统复杂的工作过程、优化系统与运行的重要手段。电力电子、电力系统实时仿真经历了从第一代模拟分析系统,到第二代模拟/数字混合仿真系统,再到第三代数字实时仿真系统的发展过程。ADPSS-LAB正是第三代数字实时仿真系统的代表产品。

ADPSS-LAB是一种基于并行计算技术、采用模块化设计的电力电子、电力系统实时仿真系统。它既可以在普通PC机上进行离线仿真,也可通过并行计算机与实际的电力电子器件联接而进行实时在线仿真。与前两代仿真系统相比,ADPSS-LAB具有以下优势:1)既可以对电力电子、电力系统机电和电磁暂态分别进行实时仿真,同时也可以对机电和电磁暂态混合系统进行实时仿真。

2)仿真精度高;ADPSS-LAB在实时仿真过程中采用32位双精度浮点数运算,其仿真的精度与公认的离线分析软件MATLAB的仿真精度相当。

3)良好的升级和扩充性;ADPSS-LAB由于直接采用商用的基于PC Cluster的连接方式,当仿真的系统规模增大时,只需增加CPU数目和增大内存容量即可,从系统的升级和扩展灵活性等方面有很好的发展前景。

2 系统组成

软件部分:

实时操作系统:QNX

建模软件:MATLAB/simulink,SimPowerSystem

电力电子、电力系统实时仿真包

电力电子模型库

硬件部分:

并行处理系统(12-core INTEL CPU)

I/O接口模块

信号调理模块

3 电力电子、电力系统实时仿真存在的问题

1)建模的问题

仿真系统能够提供友好的图形用户界面,丰富的电力电子、电力系统元件库且模型精度满足仿真要求,同时还要允许用户方便的添加自己的模型。

2)仿真的实时性问题

电力电子、电力系统往往在一个小范围内包含了十几个到几十个器件,相应的模型求解过程中包含了大量的矩阵计算(如:矩阵相乘,矩阵求逆等运算),如此大的计算量无法在给定的一个几十个微秒的仿真步长内由一个CPU结算出结果。因此,为了实现实时仿真的目标,必须将大的电力电子系统解耦成几个小的子系统,每个子系统分别运行在不同的CPU上,达到降低每个CPU的计算量,实现整个系统实时仿真的目的。

3)实时PWM信号的捕捉和产生问题

由于电力电子、电力系统中大量的采用高频电力电子器件,由此给实时仿真带来许多前所未有的问题。比如:如何准确的捕捉PWM信号?如何准确的产生高频PWM信号?如何设计合理的控制策略实现误差补偿等问题。

4)系统的升级和扩展问题

整个系统要具有良好的维护和升级扩展性,且维护和升级成本低廉。系统应采用COTS货架式产品和通用的总线标准,用户对设备提供商的依赖度低,便于用户后续的升级和扩展要求。

4 解决方法

针对以上问题,我们分别采用以下的方法来解决。

1)建模的问题

模型开发工具采用MATLAB/Simulink和SimPowerSystem软件包。这两个软件包一方面提供了友好的图形用户界面,用户只需通过鼠标操作即可完成整个建模工作;另一方面两个软件包提供了丰富的电力电子、电力元件模型库,用户可以方便的利用这些模型搭建出各种复杂结构的电力电子、电力系统模型。另外,用户还可以将C代码编写的模型集成到仿真系统中。

ADPSS-LAB还提供了专门针对实时仿真的电力电子、电力模型库,做为对SimPowerSystem元件库的补充。当安装好ADPSS-LAB 软件后,这些模型库被自动的添加到Simulink软件中。ADPSS-LAB 提供的模型库包括:

带时间戳的整流电路模型;

带时间戳的逆变器模型;

电力电子元器件模型库;

实时逻辑处理模型库;

事件产生信号模型库等。

2)仿真的实时性问题

对电力电子、电力系统的实时仿真问题,我们分别从软件和硬件两方面入手解决该问题。

软件方面:通过将一个大的电力电子、电力系统模型分解成多个子系统,不同的子系统算由不同的CPU单元完成计算,从而大大减小了每个CPU单元的计算任务,缩短了整个系统的计算时间,提高了实时性;不同的CPU单元间在每个步长内根据信号传递关系交换数据。

硬件方面:通过采用并行处理系统,为实时仿真提供相应的硬件平台。考虑到电力电子、电力系统的具体情况:一个区域通常大约有十几个或几十个电力电子、电力器件,所以推荐采用包含12个CPU core的并行处理系统,整个系统的实时仿真的步长最小可以达到20us左右。

并行计算机通过FPGA卡控制IO接口机。IO接口机本身带有AD,DA,DIO等IO模块,通过这些IO模块与实际设备相连。IO模块的性能指标如下:

?AD, 16-bits, 500kS/s, +- 10V 16通道;

?DA, 16-bits, 500kS/s, +-10V 16通道;

?普通DO,转换速率5MHz,光电隔离, 5 to 28V, 32通道;

?普通DI,转换速率5MHz,光电隔离, 5 to 28V, 32通道;

?带时间戳TSDO, 转换速率5MHz,光电隔离, 5 to 28V, 32通道;

?带时间戳TSDI, 转换速率5MHz,光电隔离, 5 to 28V, 32通道;

带时间戳的DIO主要用于PWM信号或事件信号的捕获和产生等功能。

图:实时仿真的硬件平台

3)实时PWM信号的捕捉和产生问题

电力电子、电力系统实时仿真的核心是如何精确的模拟高频开关器件的工作特性,以及这些器件工作时对电网的影响的问题。我们采取ADPSS-LAB提供的软件包来解决这些问题。

(一)RTE blockset:PWM信号处理工具包

该软件包主要用来处理PWM开关信号,其主要功能有两个:

实时产生开关事件(如:PWM信号,编码信号等)

与FPGA卡配合,实时捕捉采样间隔之间的触发脉冲,记录脉冲产生的时间以及逻辑状态的改变情况,然后在

模型的计算过程中进行补偿,达到提高实时仿真精度的

目的。

PWM信号处理工具包针对电力电子元件提供了许多专业处理模块。软件安装时会自动在MATLAB/Simulink目录下添加所有的处理模块,这些模块包括:用于实时仿真的逆变器模型,整流器模型,实时逻辑处理模型库,产生事件信号模型库等。PWM信号处理工具包的工作原理如下图所示。

当需要产生PWM信号时,利用工具包提供的模块可以产生出包含时间和状态的PWM信号,特别是介于两个相邻采样间隔之间的PWM信号。产生出来的PWM信号通过FPGA卡上的TSDO模块输出。

当需要从外部捕获PWM信号时,PWM信号通过FPGA 卡上的TSDI模块输入。FPGA卡可以做到很高的采样频率(如100MHz),FPGA卡作为事件发生记录仪,在仿真运行过程中,实时捕获输入的PWM信号,记录PWM信号产生的时间以及逻辑状态的改变情况,然后在模型的计算过程中进行补偿,达到提高实时仿真精度的目的,其工作原理如下图所示。

4)系统的升级和扩展问题

传统的电力系统实时仿真装置是由原厂商提供非标化的软件、

硬件和运行平台。用户购买后,后续的系统维护、升级完全依赖原厂商。实时仿真装置超过一年的质保期后,每年都需要向原厂商支付高额的费用购买系统的技术支持和软件升级。用户在使用中如果需要原厂商增加额外的功能或开放系统的部分接口,都需要与原厂商进行协商,付出高额的时间和费用,用户完全处于被动服从的地位。

ADPSS-LAB系统采用通用的多核服务器结构,支持标准的PCI或cPCI总线结构,用户可以灵活的对系统进行升级和扩展。当实时仿真的电力电子系统规模增大时,只需增加多核服务器或IO接口机的数目即可实现扩大系统仿真规模的目的。

5 ADPSS-LAB实时仿真系统的功能

1)电力电子、电力系统电磁暂态仿真

ADPSS-LAB可完整的模拟包括:电机、传输网络以及控制系统的电力电子、电力系统,可计算电力电子、电力系统的电磁暂态问题。可模拟系统的不同运行和干扰状况,包括各种短路故障等。

2)电力电子、电力系统闭环实时测试

ADPSS-LAB系统通过高速IO接口机同外部设备相连,可进行系统的实时闭环测试。ADPSS-LAB对电力电子、电力系统进行实时闭环测试的原理如下图所示。

功放

D/A 卡

待测装置

隔离缓冲电路

隔离缓冲电路AppSim 系统

A/D 卡、I/O 卡I/O 卡

借助该功能,ADPSS-LAB 可以方便地实现评估电力系统的功能以及测试电力电子系统性能的目的。

3) 控制系统仿真

使用ADPSS-LAB 系统可以方便的创建各种开环和闭环控制器,进行控制系统的仿真研究。所有取自电力电子器件和电机的变量都可作为控制器的输入;另外,其它控制器的信号量也可作为控制器的输入。同时,这些控制器的输出以电压、电流、阻抗和功率的形式作用于系统,所有控制模块的输入信号量及输出信号量都可绘制出来。

总之,与传统的电力实时仿真器相比,ADPSS-LAB 系统提供了实时仿真的准确性、并行处理的强大计算能力以及离线仿真的灵活性,比传统的模拟仿真器更加灵活、简单、廉价,满足电力电子、电力系统实时仿真的要求。

动力学主要仿真软件

车辆动力学主要仿真软件 I960年,美国通用汽车公司研制了动力学软件DYNA主要解决多自由度 无约束的机械系统的动力学问题,进行车辆的“质量一弹簧一阻尼”模型分析。作为第一代计算机辅助设计系统的代表,对于解决具有约束的机械系统的动力学问题,工作量依然巨大,而且没有提供求解静力学和运动学问题的简便形式。 随着多体动力学的谨生和发展,机械系统运动学和动力学软件同时得到了迅速的发展。1973年,美国密西根大学的N.Orlandeo和,研制的ADAM 软件,能够简单分析二维和三维、开环或闭环机构的运动学、动力学问题,侧重于解决复杂系统的动力学问题,并应用GEAR刚性积分算法,采用稀疏矩阵技术提高计算效率° 1977年,美国Iowa大学在,研究了广义坐标分类、奇异值分解等算法并编制了DADS软件,能够顺利解决柔性体、反馈元件的空间机构运动学和动力学问题。随后,人们在机械系统动力学、运动学的分析软件中加入了一些功能模块,使其可以包含柔性体、控制器等特殊元件的机械系统。 德国航天局DLF早在20世纪70年代,Willi Kort tm教授领导的团队就开始从事MBS软件的开发,先后使用的MBS软件有Fadyna (1977)、MEDYNA1984),以及最终享誉业界的SIMPAC( 1990).随着计算机硬件和数值积分技术的迅速发展,以及欧洲航空航天事业需求的增长,DLR决定停止开发基于频域求解技术的MED YN软件,并致力于基于时域数值积分技术的发展。1985年由DLR开发的相对坐标系递归算法的SIMPACI软件问世,并很快应用到欧洲航空航天工业,掀起了多体动力学领域的一次算法革命。 同时,DLR首次在SIMPAC嗽件中将多刚体动力学和有限元分析技术结合起来,开创了多体系统动力学由多刚体向刚柔混合系统的发展。另外,由于SIMPACI算法技术的优势,成功地将控制系统和多体计算技术结合起来,发

实时仿真系统介绍

ADPSS-LAB 电力电子、电力系统实时仿真方案 中国电力科学研究院 2012年10月 目录 1 系统综述- 0 - 2 系统组成- 0 - 3 电力电子、电力系统实时仿真存在的问题- 1 - 4 解决方法- 2 - 5 ADPSS-LAB实时仿真系统的功能- 7 -

电力电子系统实时仿真方案 1 系统综述 实时仿真是研究电力电子、电力系统复杂的工作过程、优化系统与运行的重要手段。电力电子、电力系统实时仿真经历了从第一代模拟分析系统,到第二代模拟/数字混合仿真系统,再到第三代数字实时仿真系统的发展过程。ADPSS-LAB正是第三代数字实时仿真系统的代表产品。 ADPSS-LAB是一种基于并行计算技术、采用模块化设计的电力电子、电力系统实时仿真系统。它既可以在普通PC机上进行离线仿真,也可通过并行计算机与实际的电力电子器件联接而进行实时在线仿真。与前两代仿真系统相比,ADPSS-LAB具有以下优势:1)既可以对电力电子、电力系统机电和电磁暂态分别进行实时仿真,同时也可以对机电和电磁暂态混合系统进行实时仿真。 2)仿真精度高;ADPSS-LAB在实时仿真过程中采用32位双精度浮点数运算,其仿真的精度与公认的离线分析软件MATLAB的仿真精度相当。 3)良好的升级和扩充性;ADPSS-LAB由于直接采用商用的基于PC Cluster的连接方式,当仿真的系统规模增大时,只需增加CPU数目和增大内存容量即可,从系统的升级和扩展灵活性等方面有很好的发展前景。 2 系统组成 软件部分:

实时操作系统:QNX 建模软件:MATLAB/simulink,SimPowerSystem 电力电子、电力系统实时仿真包 电力电子模型库 硬件部分: 并行处理系统(12-core INTEL CPU) I/O接口模块 信号调理模块 3 电力电子、电力系统实时仿真存在的问题 1)建模的问题 仿真系统能够提供友好的图形用户界面,丰富的电力电子、电力系统元件库且模型精度满足仿真要求,同时还要允许用户方便的添加自己的模型。 2)仿真的实时性问题 电力电子、电力系统往往在一个小范围内包含了十几个到几十个器件,相应的模型求解过程中包含了大量的矩阵计算(如:矩阵相乘,矩阵求逆等运算),如此大的计算量无法在给定的一个几十个微秒的仿真步长内由一个CPU结算出结果。因此,为了实现实时仿真的目标,必须将大的电力电子系统解耦成几个小的子系统,每个子系统分别运行在不同的CPU上,达到降低每个CPU的计算量,实现整个系统实时仿真的目的。 3)实时PWM信号的捕捉和产生问题

系统仿真

系统仿真 1系统仿真概述 1.1定义及实质 所谓系统仿真(system simulation),就是根据系统分析的目的,在分析系统各要素性质及其相互关系的基础上,建立能描述系统结构或行为过程的、且具有一定逻辑关系或数量关系的仿真模型,据此进行试验或定量分析,以获得正确决策所需的各种信息。 系统仿真的实质是 ①它是一种对系统问题求数值解的计算技术。尤其当系统无法通过建立数学模型求解时,仿真技术能有效地来处理。 ②仿真是一种人为的试验手段。它和现实系统实验的差别在于,仿真实验不是依据实际环境,而是作为实际系统映象的系统模型以及相应的“人造”环境下进行的。这是仿真的主要功能。 ③仿真可以比较真实地描述系统的运行、演变及其发展过程。 1.2系统仿真的分类 根据仿真所采用的模型划分,可将仿真分为数学仿真和物理仿真两大类。 物理仿真亦称为实物仿真,它是在系统生产出样机后,将系统实物全部或部分的引入回路,由于物理仿真能将系统的实际参数、数学仿真中难以考虑到的非线性因素和干扰因素引入仿真回路,因此物理仿真更接近系统的实际情况,通过仿真可以检验实物系统工作的可靠性,可以准确地调整系统元部件的参数。 数学仿真就是将数学模型编排成模拟计算机的排题图或数值计算机的程序。这一过程是将原始数学模型转换成仿真模型,通过对计算机模型的运行达到对原始系统研究的目的,数学仿真在系统设计阶段和分析阶段是十分重要的,通过数学仿真可以检验理论设计的正确性。 1.3系统仿真的作用 ①仿真的过程也是实验的过程,而且还是系统地收集和积累信息的过程。尤其是对一些复杂的随机问题,应用仿真技术是提供所需信息的唯一令人满意的方法。 ②对一些难以建立物理模型和数学模型的对象系统,可通过仿真模型来顺利地解决预测、分析和评价等系统问题。 ③通过系统仿真,可以把一个复杂系统降阶成若干子系统以便于分析。 ④通过系统仿真,能启发新的思想或产生新的策略,还能暴露出原系统中隐藏着的一些问题,以便及时解决。 1.4适合于系统仿真的问题 ①难以用数学公式表示的系统,或者没有建立和求解数学模型的有效方法。 ②虽然可以用解析的方法解决问题,但数学的分析与计算过于复杂,这时计算机仿真可能提供简单可行的求解方法。 ③希望能在较短的时间内观察到系统发展的全过程,以估计某些参数对系统行为的影响。 ④难以在实际环境中进行实验和观察时,计算机仿真是唯一可行的方法,例如太空飞行的研究。 ⑤需要对系统或过程进行长期运行比较,从大量方案中寻找最优方案。

dSPACE实时仿真系统介绍

dSPACE实时仿真系统介绍 dSPACE简介 dSPACE实时仿真系统是由德国dSPACE公司开发的一套基于MATLAB/Simulink的控制系统开发及半实物仿真的软硬件工作平台,实现了和MATLAB/Simulink/RTW的完全无缝连接。dSPACE实时系统拥有实时性强,可靠性高,扩充性好等优点。dSPACE硬件系统中的处理器具有高速的计算能力,并配备了丰富的I/O支持,用户可以根据需要进行组合;软件环境的功能强大且使用方便,包括实现代码自动生成/下载和试验/调试的整套工具。dSPACE软硬件目前已经成为进行快速控制原型验证和半实物仿真的首选实时平台。 实现快速控制原型和硬件在回路仿真 RCP(Rapid Control Prototyping)—快速控制原型 要实现快速控制原型,必须有集成良好便于使用的建模、设计、离线仿真、实时开发及测试工具。dSPACE 实时系统允许反复修改模型设计北京汉阳,进行离线及实时仿真。这样,就可以将错误及不当之处消除于设计初期,使设计修改费用减至最小。 使用RCP 技术,可以在 费用和性能之间进行折衷;在最终产品硬件投产之前,仔细研究诸如离散化及采样频率等的影响、算法的性能等问题。通过将快速原型硬件系统与所要控制的实际设备相连,可以反复研究使用不同传感器及驱动机构时系统的性能特征。而且,还可以利用旁路(BYPASS )技术将原型电控单元(ECU :Electronic Control Unit )或控制器集成于开发过程中,从而逐步完成从原型控制器到产品型控制器的顺利转换。RCP 的关键是代码的自动生成和下载,只需鼠标轻轻一点,就可以完成设计的修改。 HILS(Hardware-in-the-Loop Simulation)—半实物仿真 当新型控制系统设计结束,并已制成产品型控制器,需要在闭环下对其进行详细测试。但由于种种原因如:极限测试、失效测试,或在真实环境中测试费用较昂贵等nc.qoos.ipi,使测试难以进行,例如:在积雪覆盖的路面上进行汽车防抱死装置(ABS )控制器的小摩擦测试就只能在冬季有雪的天气进行;有时为了缩短开发周期,甚至希望在控制器运行环境不存在的情况下(如:控制对象与控制器并行开发),对其进行测试。dSPACE 实时仿真系统的HIL 仿真将助您解决这一问题。 dSPACE开发流程

电力系统仿真软件介绍

电力系统仿真软件 电力系统仿真软件简介 一、PSAPAC 简介: 由美国EPRI开发,是一个全面分析电力系统静态和动态性能的软件工具。 功能:DYNRED(Dynamic Reduction Program):网络化简与系统的动态等值,保留需要的节点。 LOADSYN(Load Synthesis Program):模拟静态负荷模型和动态负荷模型。 IPFLOW(Interactive Power Flow Program):采用快速分解法和牛顿-拉夫逊法相结合的潮流分析方法,由电压稳态分析工具和不同负荷、事故及发电调度的潮流条件构成。 TLIM(Transfer Limit Program):快速计算电力潮流和各种负荷、事故及发电调度的输电线的传输极限。 DIRECT:直接法稳定分析软件弥补了传统时域仿真工作量大、费时的缺陷,并且提供了计算稳定裕度的方法,增强了时域仿真的能力。 LTSP(Long Term Stability Program):LTSP是时域仿真程序,用来模拟大型电力系统受到扰动后的长期动态过程。为了保证仿真的精确性,提供了详细的模型和方法。 VSTAB(Voltage Stability Program):该程序用来评价大型复杂电力系统的电压稳定性,给出接近于电压不稳定的信息和不稳定机理。为了估计电压不稳定状态,使用了一种增强的潮流程序,提供了一种接近不稳定的模式分析方法。 ETMSP(Extended Transient midterm Stability Program):EPRI为分析大型电力系统暂态和中期稳定性而开发的一种时域仿真程序。为了满足大型电力系统的仿真,程序采用了稀疏技术,解网络方程时为得到最合适的排序采用了网络拓扑关系并采用了显式积分和隐式积分等数值积分法。 SSSP(Small-signal Stability Program):该程序有助于局部电厂模式振荡和站间模式振荡的分析,由多区域小信号稳定程序(MASS)及大型系统特征值分析程序(PEALS)两个子程序组成。MASS程序采用了QR变换法计算矩阵的所有特征值,由于系统的所有模式都计算,它对控制的设计和协调是理想的工具;PEALS使用了两种技术:AESOPS算法和改进Arnoldi 方法,这两种算法高效、可靠,而且在满足大型复杂电力系统的小信号稳定性分析的要求上互为补充。 二、EMTP/ATP 简介: EMTP是加拿大H.W.Dommel教授首创的电磁暂态分析软件,它具有分析功能多、元件模型全和运算结果精确等优点,对于电网的稳态和暂态都可做仿真分析,它的典型应用是预测电力系统在某个扰动(如开关投切或故障)之后感兴趣的变量随时间变化的规律,将EMTP 的稳态分析和暂态分析相结合,可以作为电力系统谐波分析的有力工具。 ATP(The alternative Transients Program)是EMTP的免费独立版本,是目前世界上电磁暂态分析程序最广泛使用的一个版本, 它可以模拟复杂网络和任意结构的控制系统,数学模型广泛,除用于暂态计算,还有许多其它重要的特性。ATP程序正式诞生于1984年,由Drs.

系统建模与仿真

系统建模仿真技术的历史现状和发展趋势分析 工程133 胡浩3130212026 【摘要】:经过半个多世纪的发展,仿真技术已经成为对人类社会发展进步具有重要影响的一门综合性技术学科。本文对建模与仿真技术发展趋势作了较全面分析。仿真建模方法更加丰富,更加需要仿真模型具有互操作性和可重用性,仿真建模VVA与可信度评估成为仿真建模发展的重要支柱;仿真体系结构逐渐形成标准,仿真系统层次化、网络化已成为现实,仿真网格将是下一个重要发展方向;仿真应用领域 更加丰富,向复杂系统科学领域发展,并将更加贴近人们的生活。 工程系统的仿真,起源于自动控制技术领域。从最初的简单电子、机械系统,逐步发展到今天涵盖机、电、液、热、气、电、磁等各个专业领域,并且在控制器和执行机构两个方向上飞速发展。 控制器的仿真软件,在研究控制策略、控制算法、控制系统的品质方面提供了强大的支持。随着执行机构技术的发展,机、电、液、热、气、磁等驱动技术的进步,以高可靠性、高精度、高反应速度和稳定性为代表的先进特征,将工程系统的执行品质提升到了前所未有的水平。相对控制器本身的发展,凭借新的加工制造技术的支持,执行机构技术的发展更加富于创新和挑战,而对于设计、制造和维护高性能执行机构,以及构建一个包括控制器和执行机构的完整的自动化系统也提出了更高的要求。 AMESIM软件正是能够提供平台级仿真技术的工具。从根据用户需求,提供液压、机械、气动等设计分析到复杂系统的全系统分析,

到引领协同仿真技术的发展方向,AMESIM的发展轨迹和方向代表了工程系统仿真技术的发展历程和趋势。 一、系统仿真技术发展的现状 工程系统仿真作为虚拟设计技术的一部分,与控制仿真、视景仿真、结构和流体计算仿真、多物理场以及虚拟布置和装配维修等技术一起,在贯穿产品的设计、制造和运行维护改进乃至退役的全寿命周期技术活动中,发挥着重要的作用,同时也在满足越来越高和越来越复杂的要求。因此,工程系统仿真技术也就迅速地发展到了协同仿真阶段。其主要特征表现为: 1、控制器和被控对象的联合仿真:MATLAB+AMESIM,可以覆盖整个自动控制系统的全部要求。 2、被控对象的多学科、跨专业的联合仿真:AMESIM+机构动力学+CFD+THERMAL+电磁分析 3、实时仿真技术 实时仿真技术是由仿真软件与仿真机等半实物仿真系统联合实现的,通过物理系统的实时模型来测试成型或者硬件控制器。 4、集成进设计平台 现代研发制造单位,尤其是设计研发和制造一体化的大型单位,引进PDM/PLM系统已经成为信息化建设的潮流。在复杂的数据管理流程中,系统仿真作为CAE工作的一部分,被要求嵌入流程,与上下游工具配合。

超高速电梯系统动态仿真分析

2015年 6月 图 学 学 报 June 2015 第36卷 第3期 JOURNAL OF GRAPHICS V ol.36 No.3 基金项目:湖南省职业教育“十二五”省级重点建设项目(湘教通[2014]176号) 作者简介:马幸福(1983-),男,湖南邵阳人,讲师,工程师,硕士。主要研究方向为机械系统动力学、工程图学。E-mail :maxingfu3618@https://www.doczj.com/doc/2512231065.html, 超高速电梯系统动态仿真分析 马幸福, 陈炳炎 (湖南电气职业技术学院机械工程系,湖南 湘潭 411101) 摘 要:电梯的振动是影响舒适性的最主要因素,针对4.0 m/s 超高速电梯系统,以轿厢-轿架-导轨-钢丝绳耦合系统为研究对象,建立垂直系统振动动力学模型,结合机械系统动力学自动分析虚拟样机技术,通过建立钢丝绳动力学模型、添加导轨与导靴之间的接触力、水平振动激励及垂直振动激励,建立电梯整机虚拟样机模型,设定约束与驱动,进行动态特性仿真分析。仿真结果表明,电梯垂直振动加速度、水平振动加速度等性能指标满足要求,为超高速电梯的开发提供了设计依据。 关 键 词:虚拟样机;超高速电梯;振动加速度;动态仿真 中图分类号:TP 391.9 文献标识码:A 文 章 编 号:2095-302X(2015)03-0397-05 Dynamic Simulation of Ultra-High-Speed Elevator System Ma Xingfu, Chen Bingyan (Mechanical Department, Hunan Electrical College of Technology, Xiangtan Hunan 411101, China) Abstract: The vibration is the main force affecting elevator comfort. In order to study the dynamic characteristics of the 4.0 m/s ultra-high-speed elevator system, the lift cabin-car frame-guide rail-wire rope coupled system was taken as the study object. First, the vibration dynamic model of vertical system was built. Then, combined with automatic dynamic analysis of mechanical systems virtual prototyping technology, the elevator virtual prototype model was built by establishing rope s dynamics model, adding a contact force between the guide rail and the guide shoe, adding horizontal vibration excitation and vertical vibration excitation. Dynamic characteristic simulation was carried out for this model under setting certain constraints and drivers. The results showed that those performance indicators such as vertical vibration acceleration and horizontal vibration acceleration were meeting the requirements and the simulation results also provided design basis for the development of ultra-high-speed elevators. Keywords: virtual prototype; ultra-high-speed elevator; vibration acceleration; dynamic simulation 随着社会的飞速发展,高层建筑、超高层建筑 的不断涌现,带动电梯朝着高速、超高速方向发展。 目前电梯行业习惯将电梯运行速度≤2.5 m/s 称为 中低速电梯,运行速度在2.5~4.0 m/s 之间称为高速 电梯,运行速度≥4.0 m/s 称为超高速电梯。国外电 梯企业早已研制出运行速度超过10.0 m/s 的超高速 电梯,但是国内企业电梯产品运行速度一般低于 4.0 m/s ,电梯运行的舒适性、动态特性的技术难点一直成为制约国内高速电梯、超高速电梯研制的瓶颈[1-2]。 电梯的动态特性是超高速电梯研发的关键技术,电梯的动力学系统与控制系统、曳引系统、钢

实时仿真与HIL系统应用案例V4.0_130827

实时仿真与HIL系统应用案例 I.智能电网与新能源汽车

目录 案例1.某柔性直流输电示范工程控制保护装置测试 (1) 案例2.MMC柔性直流输电控制保护装置算法开发及测试 (2) 案例3三端MMC-HVDC柔性直流装置入网检测 (4) 案例4.五端MMC柔性直流输电全数字仿真及装置测试 (5) 案例5.基于半桥结构的统一潮流控制器UPFC硬件在环测试 (6) 案例6.风电并网系统RCP研究及HIL测试 (7) 案例7.双馈风机并网系统控制器硬件在环HIL测试 (8) 案例8.基于RT-LAB的光伏阵列模拟器 (9) 案例9.微电网功率硬件在环仿真(PHIL) (10) 案例10.微电网实时仿真模型开发及研究 (11) 案例11.锂离子电池储能并网控制器PCS硬件在环测试HIL (12) 案例12.密集节点变电站实时仿真 (13) 案例13.基于IEC61850的继电保护测试 (15) 案例14.基于实时仿真的广域监测、保护及控制WAMPAC测试 (17) 案例15.基于功率硬件在环(PHIL)配电网电能质量分析 (19) 案例16.基于实时仿真的配电网继电保护测试 (20) 案例17.有源电力滤波APF控制器算法设计 (21) 案例18.电力系统机网协调仿真分析及半实物测试 (22) 案例19.高压大功率变频器半实物仿真 (23) 案例20.永磁同步电机PMSM控制系统设计 (24) 案例21.永磁同步电机PMSM控制器虚拟测试平台 (25)

案例22.新能源汽车开关磁阻电机MCU硬件在环测试 (26) 案例23.基于JMAG高精度有限元分析的实时仿真 (27) 案例24.新能源汽车PMSM电机控制器HIL测试 (28) 案例25.新能源汽车多ECU硬件在环测试 (29) 案例26.新能源汽车电池控制系统BMS自动测试平台 (30) 案例27.高速动车组牵引传动系统实时仿真 (32) 案例28.大功率逆变电源半实物仿真 (33) 案例29.船舶电力推进及综合电力系统 (34)

基于matlab的Lorenz系统仿真研究

基于Matlab的Lorenz系统仿真研究

摘要:本文利用matlab这一数学工具对Lorenz系统进行了研究。首先使用matlab 分析求解Lorenz方程,利用matlab的绘图功能,直观地观察了Lorenz 混沌吸引子的三维图形,并简单观察了Lorenz混沌系统对初值的敏感性; 然后对Lorenz系统进行仿真,比较分析在不同参数下的Lorenz系统仿真结果;最后验证了通过添加反馈控制的方式,可以使Lorenz方程不稳定的平衡点成为稳定的平衡点。 关键词:Lorenz系统;matlab;混沌系统 1.引言 Lorenz方程是由美国著名的气象学家Lorenz在1963年为研究气候变化,通过对对流实验的研究,建立的三个确定性一阶非线性微分方程。这三个方程是混沌领域的经典方程,Lorenz系统也是第一个表现奇怪吸引子的连续动力系统,具有着举足轻重的作用。Lorenz方程的表达式如下: { dx dt =σ(y?x) dy dt =(μ?z)x?y dz dt =?bz+xy 其中,σ、μ、b为正实常数。 本文利用matlab这一数学工具,对Lorenz系统进行了研究,得到了仿真结果,加深了对Lorenz系统的认识。 2.matlab求解Lorenz方程并绘图 首先建立m文件“Lorenz.m”来定义Lorenz方程,固定σ=10,μ=30,b=8/3,程序如下所示: function dx=Lorenz(t,x) dx=[-10*(x(1)-x(2));30*x(1)-x(2)-x(1)*x(3);x(1)*x(2)-2.6667*x(3)]; end 然后利用ode45命令来求解Lorenz方程并绘制图形,初值取x=y=z=0.1。程序如下所示: >> clf >> x0=[0.1,0.1,0.1]; >> [t,x]=ode45('Lorenz',[0,100],x0); >> subplot(2,2,1) >> plot(x(:,1),x(:,3)) >> title('(a)') >> subplot(2,2,2)

几种常用电力系统仿真软件的比较分析

几种常用电力系统仿真软件的比较分析 电力系统仿真软件的分类较为复杂,按照不同标准可分为:实时与非实时,短时与长时间等不同种类,而各个仿真软件在功能上都具有综合性,只是侧重点有所不同,在报告的最后有各类仿真软件功能的比较,以下为较著名的仿真软件的介绍。 1 RTDS RTDS由加拿大RTDS公司出品,一个CPU模拟一个电力系统元器件,CPU间的通讯,采用并行-串行-并行的方式。RTDS具有仿真的实时性,主要用于电磁暂态仿真。目前RTDS应用规模最大的是韩国电力公司(KEPCO)的装置, 有26个RACK,可以模拟400多个三相结点。RTDS仿真的规模受到用户所购买设备(RACK)数的限制。这种开发模式不利于硬件的升级换代,与其它全数字实时仿真装置相比可扩展性较差。由于每个RACK的造价很高, 超过30万美元, 因此仿真规模一般不大。基于上述原因,RTDS目前主要用于继电保护试验和小系统实时仿真。 2 EMTDC/PSCAD EMTDC是一种世界各国广泛使用的电力系统仿真软件, PSCAD是其用户界面,一般直接将其称为PSCAD。使得用户能更方便地使用EMTDC进行电力系统分析,使电力系统复杂部分可视化成为可能。PSCAD/EMTDC基于dommel电磁暂态计算理论,适用于电力系统电磁暂态仿真。EMTDC(Electro Magnetic Transient in DC System)即

可以研究交直流电力系统问题,又能完成电力电子仿真及其非线性控制的多功能工具。

PSCAD由Manitoba HVDC research center开发。 3 PSASP PSASP由中国电力科学研究院开发。PSASP的功能主要有稳态分析、故障分析和机电暂态分析。稳态分析包括潮流分析、网损分析、最优潮流和无功优化、静态安全分析、谐波分析和静态等值等。 故障分析包括短路计算、复杂故障计算及继电保护整定计算。机电暂态分析包括暂态稳定计算、电压稳定计算、控制参数优化等。 4 ARENE 法国电力公司(EDF)开发的全数字仿真系统ARENE, 有实时仿真和非实时仿真版本。实时版本有: (1)RTP版本,硬件为HP公司基于HP-CONVE工作站的多CPU 并行处理计算机,该并行处理计算机的最大CPU数量已达32个,可以用于较大规模系统电磁暂态实时仿真; (2)URT版本,HP-Unix工作站,用于中小规模系统电磁暂态实时仿真; (3)PCRT版本,PC-Linux工作站,用于中小规模系统电磁暂态实时仿真。 ARENE实时仿真器可以进行如下物理装置测试:继电保护,自动装置,HVDC和FACTS控制器,可以用50微秒步长进行闭环电磁暂态实时仿真。ARENE不作机电暂态仿真。采用基于HP工作站的并行处理计算机,其软硬件扩展也受到计算机型号的制约。

系统仿真技术简介

何为仿真? 1定义 仿真技术是利用计算机并通过建立模型进行科学实验的一门多 学科综合性技术。它是它具有经济、可靠、实用、安全、可多次重 用的优点。 仿真是对现实系统的某一层次抽象属性的模仿。人们利用这样的模型进行试验,从中得到所需的信息,然后帮助人们对现实世界的某一层次的问题做出决策。仿真是一个相对概念,任何逼真的仿真都只能是对真实系统某些属性的逼近。仿真是有层次的,既要针对所欲处理的客观系统的问题,又要针对提出处理者的需求层次,否则很难评价一个仿真系统的优劣。 传统的仿真方法是一个迭代过程,即针对实际系统某一层次的特性(过程),抽象出一个模型,然后假设态势(输入),进行试验,由试验者判读输出结果和验证模型,根据判断的情况来修改模型和有关的参数。如此迭代地进行,直到认为这个模型已满足试验者对客观系统的某一层次的仿真目的为止。 模型对系统某一层次特性的抽象描述包括:系统的组成;各组成部分之间的静态、动态、逻辑关系;在某些输入条件下系统的 输出响应等。根据系统模型状态变量变化的特征,又可把系统模型分为:连续系统模型——状态变量是连续变化的;离散(事件)系统模型——状态变化在离散时间点(一般是不确定的)上发生 变化;混合型——上述两种的混合。

2发展历程 仿真是一种特别有效的研究手段。20世纪初仿真技术已得到应用。例如在实验室中建立水利模型,进行水利学方面的研究。 40~50年代航空、航天和原子能技术的发展推动了仿真技术的进步。60年代计算机技术的突飞猛进,为仿真技术提供了先进的工具,加速了仿真技术的发展。利用计算机实现对于系统的仿真研究不仅方便、灵活,而且也是经济的。因此计算机仿真在仿真技术中占有重 要地位。50年代初,连续系统的仿真研究绝大多数是在模拟计算机上进行的。50年代中期,人们开始利用数字计算机实现数字仿真。计算机仿真技术遂向模拟计算机仿真和数字计算机仿真两个方向发展。在模拟计算机仿真中增加逻辑控制和模拟存储功能之后,又出 现了混合模拟计算机仿真,以及把混合模拟计算机和数字计算机联 合在一起的混合计算机仿真。在发展仿真技术的过程中已研制出大 量仿真程序包和仿真语言。70年代后期,还研制成功专用的全数字并行仿真计算机。仿真技术来自于军事领域,但它不仅用于军事领域,在许多非军事领域也到了广泛的应用。例如:在军事领域中的 训练仿真;商业领域中的商业活动预测、决策、规划、评估;工业 领域中的工业系统规划、研制、评估及模拟训练;农业领域中的农 业系统规划、研制、评估,灾情预报、环境保护;在交通领域中的 驾驶模拟训练和交通管理中的应用;医学领域中的临床诊断及医用 图像识别等。 3主要仿真技术

HLA仿真系统的实时性研究

HLA仿真系统的实时性研究 高层体系结构(High Level Architecture,HLA)现已成为仿真领域的通用标准,但是在实际应用中,基于HLA的仿真系统往往无法满足实时性的要求。随着经济的发展,社会对于仿真系统的需求特别是对实时仿真系统的需求逐渐增多。另一方面,实时性的研究本质上是针对仿真系统运行效率的研究,相关技术进展必然对整个仿真领域的技术发展起到很好的推动作用。因此,对HLA仿真系统的实时性研究既有重要的理论价值,又有积极的现实意义,一直是仿真领域的研究热点。 本文首先对改进HLA系统实时性的方法进行了深入探讨,通过综合比较,将多联邦互连技术确定为本课题的主要研究方向。其后本文对多联邦互连技术进行深入分析,讨论了各种方案的技术难度和可行性,其中HLA桥实现灵活,技术难度适中,符合本课题的实际需求,被确定为主要研究内容。经综合评估,本文决定利用HLA桥连接各仿真系统,并行运算以提高系统实时性。在国内外,HLA桥的研究目标多为互连异构联邦,对于HLA桥对系统实时性的影响一般不做探讨。 针对这种现状,本文先后提出了基于运行支撑环境(Run Time Infrastructure, RTI)RTI的HLA桥架构方案和基于网关的HLA桥架构方案并加以实现。为了检验仿真系统在实时性方面的改进效果,本文围绕时间推进速率等常见的实时性指标加以测试,实验结果表明,基于网关的HLA桥在实时性方面的性能是非桥接系统的2倍以上,能够符合课题要求。为了更加直观地对比桥接系统和非桥接系统在实时性性能方面的差异,本文实现了一个多智能体仿真程序,并将该程序分别运行于桥接系统和非桥接系统,对比速度差异。实验结果表明,新系统的效率是旧有系统效率的2倍以上。

ECU快速原型开发与HiL实时仿真测试一体化解决方案

发动机ECU 快速原型开发及硬件在环测试一体化解决方案 版本:V1.0 日期:2011.12.10

目录 目录 (2) 1.概述 (3) 2.RCP-快速控制原型 (4) 2.1.D2P 128pin快速原型开发平台主要接口资源 (4) 2.2.D2P 128pin快速原型开发平台介绍 (4) 3.HiL实时仿真测试系统 (8) 4.快速原型开发&HiL实时仿真测试系统 (9) 4.1.系统架构 (9) 4.2.系统功能介绍 (10) 4.3.系统信号连接说明 (11) 2 / 11

1. 概述 在发动机控制器(ECU)设计开发及标定测试阶段,对工程技术人员而言,所面临的无非是两种应用问题:一是在开发的初期阶段,快速地建立控制对象及控制器模型,并对整个控制系统进行多次的、离线的及在线的试验来验证控制系统软、硬件方案的可行性。这个过程称之为快速控制原型(RCP);第二个问题就是已设计完的控制器投入生产后,在投放市场前必须对其进行详细的测试。如果按传统的测试方法,用真实的对象或环境进行测试,无论是人员、设备还是资金都需要较大的投入,而且周期长,不能进行极限条件下的测试,试验的可重复性差,所得测试结果可记录性及可分析性都较差。现在普遍采用的方法是:在产品上市之前,采用真实的控制器,被控对象或者系统运行环境部分采用实际的物体,部分采用实时数字模型来模拟,进行整个系统的仿真测试,这个过程称之为硬件在环(HiL)仿真测试。 本方案基于意昂科技D2P 128pin快速原型开发平台和dSPACE快速控制原型MicroAutoBox,搭建一套发动机ECU快速原型开发平台和HiL实时仿真测试系统。 3 / 11

基于某matlab地Lorenz系统地仿真研究

MATLAB 课 程 期 末 作 业 以下报告完成的是大作业第七题: 7. Simulink仿真在高等数学课程中的应用 21130223 宋沛儒

基于MATLAB/Simulink 对Lorenz 系统仿真研究 21130223 宋沛儒 1.引言 1963年Lorenz 通过观察大量大气现象并进行数值实验和理论思考,得到了一系列混沌运动的基本特征,提出了第一个奇异吸引子—Lorenz 吸引子[1] ,Lorenz 通过计算机模拟一个由三阶微分方程描述的天气模型时发现,在某些条件下同一个系统可以表现出非周期的无规则行为。Lorenz 揭示了一系列混沌运动的基本特征,成为后人研究混沌理论的基石和起点,具有非常重要的意义。Lorenz 系统方程如下: (), ,.x a y x y cx y xz z xy bz =-?? =--??=-? (1) 其中,a ,b ,c 为正的实常数。 本人利用了数学工具matlab ,对Lorenz 系统进行了仿真研究,加深了对其的认知。 2.matlab 求解Lorenz 系统 首先创建文件“Lorenz.m ”定义Lorenz 方程,假设固定a=10,b=2.6667,c=30,程序如下: function dx=Lorenz(t,x) dx=[-10*(x(1)-x(2));30*x(1)-x(2)-x(1)*x(3);x(1)*x(2)-2.6667*x(3)]; end 然后利用ode45(Runge-Kutta 算法)命令求解Lorenz 方程并绘制图形,初值取x=y=z=0.1,程序如下:

>> clf >> x0=[0.1,0.1,0.1]; >> [t,x]=ode45('Lorenz',[0,100],x0); >> subplot(2,2,1) >> plot(x(:,1),x(:,3)) >> title('(a)') >> subplot(2,2,2) >> plot(x(:,2),x(:,3)) >> title('(b)') >> subplot(2,2,3) >> plot(x(:,1),x(:,2)) >> title('(c)') >> subplot(2,2,4) >> plot3(x(:,1),x(:,2),x(:,3)) >> title('(d)') 运行后,得如下波形: 图中,(a)为Lorenz混沌吸引子在x-z平面上的投影,(b)为其在y-z平面上的投影,(c)为其在x-y平面上的投影,(d)为Lorenz 混沌吸引子的三维图。四图都类似于“8”字形。 3. Lorenz系统对初值的敏感性 此时因为固定参数a=10,b=2.6667,c=30时,为混沌系统,对初值具有敏感性,初值很小的差异会引起系统的大变化。例如在上例

最新ADPSS-LAB实时仿真系统介绍汇总

A D P S S-L A B实时仿真 系统介绍

ADPSS-LAB 电力电子、电力系统实时仿真方案 中国电力科学研究院 2012年10月

目录 1 系统综述................................................................................................................................... - 0 - 2 系统组成................................................................................................................................... - 1 - 3 电力电子、电力系统实时仿真存在的问题........................................................................... - 1 - 4 解决方法................................................................................................................................... - 2 - 5 ADPSS-LAB实时仿真系统的功能 ....................................................................................... - 8 -

无人机飞行控制系统仿真研究

无人机的数学模型 无人机是利用无线电遥控设备和自备的程序控制装置操纵的不载人飞机。可反复使用多次,广泛用于空中侦察、监视、通信、反潜和电子干扰等。因此研究无人机控制系统的设计具有重要意义。要研究无人机动力学模型的姿态仿真,首先必须建立飞机的数学模型。在忽略机体震动和变形的条件下,飞机的运动可以看成包含六个自由度的刚体运动,其中包含绕三个轴的三种转动(滚动、俯仰与偏航)和沿三个轴的线运动。为了确切的描述飞机的运动状态,必须选择合适的坐标系。 1.1常用坐标系 1.1.1地面坐标系 地面坐标系是与地球固连的坐标系。原点A固定在地面的某点,铅垂轴向上为正,纵轴与横轴为水平面内互相垂直的两轴。见图1-1。 图1-1 地面坐标系 1.1.2机体坐标系 机体坐标系原点在机的重心上,纵轴在飞机对称平面内,平行于翼弦,指向机头 为正;立轴也在飞机对称平面内并垂直于,指向座舱盖为正;横轴与平面垂直,指向右翼为正,见图1-2。 图1-2 机体坐标系

1.1.3速度坐标系 速度坐标系原点也在飞机的重心上,但轴与飞机速度向量V重合;也在对称平面内并垂直于,指向座舱盖为正;垂直于平面,指向右翼为正,见图2-3。 图1-3 速度坐标系 1.2飞机的常用运动参数 飞机的运动参数就是完整地描述飞机在空中飞行所需要的变量,只要这些参数确定了,飞机的运动也就唯一地确定了。因此,飞机的运动参数也是飞机控制系统中的被控量。被控量包括俯仰角、滚转角、偏航角、仰角、侧滑角、航迹倾斜角,航迹偏转角; 同时利用副翼、方向舵、升降舵及油门杆来进行对飞机的控制。这些称为无人机飞控系统中的控制量。 1.3.1 无人机六自由度运动方程式的建立 基于飞机运动刚体性的假设,我们就可以推导出飞机的一般数学模型为一组非线性微分方程组。根据牛顿定律,其运动方程应由两部分组成:一部分是以牛顿第二定律(动力定律)为基础的动力学方程组,由此解得无人机相对于机体坐标系的角度向量和角速度向量;另一部分则是通过坐标变换关系得出的运动学方程组确定出无人机相对于地面坐标系的位置向量和速度向量。 根据牛顿第二定律F=ma可以列出无人机三轴力的动力学方程组:

虚拟仿真系统

《康熙大帝视察吉林水师》视景仿真系统 技术方案

根据吉林市王百川大院—康熙大帝检阅吉林水师仿真系统的土建结构,提出如下设计方案。 本系统共采用6台NEC NP系列工程投影,高增益、超大视角的橡塑环形大屏幕、计算机集群、边缘融合和几何校正系统、视景仿真动画共同完成。气势磅礴的开篇,置身画面的享受,5.1声道的环绕体验,共同演绎《康熙大帝检阅吉林水师》这一生动的历史画卷。 视景部分:采用两台NEC单片DLP投影,应用边缘融合和几何校正技术完成无缝拼接,将《康熙检阅吉林水师视景动画》显示在高6米,弧长13.3米的90度的无缝大屏幕上。 仿真部分:采用四台NEC单片DLP投影机,将地面模拟成激流勇进的松花江面,顺流而下的船舶激起的躲躲浪花。应用边缘融合和几何校正技术将四组画面完成无缝拼接,使松花江生动、恢弘,充满生机。

1.屏幕设计大视角高增益橡塑软幕 采用环形投影屏幕,屏幕比 例为7:3宽屏,弧长13.3米, 屏高6米;银幕材质:PVC橡塑阻 燃材料幕。声衰减:要求扬声器 的声衰减8KHz和12.5KHz的声衰 减与500Hz的声衰减之差,分别 不大于5dB和7dB;反射光的颜 色:银幕表面要求彩色还原性良 好,即反射光与入射光的颜色色 度应一致;解像力:125线对/mm, 用于放映影片的银幕应具有满足 80线对/mm以上的放映解像力; 均匀性:银幕全幅材质和涂层均 匀,以保证幕面不同部位在照明 条件下的反射亮度趋向一致。其 他特性:正常伸缩性、平整性、防霉、阻燃性等:幕基材料使用阻燃橡塑材料,产品具有阻燃性、耐寒性、防霉性且接缝平整、表面均匀;银幕上的任何区域看不出有影响放映效果的花纹和明暗条纹。 2.投影机NEC NP4100+主要参数 投影机类型:主流工程型 投影机亮度:6200流明 投影机技术:DLP 技术类型及规格:0.7英寸单片DLP 对比度:2100:1 标准分辨率:1024×768 屏幕比例:4:3 投影尺寸:40~500英寸 灯泡寿命:2000, 3000 投影色彩:16.7M色 功耗:710W(双灯时) 重量:17.5kg 投影镜头电动短焦定焦(投射比 0.77:1、F 2.0、f = 11.4mm) 投影光源金属卤素光源投影画面尺寸(米)40~500英寸屏幕宽高比例4:3 色彩(万)1677 调整功能水平最大±约35度, 垂直最大±约40度有效扫描频段水平 31~90kHz, 垂直 50~85Hz 输入端子3个计算机输入,3个复合输入,1个视频输入,1个S-视频输入输出端子显示器输出,声音输出,屏幕触发器。其它参数

相关主题
文本预览
相关文档 最新文档