七年级上册数学一元一次方程测试题及答案
- 格式:doc
- 大小:121.50 KB
- 文档页数:5
七年级解一元一次方程专题训练一、解下列一元一次方程:1、2+(x+1)=42、2(2-x )+(x+1)=03、(3-x )+2(x+1)=04、0.2x-3(x+1)=255、3+x+4-6=2x+106、4x+3(x-3)=57、0.9(x-3)+0.8(2+x )=10 8、x 23x2=+-9、5(0.3x+0.6)-2(0.8-x )=0.6 10、3(2x+7)=5+2(x-4) 11、x 23x6726x +=-++ 12、2(3x+1)-2=4x13、2[2(7-21)+4x]=5 14、4x 6.04x32=++15、7{2-5[3-4(x-2)+2]-6}=116、61}1]2)62(3)5[(21{31=-+--+x x17、1x 232-x 15+=+-)( 18、1524213-+=-x x19、2233554--+=+-+x x x x20、6.12.045.03=+--x x二、一元一次方程与实际问题21、甲一班有学生84人,乙班有学生66人,如果要求甲班人数是乙班的32,应从甲班调多少人到乙班去?22、某服装商城进了一款衣服,进价为400元/件,又以某一销售价卖出,结果商城盈利25%,问这款衣服的销售价是多少元?23、一轮船往返甲、乙两城之间,从下游往上游逆水航行需14时,从上游往下游顺水航行需7时,水流速度是3.5千米/时,求轮船在静水中的速度。
24、甲、乙两人完成一件工作,甲单独做需要8小时才能完成,乙单独做只需2小时就能完成。
如果甲加先做3小时,剩下的工作两个人共同完成,问还需几小时完成?参考答案一、解下列一元一次方程:1、【答案】x=1解:2+(x+1)=42+x+1=4x+3=4x=4-3x=12、【答案】x=5解;2(2-x)+(x+1)=04-2x+x+1=0(-2+1)x+(4+1)=0-x+5=03、【答案】 x=-5解:(3-x)+2(x+1)=03-x+2x+2=0x+5=0x=-54、【答案】x =-10解:0.2x-3(x+1)=250.2x-3x-3=25-2.8x=28x =-105、【答案】x=-9解:3+x+4-6=2x+10 1+x=2x+10 x-2x=10-1 - x=9 x=-96、【答案】x=2 解:4x+3(x-3)=5 4x+3x-9=5 7x-9=57x=14 x=27、【答案】x=17109解:0.9(x-3)+0.8(2+x )=10 0.9x-2.7+1.6+0.8x=10(0.9x+0.8x )+(-2.7+1.6)=10 1.7x-1.1=10 1.7x=111 x=171118、【答案】x=2解:x 23x 2=+-x 36x 2=+-2x 8x 48x 3x x 3x -8x 36x 2=-=--=--==+-9、【答案】358x -=解:5(0.3x+0.6)-2(0.8-x )=0.61.5x+3-1.6+2x=0.6(1.5+2)x+(3-1.6)=0.6 3.5x+1.4=0.6 3.5x=0.6-1.4 3.5x=-0.8358x -=10、【答案】x= -6解:3(2x+7)=5+2(x-4)6x+21=5+2x-8 6x-2x=5-8-21 4x=-24 x= -611、【答案】34x =解:34x -2015x -14-18-126x -12x -3x 6x 1212x -14183x x 266x -726)x 3x 23x6726x ===+=+++=+++=-++)()((12、【答案】解:2(3x+1)-2=4x 6x+2-2=4x 6x-4x=0 x=013、【答案】x=821-解:2[2(7-21)+4x]=52[14-1+4x]=5 2(13+4x )=5 26+8x=5 8x=-21x=821-14、【答案】2770解;2770x 14x 4.5216x 4.516x 4.2x 324x 6.04x32==-==++=++15、【答案】35121x =解; 7{2-5[3-4(x-2)+2]-6}=17[2-5(3-4x+8+2)-6]=1 7(2-15+20x-50-6)=1 7(20x-69)=1 140x-483=1140x=48435121x =16、【答案】解:61}1]2)62(3)5[(21{31=-+--+x x 两边同时乘以3得; 211]2)62(3)5[(21=-+--+x x 两边同时乘以2得;12]2)62(3)5[(=-+--+x x去掉中括号,(x+5)-3(2-6x )+2-2=1 去小括号, x+5-6+18x=1 19x=2192x =17、【答案】27x =解:27x 288x -10183x -x 518x 3105x -6x 310-x 51x 2310x 551x 232-x 15=-=--=--=+-=-+=+--+=+-)(18、 【答案】71x -= 解:71x 17x 5104x 815104x 85x 15102x 421x 351524213-=-=+-=--+=--+=--+=-)()()(x x19、【答案】x=6解:2233554--+=+-+x x x x6(x+4)-30x+150=10(x+3)-15(x-2)6x+24-30x+150=10x+30-15x+30(6-30-10+15)x=30+30-24-150 -19x=-114x=620、【答案】x=-9.2 解:2.9276302006016)5020(1620050602016)4(50)3-x 20106.124)x 1053)-x 10106.12.045.03-==-++=-=---=+-=+-=+--x x x x x x x x (两边同时乘以((,母同时乘以左边,每个分式分子分二、一元一次方程与实际问题21、【答案】应从甲班24人到乙班去解:设应从甲班调x 人到乙班去 此时:甲班人数=84-x 乙班人数=66+x因为甲班人数是乙班的32,则有(84-x )=32(66+x )3(84-x )=2(66+x )252-3x=132+2x (-3x+2x )=132-252-5x=-120 x=24检验:甲班人数=84-24=60 乙班人数=66+24=90329060= 符合题意。
2022-2023学年七年级数学上《一元一次方程》一.选择题(共8小题)1.(2022春•嵩县期中)下列各式中是方程的是()A.2x﹣3B.2+4=6C.x﹣2>1D.2x﹣1=3 2.(2022春•兰考县期中)下列四个式子中,是方程的是()A.3+2=5B.3x﹣2=1C.2x﹣3<0D.a2+2ab+b2 3.(2021秋•临西县校级月考)关于式子①2x=3和②1﹣3=﹣2,下列说法正确的是()A.①、②均是方程B.①是方程,②不是方程C.①不是方程,②是方程D.①、②均不是方程4.(2020秋•饶平县校级期末)下列式子是方程的是()A.6x+3B.6m+m=14C.5a﹣2<53D.3﹣2=1 5.(2022春•北碚区校级期中)已知正整数a,b,c,d满足a<b<c<d,且a+b+c+d=d2﹣c2+b2﹣a2,关于这个四元方程下列说法正确的个数是()①a=1,b=2,c=3,d=4是该四元方程的一组解;②连续的四个正整数一定是该四元方程的解;③若a<b<c<d<10,则该四元方程有21组解;④若a+b+c+d=2022,则该四元方程有504组解.A.1B.2C.3D.46.(2021秋•渝中区校级期末)下列选项是一元一次方程的是()A.x+2y=0B.3x+1C.3x2+1=0D.2x=1 7.(2022春•临汾月考)下列属于方程的是()A.2x=3B.2x>﹣1C.1﹣3=﹣2D.7y﹣1 8.(2021秋•遵化市期末)方程﹣3(★﹣9)=5x﹣1,★处被盖住了一个数字,已知方程的解是x=5,那么★处的数字是()A.1B.2C.3D.4二.多选题(共2小题)(多选)9.(2021秋•乳山市期末)下列变形错误的是()A.由﹣3+2x=1,得2x=1﹣3B.由3y=﹣4,得C.由3=x+2,得x=3+2D.由x﹣4=9,得x=9+4(多选)10.(2021秋•潍坊期中)下列运用等式的性质,变形正确的是()A.若x=y,则x﹣5=y+5B.若a=b,则ac=bcC.若,则x=y D.若,则2a=3b三.填空题(共6小题)11.(2021秋•渌口区期末)写出一个解为x=3的方程:.12.(2017秋•左贡县校级期末)如果x=5是方程ax+5=10﹣4a的解,那么a=.13.(2013秋•嘉峪关校级期末)在①2+1=3,②4+x=1,③y2﹣2y=3x,④x2﹣2x+1中,方程有(填序号)14.1:2x﹣1;2:2x+1=3x;3:﹣3;4:t+1=3中,代数式有,方程有(填入式子的序号).15.(2020秋•太原期末)方程2x+▲=3x,▲处是被墨水盖住的常数,已知方程的解是x=2,那么▲处的常数是.16.(2021秋•龙泉驿区校级期末)关于x的方程3(k﹣2)x5﹣2|k|﹣2k=16是一元一次方程,那么k=.四.解答题(共4小题)17.(2022春•开福区校级月考)方程的解的定义:使方程两边相等的未知数的值.如果一个方程的解都是整数,那么这个方程叫做“立信方程”.(1)若“立信方程”2x+1=1的解也是关于x的方程1﹣2(x﹣m)=3的解,则m=;(2)若关于x的方程x2+3x﹣4=0的解也是“立信方程”6x+2x2﹣3﹣n=0的解,则n =;(3)若关于x的方程ax=2a3﹣3a2﹣5a+4的解也是关于x的方程9x﹣3=kx+14的解,且这两个方程都是“立信方程”,求符合要求的正整数a和正整数k的值.18.指出下列方程中的未知数是什么,方程的左边是什么.方程的右边是什么?并且判断它否是一元一次方程?(1)3=2x﹣1;(2)x+2y=7;(3)x2+5x﹣1=5;(4)x2=y2+2y;(5)x﹣π=3;(6)3m+5=﹣4;(7)﹣=1.19.判断下列各式是不是方程,如果是,指出未知数;如果不是,说明理由.(1)3+5x﹣4x2;(2)2x﹣y=1;(3)=1;(4)3x﹣11>0.20.小明今年12岁,他爸爸今年36岁,几年后爸爸的年龄是小明年龄的2倍?(列方程并估计问题的解)2022-2023学年七年级数学上《一元一次方程》参考答案与试题解析一.选择题(共8小题)1.(2022春•嵩县期中)下列各式中是方程的是()A.2x﹣3B.2+4=6C.x﹣2>1D.2x﹣1=3【考点】方程的定义.【专题】一次方程(组)及应用;符号意识.【分析】根据方程的定义:含有未知数的等式叫方程可得答案.【解答】解:A.2x﹣3含有未知数,但不是等式,所以不是方程,故不符合题意;B.2+4=6不含有未知数,且不是等式,所以不是方程,故不符合题意;C.x﹣2>1不是等式,所以不是方程,故不符合题意;D.2x﹣1=3符合方程的定义,故符合题意.故选:D.【点评】此题主要考查了方程的定义.方程是含有未知数的等式,在这一概念中要抓住方程定义的两个要点①等式;②含有未知数.2.(2022春•兰考县期中)下列四个式子中,是方程的是()A.3+2=5B.3x﹣2=1C.2x﹣3<0D.a2+2ab+b2【考点】方程的定义.【专题】常规题型.【分析】根据方程的定义即可求出答案.【解答】解:方程是指含有未知数的等式.故选:B.【点评】本题考查方程的定义,解题的关键是熟练运用方程的定义,本题属于基础题型.3.(2021秋•临西县校级月考)关于式子①2x=3和②1﹣3=﹣2,下列说法正确的是()A.①、②均是方程B.①是方程,②不是方程C.①不是方程,②是方程D.①、②均不是方程【考点】方程的定义.【专题】符号意识.【分析】根据方程的定义进行判定.【解答】解:①2x=3是含有未知数的等式,属于方程;②1﹣3=﹣2中不含有未知数,不是方程.观察选项,选项B符合题意.故选:B.【点评】本题主要考查了方程的定义,方程是含有未知数的等式,在这一概念中要抓住方程定义的两个要点①等式;②含有未知数.4.(2020秋•饶平县校级期末)下列式子是方程的是()A.6x+3B.6m+m=14C.5a﹣2<53D.3﹣2=1【考点】方程的定义.【专题】一次方程(组)及应用.【分析】根据方程的定义:含有未知数的等式叫方程,可得出正确答案.【解答】解:A、不是等式,错误;B、是一元一次方程,正确;C、不是等式,错误;D、不含未知数,错误;故选:B.【点评】本题考查了方程的定义,含有未知数的等式叫做方程.方程有两个特征:(1)方程是等式;(2)方程中必须含有字母(未知数).5.(2022春•北碚区校级期中)已知正整数a,b,c,d满足a<b<c<d,且a+b+c+d=d2﹣c2+b2﹣a2,关于这个四元方程下列说法正确的个数是()①a=1,b=2,c=3,d=4是该四元方程的一组解;②连续的四个正整数一定是该四元方程的解;③若a<b<c<d<10,则该四元方程有21组解;④若a+b+c+d=2022,则该四元方程有504组解.A.1B.2C.3D.4【考点】方程的解.【专题】方程与不等式;推理能力.【分析】(1)将a=1,b=2,c=3,d=4代入检验即可;(2)设a=n,则b=n+1,c=n+2,d=n+3,代入方程检验即可判断;(3)根据正整数a,b,c,d满足a<b<c<d,且a+b+c+d=d2﹣c2+b2﹣a2中连续的四个正整数一定是该四元方程的解即可写出四元方程的解,进而可判断;(4)设a=n,则b=n+1,c=n+2,d=n+3,则a+b+c+d=4n+6,进而可得n的值,即可判断.【解答】解:∵a=1,b=2,c=3,d=4,∴a+b+c+d=1+2+3+4=10,d2﹣c2+b2﹣a2=42﹣32+22﹣12=16﹣9+4﹣1=10,∴a+b+c+d=d2﹣c2+b2﹣a2,∴a=1,b=2,c=3,d=4是该四元方程的一组解;故①正确;设a=n,则b=n+1,c=n+2,d=n+3,∴a+b+c+d=4n+6,d2﹣c2+b2﹣a2=4n+6,∴a+b+c+d=d2﹣c2+b2﹣a2,∴连续的四个正整数一定是该四元方程的解;故②正确;∵正整数a,b,c,d满足a<b<c<d,且a+b+c+d=d2﹣c2+b2﹣a2中连续的四个正整数一定是该四元方程的解;∴a=1,b=2,c=3,d=4;a=2,b=3,c=4,d=5;a=3,b=4,c=5,d=6;a=4,b=5,c=6,d=7;a=5,b=6,c=7,d=8;a=6,b=7,c=8,d=9;∴当a<b<c<d<10,则该四元方程有6组解;故③错误;∵连续的四个正整数一定是该四元方程的解,设a=n,则b=n+1,c=n+2,d=n+3,∴a+b+c+d=n+n+1+n+2+n+3=4n+6,∵a+b+c+d=2022,∴4n+6=2022,∴n=504,∴a=504,b=505,c=506,d=507是该四元方程的一组解,并非有504组解,故④错误;综上所述,①②正确.故选:B.【点评】本题主要考查方程的解,解题关键是理解方程的解的定义.6.(2021秋•渝中区校级期末)下列选项是一元一次方程的是()A.x+2y=0B.3x+1C.3x2+1=0D.2x=1【考点】一元一次方程的定义.【专题】一次方程(组)及应用;符号意识.【分析】根据一元一次方程的定义:只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程,据此即可判断.【解答】解:A、含有两个未知数,不是一元一次方程,选项错误;B、不是方程,则不是一元一次方程,选项错误.C、x的次数是2,不是一元一次方程,选项错误;D、是一元一次方程,选项正确.故选:D.【点评】本题考查了一元一次方程的概念和解法.一元一次方程的未知数的指数为1.7.(2022春•临汾月考)下列属于方程的是()A.2x=3B.2x>﹣1C.1﹣3=﹣2D.7y﹣1【考点】方程的定义.【专题】一次方程(组)及应用;符号意识.【分析】含有未知数的等式叫方程,据此可得出正确答案.【解答】解:A、是含有未知数的等式,所以是方程,故符合题意;B、不是等式,所以不是方程,故不符合题意;C、是等式,但不含有未知数,所以不是方程,故不符合题意;D、含有未知数,但不是等式,所以不是方程,故不符合题意.故选:A.【点评】本题主要考查的是方程的定义,方程有两个特征:(1)方程是等式;(2)方程中必须含有字母(未知数).8.(2021秋•遵化市期末)方程﹣3(★﹣9)=5x﹣1,★处被盖住了一个数字,已知方程的解是x=5,那么★处的数字是()A.1B.2C.3D.4【考点】方程的解.【专题】一次方程(组)及应用.【分析】把x=5代入已知方程,可以列出关于★的方程,通过解该方程可以求得★处的数字.【解答】解:将x=5代入方程,得:﹣3(★﹣9)=25﹣1,解得:★=1,即★处的数字是1,故选:A.【点评】此题考查的是一元一次方程的解的定义,就是能够使方程左右两边相等的未知数的值.二.多选题(共2小题)(多选)9.(2021秋•乳山市期末)下列变形错误的是()A.由﹣3+2x=1,得2x=1﹣3B.由3y=﹣4,得C.由3=x+2,得x=3+2D.由x﹣4=9,得x=9+4【考点】等式的性质.【专题】一次方程(组)及应用;运算能力.【分析】根据等式的性质逐个判断即可.【解答】解:A.∵﹣3+2x=1,∴2x=1+3,错误;B.∵3y=﹣4,∴y=﹣,错误;C.∵3=x+2,∴3﹣2=x,即x=3﹣2,错误;D.∵x﹣4=9,∴x=9+4,正确;故选:ABC.【点评】本题考查了等式的性质,能熟记等式的性质是解此题的关键,①等式的性质1、等式的两边都加(或减)同一个数或式子,等式仍成立,②等式的性质2、等式的两边都乘同一个数,等式仍成立,等式的两边都除以同一个不等于0的数,等式仍成立.(多选)10.(2021秋•潍坊期中)下列运用等式的性质,变形正确的是()A.若x=y,则x﹣5=y+5B.若a=b,则ac=bcC.若,则x=y D.若,则2a=3b【考点】等式的性质.【专题】一次方程(组)及应用;运算能力.【分析】利用等式的性质对每个式子进行变形即可找出答案.【解答】解:A、根据等式性质1,x=y两边同时加5得x+5=y+5,原变形错误;B、根据等式性质2,等式两边都乘以c,即可得到ac=bc,原变形正确;C、根据等式性质2,等式两边同时乘1+m得x=y,原变形正确;D、根据等式性质2,等式两边同时乘6c得3a=2b,原变形错误.故选:BC.【点评】本题主要考查等式的性质.运用等式性质1必须注意等式两边所加上的(或减去的)必须是同一个数或整式;运用等式性质2必须注意等式两边所乘的(或除的)数或式子不为0,才能保证所得的结果仍是等式.三.填空题(共6小题)11.(2021秋•渌口区期末)写出一个解为x=3的方程:x﹣3=0(答案不唯一).【考点】方程的解.【专题】一次方程(组)及应用.【分析】方程的解是指使方程两边相等的未知数的值,根据方程解的定义进行填空即可.【解答】解:∵方程的解为x=3,∴方程为x﹣3=0,故答案为:x﹣3=0(答案不唯一).【点评】本题考查了方程的解,掌握方程解的定义是解题的关键.12.(2017秋•左贡县校级期末)如果x=5是方程ax+5=10﹣4a的解,那么a=.【考点】方程的解.【专题】计算题;转化思想.【分析】方程的解就是能够使方程左右两边相等的未知数的值,即利用方程的解代替未知数,所得到的式子左右两边相等.把x=5代入方程,就得到关于a的方程,就可求出a的值.【解答】解:把x=5代入方程,得:5a+5=10﹣4a,解得:a=.故填:.【点评】本题主要考查了方程解的定义,已知x=5是方程的解实际就是得到了一个关于a的方程.13.(2013秋•嘉峪关校级期末)在①2+1=3,②4+x=1,③y2﹣2y=3x,④x2﹣2x+1中,方程有②,③(填序号)【考点】方程的定义.【分析】根据含有未知数的等式叫方程,可得答案.【解答】解:∵①不含未知数,①不是方程;∵②、③含有未知数的等式,②、③是方程;④不是等式,④不是方程,故答案为:②、③.【点评】本题考查了方程,方程是含有未知数的等式,注意不含未知数的等式不是方程,含有字母的代数式不是方程.14.1:2x﹣1;2:2x+1=3x;3:﹣3;4:t+1=3中,代数式有1,3,方程有2,4(填入式子的序号).【考点】方程的定义.【分析】本题主要考查的是方程的定义,对照方程的两个特征解答.【解答】解:1不是方程,因为它不是等式而是代数式;2是方程,x是未知数;3不是方程,因为它不是等式而是代数式;4是方程,未知数是t.【点评】解题关键是依据方程的定义.含有未知数的等式叫做方程.方程有两个特征:(1)方程是等式;(2)方程中必须含有字母(未知数).15.(2020秋•太原期末)方程2x+▲=3x,▲处是被墨水盖住的常数,已知方程的解是x=2,那么▲处的常数是2.【考点】方程的解.【专题】一次方程(组)及应用;运算能力.【分析】把x=2代入已知方程,可以列出关于▲的方程,通过解该方程可以求得▲处的数字.【解答】解:把x=2代入方程,得4+▲=6,解得▲=2.故答案为:2.【点评】此题考查的是一元一次方程的解的定义,就是能够使方程左右两边相等的未知数的值.16.(2021秋•龙泉驿区校级期末)关于x的方程3(k﹣2)x5﹣2|k|﹣2k=16是一元一次方程,那么k=﹣2.【考点】一元一次方程的定义;绝对值.【专题】一次方程(组)及应用;符号意识.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:由题意,得:5﹣2|k|=1且k﹣2≠0,解得k=﹣2,故答案为:﹣2.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.四.解答题(共4小题)17.(2022春•开福区校级月考)方程的解的定义:使方程两边相等的未知数的值.如果一个方程的解都是整数,那么这个方程叫做“立信方程”.(1)若“立信方程”2x+1=1的解也是关于x的方程1﹣2(x﹣m)=3的解,则m=1;(2)若关于x的方程x2+3x﹣4=0的解也是“立信方程”6x+2x2﹣3﹣n=0的解,则n =5;(3)若关于x的方程ax=2a3﹣3a2﹣5a+4的解也是关于x的方程9x﹣3=kx+14的解,且这两个方程都是“立信方程”,求符合要求的正整数a和正整数k的值.【考点】方程的解.【专题】新定义;一次方程(组)及应用;运算能力.【分析】(1)根据“立信方程”的定义解答即可;(2)先求出x2+3x﹣4=0的解,再把其中的解代入求解即可求n的解;(3)利用“立信方程”以及a和k为正整数求解.【解答】(1)∵2x+1=1,解得x=0;把x=0代入1﹣2(x﹣m)=3,得:1﹣2(0﹣m)=3,∴1+2m=3,解得:m=1;(2)解方程x2+3x﹣4=0,(x﹣1)(x+4)=0,解得:x1=1或x2=﹣4,把x1=1代入6x+2x2﹣3﹣n=0得:6×1+2×12﹣3﹣n=0,解得:n=5;把x2=﹣4代入6x+2x2﹣3﹣n=0得:6×(﹣4)+2×(﹣4)2﹣3﹣n=0,解得:n=5;故满足条件的n的值为5.(3)因a为正整数,则a≠0,又∵ax=2a3﹣3a2﹣5a+4,∴,∵两方程均为立信方程,∴x的值为整数,∴为整数,∴此时a可取1,4,2,﹣1,﹣4,﹣2,∴x=﹣2,16,﹣1,﹣4,38,7,同理9x﹣3=kx+14,∴(9﹣k)x=17,显然,此时k≠9,则x=,∴9﹣k可取8,﹣810,26,∴此时x=17,1,﹣17,﹣1,∴两方程相同的解为x=﹣1,此时对应的a=2,k=26,故符合要求的正整数a的值为2,k的值为26.【点评】本题考查了一元一次方程的解的应用,能理解立信方程的意义是解此题的关键.18.指出下列方程中的未知数是什么,方程的左边是什么.方程的右边是什么?并且判断它否是一元一次方程?(1)3=2x﹣1;(2)x+2y=7;(3)x2+5x﹣1=5;(4)x2=y2+2y;(5)x﹣π=3;(6)3m+5=﹣4;(7)﹣=1.【考点】方程的定义;一元一次方程的定义.【分析】依据方程的相关概念和一元一次方程的定义回答即可.【解答】解:(1)未知数是x,方程的左边是3,方程的右边是2x﹣1,它是一元一次方程;(2)未知数是x、y,方程的左边是x+2y,方程的右边是7,它不是一元一次方程;(3)未知数是x,方程的左边是x2+5x﹣1,方程的右边是5,它不是一元一次方程;(4)未知数是x,y,方程的左边是x2,方程的右边是y2+2y,它不是一元一次方程;(5)未知数是x,方程的左边是x﹣π,方程的右边是3,它是一元一次方程;(6)未知数是m,方程的左边是3m+5,方程的右边是﹣4,它是一元一次方程;(7)未知数是a,方程的左边是﹣,方程的右边是1,它是一元一次方程.【点评】本题主要考查的是方程的概念,掌握方程的相关概念是解题的关键.19.判断下列各式是不是方程,如果是,指出未知数;如果不是,说明理由.(1)3+5x﹣4x2;(2)2x﹣y=1;(3)=1;(4)3x﹣11>0.【考点】方程的定义.【专题】整式;符号意识.【分析】根据方程的定义对各小题进行逐一分析即可.【解答】解:(1)3+5x﹣4x2,不是等式,所以不是方程;(2)2x﹣y=1,是方程;(3)=1,是方程;(4)3x﹣11>0,不是方程,是不等式.【点评】本题考查的是方程的定义,方程是含有未知数的等式,在这一概念中要抓住方程定义的两个要点①等式;②含有未知数.20.小明今年12岁,他爸爸今年36岁,几年后爸爸的年龄是小明年龄的2倍?(列方程并估计问题的解)【考点】方程的定义.【分析】设x年后爸爸的年龄是小明年龄的2倍,再根据x年后两人的年龄是2倍关系列出方程即可.【解答】解:设x年后爸爸的年龄是小明年龄的2倍,根据题意得,36+x=2(12+x),x=12.【点评】本题考查了列一元一次方程,需要注意父子二人的年龄都增加x.。
第3章一元一次方程练习题(一)一、选择题1. 对于非零的两个实数a 、b ,规定ab b a 11-=⊗,若1)1(1=+⊗x ,则x 的值为( ) A .23 B .31 C . 21 D . 21- 2.下列变形错误的是( )A.由x + 7= 5得x+7-7 = 5-7 ;B.由3x -2 =2x + 1得x= 3C.由4-3x = 4x -3得4+3 = 4x+3xD.由-2x= 3得x= -32 3. 解方程3x +1=5-x 时,下列移项正确的是( )A.3x +x =5+1B.3x-x=-5-1C.1-5=-3x+xD.3x+x=5-14. 将(3x +2)-2(2x -1)去括号正确的是( )A 3x +2-2x +1B 3x +2-4x +1C 3x +2-4x -2D 3x +2-4x +25.下列解方程去分母正确的是( )A .由1132x x --=,得2x -1=3-3x . B .由44153x y +-=,得12x -15=5y +4. C .由232124x x ---=-,得2(x -2)-3x -2=-4. D .由131236y y y y +-=--,得3y +3=2y -3y +1-6y . 6.当x=2时,代数式ax -2x 的值为4,当x=-2时,这个代数式的值为( )A.-8B.-4C.-2D.87.在下列方程中,解是x=2的方程是( )A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
8.如果错误!未找到引用源。
是方程错误!未找到引用源。
的解,那么错误!未找到引用源。
的值是( )A.-8B.0C.2D.89.若x =a 是方程4x +3a =-7的解,则a 的值为( )A.7B.-7C.1D.-110.已知x =-2是方程2x -3a =2的根,那么a 的值是( )A.a =2B.a =-2C.a =23D.a =23- 11.如果错误!未找到引用源。
一、选择题1.有一组单项式如下:﹣2x ,3x 2,﹣4x 3,5x 4……,则第100个单项式是( ) A .100x 100B .﹣100x 100C .101x 100D .﹣101x 1002.某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x ,则该文具店五月份销售铅笔的支数是( ) A .100(1+x ) B .100(1+x )2 C .100(1+x 2) D .100(1+2x ) 3.一个多项式加上3y 2-2y -5得到多项式5y 3-4y -6,则原来的多项式为( ). A .5y 3+3y 2+2y -1B .5y 3-3y 2-2y -6C .5y 3+3y 2-2y -1D .5y 3-3y 2-2y -14.下列变形中,正确的是( ) A .()x z y x z y --=-- B .如果22x y -=-,那么x y = C .()x y z x y z -+=+-D .如果||||x y =,那么x y =5.将正整数按如图的规律排列:平移表中的方框,方框中的4个数的和可能是( )A .2010B .2014C .2018D .20226.已知m ,n 是不相等的自然数,则多项式2m n m n x x +-+的次数是( )A .mB .nC .m n +D .m ,n 中较大者7.古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )A .13=3+10B .25=9+16C .36=15+21D .49=18+318.代数式21a b-的正确解释是( ) A .a 与b 的倒数的差的平方 B .a 与b 的差的平方的倒数 C .a 的平方与b 的差的倒数 D .a 的平方与b 的倒数的差9.代数式213x -的含义是( ). A .x 的2倍减去1除以3的商的差 B .2倍的x 与1的差除以3的商 C .x 与1的差的2倍除以3的商D.x与1的差除以3的2倍10.张师傅下岗后做起了小生意,第一次进货时,他以每件a元的价格购进了20件甲种小商品,以每件b元的价格购进了30件乙种小商品(a>b).根据市场行情,他将这两种小商品都以2a b+元的价格出售.在这次买卖中,张师傅的盈亏状况为( )A.赚了(25a+25b)元B.亏了(20a+30b)元C.赚了(5a-5b)元D.亏了(5a-5b)元11.如图是按照一定规律画出的“树形图”,经观察可以发现:图A2比图A1多出2个“树枝”,图A3比图A2多出4个“树枝”,图A4比图A3多出8个“树枝”……照此规律,图A6比图A2多出“树枝”( )A.32个B.56个C.60个D.64个12.如果m,n都是正整数,那么多项式的次数是()A.B.m C.D.m,n中的较大数二、填空题13.在一列数a1,a2,a3,a4,…a n中,已知a1=2,a2111a=-,a3211a=-,a4311a=-,…a nn111a-=-,则a2020=___.14.如图是用棋子摆成的“上”字:如果按照以下规律继续摆下去,第n个“上”字需用______枚棋子.15.如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:则a n=__________(用含n 的代数式表示).所剪次数1234…n正三角形个数471013…a n16.如图,图1是“杨辉三角”数阵;图2是(a+b)n的展开式(按b的升幂排列).若(1+x)45的展开式按x的升幂排列得:(1+x)45=a0+a1x+a2x2+…+a45x45,则a2=_____.17.观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,按此规律第4个图中共有点的个数比第3个图中共有点的个数多 ________________ 个;第20个图中共有点的个数为________________ 个.18.将一个正方形纸片剪成如图中的四个小正方形,用同样的方法,每个小正方形又被剪成四个更小的正方形,这样连续5次后共得到______个小正方形.19.王马虎同学在做有理数的加减法时,将一个100以内的含两位小数的数看错了,他将小数点前后的两位数看反了(比如56.78错看成了78.56),然后用看错的数字减3.5,发现差恰好就是原正确数字的2倍,则正确的结果应该是_____.20.如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7;则上图中m+n+p=_________;三、解答题21.先化简,再求值: ()()()()24222x x y x y x y x y -++---,其中2x =-, 12y. 22.老师在黑板上书写了一个正确的演算过程,随后用一张纸挡住了一个二次三项式,形式如下:+3(x ﹣1)=x 2﹣5x +1.(1)求所挡的二次三项式;(2)若x =﹣2,求所挡的二次三项式的值. 23.已知多项式22622452x mxyy xy x中不含xy 项,求代数式32322125m m m m mm 的值.24.将正整数1,2,3,4,5,……排列成如图所示的数阵:(1)十字框中五个数的和与框正中心的数11有什么关系?(2)若将十字框上下、左右平移,可框住另外五个数,这五个数的和与框正中心的数还有这种规律吗?请说明理由;(3)十字框中五个数的和能等于180吗?若能,请写出这五个数;若不能,请说明理由; (4)十字框中五个数的和能等于2020吗?若能,请写出这五个数;若不能,请说明理由.25.当0.2x =-时,求代数式22235735x x x x -+-+-的值。
人教版七年级数学上册第三章《一元一次方程》单元测试一、选择题(本题共计 10 小题,每题 3 分,共计30分,)1. 已知x=1是方程x−2k3=12−32x的解,则k的值是()A.−2B.2C.0D.−12. 某商品打七折后价格为a元,则原价为( )A.a元B.107a元 C.30%a元 D.710a元3. 在①2x+1;②1+7=15−8+1;③1−12x=x−1;④x+2y=3中,方程共有()A.1个B.2个C.3个D.4个4. 若关于x的方程3x+(2a+1)=x−(3a+2)的解为x=0,则a的值等于( )A.15B.35C.−15D.−355. 将一根长为acm的铁丝首尾相接围成一个正方形,若要将它按如图所示的方式向外等距扩大1cm得到新的正方形,则这根铁丝需增加()A.4cmB.8cmC.(a+4)cmD.(a+8)cm6. 七年级(1)班有30人会下象棋或围棋,已知会下象棋的人数比会下围棋的人数多5人,两种棋都会下的有17人,问只会下围棋的有多少人?设只会下围棋的有x人,可得方程()A.x+(x−5)+17=30B.x+(x+5)+17=30C.x+(x−5)−17=30D.x+(x+5)−17=307. 如图是某月份的日历表,任意框出同一列上的三个数,则这三个数的和不可能是()A.39B.43C.57D.668. 解方程x3−x−12=1时,去分母后,正确的是( )A.3x−2(x−1)=1B.2x−3(x−1)=1C.3x−2(x−1)=6D.2x−3(x−1)=69. 运用等式性质进行的变形,正确的是()A.如果a=b,那么a+c=b−cB.如果ac =bc,那么a=bC.如果a=b,那么ac =bcD.如果a2=3a,那么a=310. 已知x=2是方程5Xm+10=30的解,则m的值为( )A.2B.4C.6D.10二、填空题(本题共计 4 小题,每题 4 分,共计16分,)11. 当代数式2x−2与3+x的值相等时,x=________.12. 已知:(m−2)x−1=0是关于x的一元一次方程,则m________.13. 在等式5x−8=7−9x的两边同时________,得14x=15,这是根据________.14. 李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔的承包地去年甲种蔬菜有________亩.三、解答题(本题共计 5 小题,共计74分,)15.(20分) 解下列方程:(1)8(a+1)−2(3a−4)=13;(2)2x−13=2x+16−1;(3)y−y−12=2−y+25;(4)2x0.3+223=1.4−3x0.2.16.(12分) 列方程.(1)甲班有学生58人,乙班有学生46人,要使甲、乙两班的人数相等,应如何调动?(2)某推销员,卖出全部商品的2后,得到400元,卖出全部商品共得到多少元?517. (14分) “五一”期间,某电器城按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元,该电器的成本价为多少元?(只列方程)18. (14分)一个长方形的周长为28cm,将此长方形的长减少2cm,宽增加4cm,就可成为一个正方形,那么原长方形的长和宽分别是多少?19.(14分) 某公园门票价格规定如下表:某校七年级(1)(2)两个班共102人去游园,其中(1)班有40多人,不足50人.经计算,如果两个班都以班为单位购票,则一共应付1320元.问:(1)如果两班联合起来,作为一个团体购票,可省多少钱?(2)两班各有多少名学生?参考答案与试题解析一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】B【考点】一元一次方程的解【解析】把x=1代入方程,即可得出一个关于k的一元一次方程,求出方程的解即可.【解答】把x=1代入方程x−2k3=12−32x得:1−2k3=12−32×1,解得:k=2,2.【答案】B【考点】一元一次方程的应用——打折销售问题【解析】此题暂无解析【解答】解:设该商品原价为:x元,∵ 某商品打七折后价格为a元,∵ 0.7x=a,则x=107a(元),故选B.3.【答案】B方程的定义【解析】方程是含有未知数的等式,是等式但不含未知数不是方程,含未知数不是等式也不是方程.【解答】(1)2x+1,含未知数但不是等式,所以不是方程.(2)1+7=15−8+1,是等式但不含未知数,所以不是方程.x=x−1,是含有未知数的等式,所以是方程.(3)1−12(4)x+2y=3,是含有未知数的等式,所以是方程.故有所有式子中有2个是方程.故选:B.4.【答案】D【考点】方程的解【解析】此题暂无解析【解答】解:∵ x=0是方程3x+(2a+1)=x−(3a+2)的解,∵ 2a+1=−(3a+2),,解得:a=−35故选D.5.【答案】B【考点】一元一次方程的应用——其他问题列代数式根据题意得出原正方形的边长,再得出新正方形的边长,继而得出答案.【解答】解:∵ 原正方形的周长为acm,cm,∵ 原正方形的边长为a4∵ 将它按图的方式向外等距扩1cm,+2)cm,∵ 新正方形的边长为(a4+2)=(a+8)(cm),则新正方形的周长为4(a4因此需要增加的长度为a+8−a=8(cm).故选B.6.【答案】B【考点】由实际问题抽象出一元一次方程【解析】设只会下围棋的有x人,则只会下象棋的有(x+5)人,根据该班有30人会下象棋或围棋且两种棋都会下的有17人,即可得出关于x的一元一次方程,此题得解.【解答】设只会下围棋的有x人,则只会下象棋的有(x+5)人,依题意,得:x+(x+5)+17=30.7.【答案】B【考点】一元一次方程的应用——其他问题解一元一次方程【解析】可设中间的数为x,根据竖列上相邻的数相隔7可得其余2个数,相加等于各选项中数字求解即可.【解答】解:A、设中间的数为x,则最小的数为x−7,最大的数为x+7.x+(x−7)+(x+7)=39,解得:x=13,故此选项错误;B、设中间的数为x,则最小的数为x−7,最大的数为x+7.x+(x−7)+(x+7)=43,解得:x=433,故此选项符合题意;C、设中间的数为x,则最小的数为x−7,最大的数为x+7.x+(x−7)+(x+7)=57,解得:x=19,故此选项错误;D、设中间的数为x,则最小的数为x−7,最大的数为x+7.x+(x−7)+(x+7)=66,解得:x=22,故此选项错误;故选B.8.【答案】D【考点】解一元一次方程【解析】方程两边乘以6去分母得到结果,即可做出判断.【解答】解:方程x3−x−12=1,等式两边同时乘6得:2x−3(x−1)=6.故选D.9.【答案】B【考点】等式的性质【解析】利用等式的性质对每个等式进行变形即可找出答案.【解答】解:A、利用等式性质1,两边都加c,得到a+c=b+c,所以A不成立,故A选项错误;B、利用等式性质2,两边都乘以c,得到a=b,所以B成立,故B选项正确;C、成立的条件c≠0,故C选项错误;D、成立的条件a≠0,故D选项错误.故选B.10.【答案】A【考点】解一元一次方程【解析】把X=2代入方程得到一个关于m的方程,求出方程的解即可【解答】解得:m=2,故选A.二、填空题(本题共计 4 小题,每题 4 分,共计16分)11.【答案】5【考点】解一元一次方程【解析】此题暂无解析【解答】解:由已知得:2x−2=3+x,移项合并得:x=5,故答案为:5.12.【答案】m≠2【考点】一元一次方程的定义【解析】依据一元一次方程的定义可知m−2≠0,从而可求得m的取值范围.【解答】解:∵ (m−2)x−1=0是关于x的一元一次方程,∵ m−2=0.∵ m≠2.故答案为:m≠2.13.【答案】9x+8,等式的性质1【考点】等式的性质【解析】根据等式的基本性质即可解答.【解答】解:两边同时加上9x得:5x+9x−8=7,两边再同时加上8得:14x=5,故5x−8=7−9x两边同时加上9x+8,得到14x=15,根据是:等式的性质1.故答案是:9x+8,等式的性质1.14.【答案】6【考点】一元一次方程的应用——工程进度问题【解析】可设甲种蔬菜种植了x亩,则乙种蔬菜种植了(10−x)亩,等量关系为:甲种蔬菜总获利+乙种蔬菜总获利=18000.【解答】解:设甲种蔬菜种植了x亩,则乙种蔬菜种植了(10−x)亩,依题意得2000x+1500(10−x)=18000,解得x=6,答:甲种蔬菜种植了6亩.故答案为6.三、解答题(本题共计 5 小题,共计74分)15.【答案】去括号得:8a+8−6a+8=13,移项得:8a−6a=13−8−8,合并得:2a=−3,解得:a=−1.5;去分母得:2(2x−1)=2x+1−6,去括号得:4x−2=2x+1−6,移项得:4x−2x=1−6+2,合并得:2x=−3,解得:x=−1.5;去分母得:10y−5(y−1)=20−2(y+2),去括号得:10y−5y+5=20−2y−4,移项得:10y−5y+2y=20−4−5,合并得:7y=11,解得:y=117;方程整理得:20x3+83=7−15x,去分母得:20x+8=21−45x,移项得:20x+45x=21−8,合并得:65x=13,解得:x=0.2.【考点】解一元一次方程【解析】(1)方程去括号,移项合并,把a系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把y系数化为1,即可求出解;(4)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】去括号得:8a+8−6a+8=13,移项得:8a−6a=13−8−8,合并得:2a=−3,解得:a=−1.5;去分母得:2(2x−1)=2x+1−6,去括号得:4x−2=2x+1−6,移项得:4x−2x=1−6+2,合并得:2x=−3,解得:x=−1.5;去分母得:10y−5(y−1)=20−2(y+2),去括号得:10y−5y+5=20−2y−4,移项得:10y−5y+2y=20−4−5,合并得:7y=11,解得:y=117;方程整理得:20x3+83=7−15x,去分母得:20x+8=21−45x,移项得:20x+45x=21−8,合并得:65x=13,解得:x=0.2.16.【答案】解:(1)设从甲班调x人到乙班,则:58−x=46+x;(2)设卖出全部商品共得到x元,则:25x=400.【考点】由实际问题抽象出一元一次方程【解析】(1)根据要使甲、乙两班的人数相等,表示出两班的人数即可得出等式;后,得到400元”,得出等式即可.(2)根据“卖出全部商品的25【解答】解:(1)设从甲班调x人到乙班,则:58−x=46+x;(2)设卖出全部商品共得到x元,则:2x=400.517.【答案】解:设该电器的成本价为x元,依题意有x(1+30%)×80%=2080.【考点】由实际问题抽象出一元一次方程【解析】设该电器的成本价为x元,根据成本价×(1+30%)×80%=售价为2080元可列出方程.【解答】解:设该电器的成本价为x元,依题意有x(1+30%)×80%=2080.18.【答案】长方形的长为10cm,宽为4cm.【考点】一元一次方程的应用——工程进度问题【解析】设长方形的长是xcm,根据正方形的边长相等即可列出方程求解.【解答】解:设长方形的长是xcm,则宽为(14−x)cm,根据题意得:x−2=(14−x)+4,解得:x=10,14−x=14−10=4.19.【解析】(1)根据题意得出两个班联合购票比分别购票的差值即可;(2)设(1)班有xx人,根据题意列出方程解答即可.【解答】解:(1)(1)1320−102×10=1320−102×10=300300(元)答:两个班联合购票比分别购票要省300300元.(2)(2)设(1)(1)班有xx人,因为(1)(1)班有4040多人,不足5050人,所以(2)(2)班人数必定大于5050,则:14x+12(102−x)=132014x+12(102−x)=1320,解得:x=48x=48,102−48=54102−48=54.答:(1)(1)班有4848人,(2)(2)班有5454人.【答案】解:(1)(1)1320−102×10=1320−102×10=300300(元)答:两个班联合购票比分别购票要省300300元.(2)(2)设(1)(1)班有xx人,因为(1)(1)班有4040多人,不足5050人,所以(2)(2)班人数必定大于5050,则:14x+12(102−x)=132014x+12(102−x)=1320,解得:x=48x=48,102−48=54102−48=54.答:(1)(1)班有4848人,(2)(2)班有5454人.。
七年级数学上册《一元一次方程单元测试卷》一、单项选择题:(本大题共10个小题,每小题3分,共30分,每小题给出的四个选项中,只有一项是符合题目要求的,将此选项的字母填在答题卡上)1.(3分)下列方程中,是一元一次方程的是()A.x2﹣4x=3 B.C.x+2y=1 D.xy﹣3=5 2.(3分)下列方程中,以x=﹣1为解的方程是()A.B.7(x﹣1)=0 C.4x﹣7=5x+7 D.x=﹣33.(3分)若关于x的一元一次方程的解是x=﹣1,则k的值是()A.B.1 C.D.04.(3分)若关于x的方程2x+a﹣4=0的解是x=﹣2,则a的值等于()A.﹣8 B.0 C.2 D.85.(3分)一个长方形的周长为26cm,这个长方形的长减少1cm,宽增加2cm,就可成为一个正方形,设长方形的长为xcm,则可列方程()A.x﹣1=(26﹣x)+2 B.x﹣1=(13﹣x)+2C.x+1=(26﹣x)﹣2 D.x+1=(13﹣x)﹣2 6.(3分)已知某商店有两个进价不同商品都卖了80元,其中一个盈利60%,另一个亏损20%,在这次买卖中,这家商店()A.盈利50元B.亏损10元C.盈利10元D.不盈不亏7.(3分)一件商品按成本价提高30%后标价,再打8折(标价的80%)销售,售价为312元,设这件商品的成本价为x元,根据题意,下面所列的方程正确的是()A.x•30%×80%=312 B.x•30%=312×80%C.312×30%×80%=x D.x(1+30%)×80%=312 8.(3分)一张试卷上有25道选择题:对一道题得4分,错一道得﹣1分,不做得﹣1分,某同学做完全部25题得70分,那么它做对题数为()A.17 B.18 C.19 D.20 9.(3分)若2x+1=4,则4x+1等于()A.6 B.7 C.8 D.9 10.(3分)甲比乙大15岁,5年前甲的年龄是乙的年龄的2倍,乙现在年龄是()A.30岁B.20岁C.15岁D.10岁二、填空题:(本大题共10小题,每小题3分,共30分.把答案写在答题卡中的横线上11.(3分)方程x﹣2=4的解是.12.(3分)如果关x的方程及的解相同,那么m的值是.13.(3分)轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3h,若静水时船速为26km/h,水速为2km/h,则A港和B港相距km.14.(3分)若2x﹣3=0且|3y﹣2|=0,则xy= .15.(3分)已知关于x的方程=4的解是x=4,则a= .16.(3分)当x= 时,3x+4及4x+6的值相等.17.(3分)如果单项式3a4x+1b2及可以合并为一项,那么x及y的值应分别为.18.(3分)关于x的两个方程5x﹣3=4x及ax﹣12=0的解相同,则a= .19.(3分)若a,b互为相反数,c,d互为倒数,p的绝对值等于2,则关于x的方程(a+b)x2+3cd•x﹣p2=0的解为x= .20.(3分)三个连续奇数的和是75,这三个数分别是.三、解答题(共9题,每题10分,满分90分)21.(10分)解方程(1)2x+5=3(x﹣1)(2)=﹣.22.(10分)用铝片做听装易拉饮料瓶,每张铝片可制瓶身16个或瓶底43个,一个瓶身配两个瓶底.现有150张铝片,用多少张制瓶身,多少张制瓶底,可以正好制成成套的饮料瓶?23.(10分)整理一批图书,如果由一个人单独做要用30h,现先安排一部分人用1h整理,随后又增加6人和他们一起又做了2h,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少?24.(10分)为了拓展销路,商店对某种照相机的售价做了调整,按原价的8折出售,此时的利润率为14%,若此种照相机的进价为1200元,问该照相机的原售价是多少元?25.(10分)已知x=﹣2是方程2x﹣|k﹣1|=﹣6的解,求k的值.26.(10分)初一学生王马虎同学在做作业时,不慎将墨水瓶打翻,使一道作业只能看到:甲、乙两地相距160千米,摩托车的速度为45千米/时,运货汽车的速度为35千米/时,?请你将这道作业题补充完整并列出方程解答.27.(10分)某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费.(1)某户八月份用电84千瓦时,共交电费30.72元,求a= .(2)若该用户九月份的平均电费为0.36元,则九月份共用电千瓦时,应交电费是元.28.(10分)国家规定个人发表文章、出版图书所得稿费的纳税计算方法是:①稿费不高于800元的不纳税;②稿费高于800元,而低于4000元的应缴纳超过800元的那部分稿费的14%的税;③稿费为4000元或高于4000元的应缴纳全部稿费的11%的税.试根据上述纳税的计算方法作答:(1)若王老师获得的稿费为2400元,则应纳税元,若王老师获得的稿费为4000元,则应纳税元;(2)若王老师获稿费后纳税420元,求这笔稿费是多少元?29.(10分)(应用题)某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场同时购进其中两种不同型号电视机共50台,用去9万元,请你研究一下商场的进货方案;(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号电视机的方案中,为使销售利润最多,你选择哪一种进货方案?七年级数学上册《一元一次方程》单元测试卷参考答案及试题解析一、单项选择题:(本大题共10个小题,每小题3分,共30分,每小题给出的四个选项中,只有一项是符合题目要求的,将此选项的字母填在答题卡上)1.(3分)下列方程中,是一元一次方程的是()A.x2﹣4x=3 B.C.x+2y=1 D.xy﹣3=5【分析】根据一元一次方程的定义:只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程可得答案.【解答】解:A、是一元二次方程,故此选项错误;B、是一元一次方程,故此选项正确;C、是二元一次方程,故此选项错误;D、是二元二次方程,故此选项错误;故选:B.【点评】此题主要考查了一元一次方程的定义,关键是掌握只含有一个未知数,未知数的指数是1,一次项系数不是0.2.(3分)下列方程中,以x=﹣1为解的方程是()A.B.7(x﹣1)=0 C.4x﹣7=5x+7 D.x=﹣3【分析】方程的解的定义,就是能够使方程左右两边相等的未知数的值.所以把x=﹣1分别代入四个选项进行检验即可.【解答】解:A、把x=﹣1代入方程的左边=右边=﹣2,是方程的解;B、把x=﹣1代入方程的左边=﹣14≠右边,所以不是方程的解;C、把x=﹣1代入方程的左边=﹣11≠右边,不是方程的解;D、把x=﹣1代入方程的左边=﹣≠右边,不是方程的解;故选:A.【点评】本题的关键是正确理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.3.(3分)若关于x的一元一次方程的解是x=﹣1,则k的值是()A.B.1 C.D.0【分析】方程的解,就是能够使方程两边左右相等的未知数的值,即利用方程的解代替未知数,所得到的式子左右两边相等.已知x=﹣1是方程的解实际就是得到了一个关于k的方程,解方程就可以求出k的值.【解答】解:把x=﹣1代入方程得:﹣=1,解得:k=1故选:B.【点评】本题主要考查了方程解的定义,是一个基础的题目,注意细心运算即可.4.(3分)若关于x的方程2x+a﹣4=0的解是x=﹣2,则a的值等于()A.﹣8 B.0 C.2 D.8【分析】把x=﹣2代入方程即可得到一个关于a的方程,解方程即可求解.【解答】解:把x=﹣2代入方程得:﹣4+a﹣4=0,解得:a=8.故选:D.【点评】本题考查了方程的解的定义,方程的解就是能使方程左右两边相等的未知数的值.5.(3分)一个长方形的周长为26cm,这个长方形的长减少1cm,宽增加2cm,就可成为一个正方形,设长方形的长为xcm,则可列方程()A.x﹣1=(26﹣x)+2 B.x﹣1=(13﹣x)+2C.x+1=(26﹣x)﹣2 D.x+1=(13﹣x)﹣2【分析】首先理解题意找出题中存在的等量关系:长方形的长﹣1cm=长方形的宽+2cm,根据此列方程即可.【解答】解:设长方形的长为xcm,则宽是(13﹣x)cm,根据等量关系:长方形的长﹣1cm=长方形的宽+2cm,列出方程得:x﹣1=(13﹣x)+2,故选:B.【点评】列方程解应用题的关键是找出题目中的相等关系,有的题目所含的等量关系比较隐藏,要注意仔细审题,耐心寻找.6.(3分)已知某商店有两个进价不同商品都卖了80元,其中一个盈利60%,另一个亏损20%,在这次买卖中,这家商店()A.盈利50元B.亏损10元C.盈利10元D.不盈不亏【分析】设盈利60%的进价为x元,亏损20%的进价为y元,根据销售问题的数量关系建立方程求出其解即可.【解答】解:设盈利60%的进价为x元,亏损20%的进价为y元,由题意,得x(1+60%)=80,y(1﹣20%)=80,解得:x=50,y=100,∴成本为:50+100=150元.∵售价为:80×2=160元,利润为:160﹣150=10元故选:C.【点评】本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,销售问题的数量关系利润=售价﹣进价的运用,解答时由销售问题的数量关系建立方程是关键.7.(3分)一件商品按成本价提高30%后标价,再打8折(标价的80%)销售,售价为312元,设这件商品的成本价为x元,根据题意,下面所列的方程正确的是()A.x•30%×80%=312 B.x•30%=312×80%C.312×30%×80%=x D.x(1+30%)×80%=312【分析】先算出标价,再算售价,列出方程即可.【解答】解:由题意得:x(1+30%)×80%=312,故选:D.【点评】本题考查了由实际问题抽象出一元一次方程,掌握找出等量关系是解题的关键.8.(3分)一张试卷上有25道选择题:对一道题得4分,错一道得﹣1分,不做得﹣1分,某同学做完全部25题得70分,那么它做对题数为()A.17 B.18 C.19 D.20【分析】设某同学做对了x道题,那么他做错了25﹣x道题,他的得分应该是4x﹣(25﹣x)×1,据此可列出方程.【解答】解:设该同学做对了x题,根据题意列方程得:4x﹣(25﹣x)×1=70,解得x=19.故选:C.【点评】本题考查了一元一次方程的应用,难度不大,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.9.(3分)若2x+1=4,则4x+1等于()A.6 B.7 C.8 D.9【分析】由已知等式变形求出2x的值,代入原式计算即可得到结果.【解答】解:由2x+1=4,得到2x=3,则原式=6+1=7.故选:B.【点评】此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.10.(3分)甲比乙大15岁,5年前甲的年龄是乙的年龄的2倍,乙现在年龄是()A.30岁B.20岁C.15岁D.10岁【分析】本题等量关系为:5年前甲的年龄=2×5年前乙的年龄.可设乙现在的年龄为x岁,则甲为(x+15)岁,根据等量关系列方程求解.【解答】解:设乙现在x岁,则5年前甲为(x+15﹣5)岁,乙为(x ﹣5)岁,由题意得:x+15﹣5=2(x﹣5)解得x=20故选:B.【点评】解题关键是读懂题意,找到合适的等量关系,列出方程.二、填空题:(本大题共10小题,每小题3分,共30分.把答案写在答题卡中的横线上11.(3分)方程x﹣2=4的解是x=9 .【分析】方程去分母,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得:2x﹣6=12,移项合并得:2x=18,解得:x=9,故答案为:x=9【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.12.(3分)如果关x的方程及的解相同,那么m的值是±2 .【分析】本题中有两个方程,且是同解方程,一般思路是:先求出不含字母系数的方程的解,再把解代入到含有字母系数的方程中,求字母系数的值.【解答】解:解方程=整理得:15x﹣3=42,解得:x=3,把x=3代入=x+4+2|m|得=3++2|m|解得:|m|=2,则m=±2.故答案为±2.【点评】本题考查了同解方程,使方程左右两边相等的未知数的值是该方程的解,因此检验一个数是否为相应的方程的解,就是把这个数代替方程中的未知数,看左右两边的值是否相等.13.(3分)轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3h,若静水时船速为26km/h,水速为2km/h,则A港和B 港相距504 km.【分析】根据逆流速度=静水速度﹣水流速度,顺流速度=静水速度+水流速度,表示出逆流速度及顺流速度,根据题意列出方程,求出方程的解即可得到结果.【解答】解:设A港及B港相距xkm,根据题意得:+3=,解得:x=504,则A港及B港相距504km.故答案为:504.【点评】此题考查了一元二次方程的应用,找出题中的等量关系是解本题的关键.14.(3分)若2x﹣3=0且|3y﹣2|=0,则xy= 1 .【分析】根据0的绝对值为0,得3y﹣2=0,解方程得x,y的值,再求积即可.【解答】解:解方程2x﹣3=0,得x=.由|3y﹣2|=0,得3y﹣2=0,解得y=.∴xy==1.【点评】本题的关键是正确解一元一次方程以及绝对值的定义.15.(3分)已知关于x的方程=4的解是x=4,则a= 0 .【分析】把x=4代入方程=4得关于a的方程,再求解即得a的值.【解答】解:把x=4代入方程=4,得:=4,解方程得:a=0.故填0.【点评】本题的关键是正确解一元一次方程.理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.16.(3分)当x= ﹣2 时,3x+4及4x+6的值相等.【分析】根据题意,可列关于x的方程3x+4=4x+6,再解方程,即可得x的值.【解答】解:根据题意得:3x+4=4x+6,解方程得:x=﹣2.故填﹣2.【点评】解决此类问题的关键是列方程并求解,属于基础题.17.(3分)如果单项式3a4x+1b2及可以合并为一项,那么x及y的值应分别为1和2 .【分析】两个式子可以合并,即两个式子是同类项,依据同类项的概念,相同字母的指数相同,即可求得x,y的值.【解答】解:根据题意得:4x+1=5且2=3y﹣4解得:x=1,y=2.【点评】本题主要考查了同类项的定义,同类项的概念是所含字母相同,相同字母的指数也相同的项是同类项,不是同类项的一定不能合并.18.(3分)关于x的两个方程5x﹣3=4x及ax﹣12=0的解相同,则a= 4 .【分析】先求方程5x﹣3=4x的解,再代入ax﹣12=0,求得a的值.【解答】解:解方程5x﹣3=4x,得x=3,把x=3代入ax﹣12=0,得3a﹣12=0,解得a=4.故填:4.【点评】此题主要考查了一元一次方程解的定义.解答此题的关键是熟知方程组有公共解的含义,考查了学生对题意的理解能力.19.(3分)若a,b互为相反数,c,d互为倒数,p的绝对值等于2,则关于x的方程(a+b)x2+3cd•x﹣p2=0的解为x= .【分析】由相反数得出a+b=0,由倒数得出cd=1,由绝对值得出p=±2,然后将其代入关于x的方程(a+b)x2+3cd•x﹣p2=0中,从而得出x的值.【解答】解:∵a,b互为相反数,c,d互为倒数,p的绝对值等于2,∴a+b=0,cd=1,p=±2,将其代入关于x的方程(a+b)x2+3cd•x﹣p2=0中,可得:3x﹣4=0,解得:x=.【点评】主要考查了相反数,倒数,绝对值的概念及其意义,并利用这些概念得到的数量关系代入含有字母系数的方程中,利用一元一次方程求出未知数的值.20.(3分)三个连续奇数的和是75,这三个数分别是23,25,27 .【分析】利用“三个连续奇数的和是75”作为等量关系列方程求解.就要先设出一个未知数,然后根据题中的等量关系列方程求解.【解答】解:设最小的奇数为x,则其他的为x+2,x+4∴x+x+2+x+4=75解得:x=23这三个数分别是23,25,27.故填:23,25,27.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的数量关系,列出方程,再求解.此题中要熟悉连续奇数的表示方法.相邻的两个连续奇数相差2.三、解答题(共9题,每题10分,满分90分)21.(10分)解方程(1)2x+5=3(x﹣1)(2)=﹣.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:2x+5=3x﹣3,解得:x=8;(2)去分母得:15x﹣3=18x+6﹣8+4x,移项合并得:7x=﹣1,解得:x=﹣.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.22.(10分)用铝片做听装易拉饮料瓶,每张铝片可制瓶身16个或瓶底43个,一个瓶身配两个瓶底.现有150张铝片,用多少张制瓶身,多少张制瓶底,可以正好制成成套的饮料瓶?【分析】设用x张铝片做瓶身,则用(150﹣x)张铝片做瓶底,通过理解题意可知本题的等量关系,即做瓶底所用的铝片=制瓶身所用的铝片的两倍.根据这个等量关系,可列出方程,再求解.【解答】解:设用x张铝片做瓶身,则用(150﹣x)张铝片做瓶底,根据题意得:2×16x=43×(150﹣x),解得:x=86,则用150﹣86=64张铝片做瓶底.答:用86张铝片做瓶身,则用64张铝片做瓶底.【点评】解题关键是要读懂题目的意思,正确理解:一个瓶身配两个瓶底是解题的关键.23.(10分)整理一批图书,如果由一个人单独做要用30h,现先安排一部分人用1h整理,随后又增加6人和他们一起又做了2h,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少?【分析】安排整理的人员有x人,则随后又(x+6)人,根据题意可得等量关系:开始x人1小时的工作量+后来(x+6)人2小时的工作量=1,把相关数值代入即可求解.【解答】解:设首先安排整理的人员有x人,由题意得:x+(x+6)×2=1,解得:x=6.答:先安排整理的人员有6人.【点评】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.此题用到的公式是:工作效率×工作时间=工作量.24.(10分)为了拓展销路,商店对某种照相机的售价做了调整,按原价的8折出售,此时的利润率为14%,若此种照相机的进价为1200元,问该照相机的原售价是多少元?【分析】设该照相机的原售价是x元,从而得出售价为0.8x,等量关系:实际售价=进价(1+利润率),列方程求解即可.【解答】解:设该照相机的原售价是x元,根据题意得:0.8x=1200×(1+14%),解得:x=1710.答:该照相机的原售价是1710元.【点评】此题考查了一元一次方程的应用,及实际结合,是近几年的热点考题,首先读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解25.(10分)已知x=﹣2是方程2x﹣|k﹣1|=﹣6的解,求k的值.【分析】把x=﹣2代入方程,推出|k﹣1|=2,得到方程k﹣1=2,k ﹣1=﹣2,求出方程的解即可.【解答】解:∵x=﹣2是方程2x﹣|k﹣1|=﹣6的解,∴代入得:﹣4﹣|k﹣1|=﹣6,∴|k﹣1|=2,∴k﹣1=2,k﹣1=﹣2,解得:k=3,k=﹣1,答:k的值是3或﹣1.【点评】本题主要考查对绝对值,含绝对值的一元一次方程,解一元一次方程等知识点的理解和掌握,能得到方程k﹣1=2和k﹣1=﹣2是解此题的关键.26.(10分)初一学生王马虎同学在做作业时,不慎将墨水瓶打翻,使一道作业只能看到:甲、乙两地相距160千米,摩托车的速度为45千米/时,运货汽车的速度为35千米/时,?请你将这道作业题补充完整并列出方程解答.【分析】本题较明确的量有:路程,速度,所以应该问的是时间.可根据路程=速度×时间来列等量关系.【解答】解:应补充的内容为:摩托车从甲地,运货汽车从乙地,同时相向出发,两车几小时相遇?设两车x小时相遇,则:45x+35x=160解得:x=2答:两车2小时后相遇.【点评】本题缺少条件,路程问题里只有相遇问题和追及问题,也应根据此来补充条件.需注意在补充条件时应强调时间,方向两方面的内容.27.(10分)某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费.(1)某户八月份用电84千瓦时,共交电费30.72元,求a= 60 .(2)若该用户九月份的平均电费为0.36元,则九月份共用电90 千瓦时,应交电费是32.40 元.【分析】(1)根据题中所给的关系,找到等量关系,共交电费是不变的,然后列出方程求出a;(2)先设九月份共用电x千瓦时,从中找到等量关系,共交电费是不变的,然后列出方程求出x.【解答】解:(1)由题意,得0.4a+(84﹣a)×0.40×70%=30.72,解得a=60;(2)设九月份共用电x千瓦时,则0.40×60+(x﹣60)×0.40×70%=0.36x,解得x=90,所以0.36×90=32.40(元).答:九月份共用电90千瓦时,应交电费32.40元.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.28.(10分)国家规定个人发表文章、出版图书所得稿费的纳税计算方法是:①稿费不高于800元的不纳税;②稿费高于800元,而低于4000元的应缴纳超过800元的那部分稿费的14%的税;③稿费为4000元或高于4000元的应缴纳全部稿费的11%的税.试根据上述纳税的计算方法作答:(1)若王老师获得的稿费为2400元,则应纳税224 元,若王老师获得的稿费为4000元,则应纳税440 元;(2)若王老师获稿费后纳税420元,求这笔稿费是多少元?【分析】本题列出了不同的判断条件,要将本题中的稿费金额按照三种不同的条件进行分类讨论,然后再根据等量关系列方程求解.【解答】解:(1)若王老师获得的稿费为2400元,则应纳税224元,若王老师获得的稿费为4000元,则应纳税440元;(2)因为王老师纳税420元,所以由(1)可知王老师的这笔稿费高于800元,而低于4000元,设王老师的这笔稿费为x元,根据题意得:14%(x﹣800)=420x=3800元.答:王老师的这笔稿费为3800元.【点评】解题关键是要读懂题目的意思,依据题目给出的不同条件进行判断,然后分类讨论,再根据题目给出的条件,找出合适的等量关系,列出方程,求解.29.(10分)(应用题)某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场同时购进其中两种不同型号电视机共50台,用去9万元,请你研究一下商场的进货方案;(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号电视机的方案中,为使销售利润最多,你选择哪一种进货方案?【分析】(1)因为要购进两种不同型号电视机,可供选择的有3种,那么将有三种情况:甲乙组合,甲丙组合,乙丙组合.等量关系为:台数相加=50,钱数相加=90000;(2)算出各方案的利润加以比较.【解答】解:(1)解分三种情况计算:①设购甲种电视机x台,乙种电视机y台.解得.②设购甲种电视机x台,丙种电视机z台.则,解得:.③设购乙种电视机y台,丙种电视机z台.则解得:(不合题意,舍去);(2)方案一:25×150+25×200=8750.方案二:35×150+15×250=9000元.答:购甲种电视机25台,乙种电视机25台;或购甲种电视机35台,丙种电视机15台.购买甲种电视机35台,丙种电视机15台获利最多.【点评】本题主要考查学生的分类讨论思想和对于实际问题中方程组解的取舍情况.弄清题意,合适的等量关系,列出方程组仍是解决问题的关键.本题还需注意可供选择的将有三种情况:甲乙组合,甲丙组合,乙丙组合.欢迎您的光临,Word文档下载后可修改编辑.双击可删除页眉页脚.谢谢!希望您提出您宝贵的意见,你的意见是我进步的动力。
人教版七年级数学上册《一元一次方程》练习题-带答案学校:___________班级:___________姓名:___________考号:___________1.已知数轴上的点 A ,B 对应的数分别是 x ,y ,且 ()21002000x y ++-=∣∣,点 P 为数轴上从原点出发的一个动点,速度为 30 单位长度/秒.(1)求点A ,B 两点在数轴上对应的数,及A ,B 之间的距离. (2)若点A 向右运动,速度为 10 单位长度/秒,点B 向左运动,速度为 20 单位长度/秒,点A ,B 和 P 三点同时开始运动,点 P 先向右运动,遇到点 B 后立即掉后向左运动,遇到点A 再立即掉头向右运动,如此往返,当 A ,B 两点相距 30 个单位长度时,点 P 立即停止运动,求此时点P 移动的路程为多少个单位长度?(3)若点 A ,B ,P 三个点都向右运动,点 A ,B 的速度分别为 10 单位长度/秒,20 单位长度/秒,点 M ,N 分别是AP ,OB 的中点,设运动的时间为 t (0t 10<<),在运动过程中①OA PB MN - 的值不变;② OA PBMN+ 的值不变,可以证明,只有一个结论是正确的,请你找出正确的结论并求值.2.已知数轴上的点 A ,B 对应的数分别是 x ,y ,且 ()21002000x y ++-=,点 P 为数轴上从原点出发的一个动点,速度为 30 单位长度/秒.(1)求点A ,B 两点在数轴上对应的数,及 A ,B 之间的距离.(2)若点 A 向右运动,速度为 10 单位长度/秒,点 B 向左运动,速度为 20 单位长度/秒,点 A ,B 和 P 三点同时开始运动,点 P 先向右运动,遇到点 B 后立即掉后向左运动,遇到点 A 再立即掉头向右运动,如此往返,当 A ,B 两点相距 30 个单位长度时,点 P 立即停止运动,求此时点 P 移动的路程为多少个单位长度?(3)若点 A ,B ,P 三个点都向右运动,点 A ,B 的速度分别为 10 单位长度/秒,20 单位/秒,点 M ,N 分别是AP ,OB 的中点,设运动的时间为 ()010t t <<,请证明在运动过程中OA PB MN + 的值不变,并求出OA PBMN+值. 3.在数轴上,点A B 、分别表示数a b 、,且6100a b ++-=,动点P 从点A 出发,以每秒2个单位长度的速度沿数轴向右运动,点M 始终为线段AP 的中点,设点P 运动的时间为x 秒.则:()1在点P 运动过程中,用含x 的式子表示点P 在数轴上所表示的数.()2当2PB AM =时,点P 在数轴上对应的数是什么?()3设点N 始终为线段BP 的中点,某同学发现,当点P 运动到点B 右侧时,线段MN 长度始终不变.请你判断该同学的说法是否正确,并加以证明.4.我们可以将任意三位数表示为abc =(其中a 、b 、c 分别表示百位上的数字,十位上的数字和个位上的数字,且0a ≠).显然,10010abc a b c =++;我们把形如xyz 和zyx 的两个三位数称为一对“姊妹数”(其中x 、y 、z 是三个连续的自然数)如:123和321是一对姊妹数,678和876是一对“姊妹数”.(1)写出任意三对“姊妹数”,并判断2331是否是一对“姊妹数”的和; (2)如果用x 表示百位数字,求证:任意一对“姊妹数”的和能被37整除. 5.已知关于x 的方程2233x x +=+的两个解是1223,3x x ==; 又已知关于x 的方程2244x x +=+的两个解是1224,4x x ==; 又已知关于x 的方程2255x x +=+的两个解是1225,5x x ==;⋯小王认真分析和研究上述方程的特征,提出了如下的猜想. 关于x 的方程22x c x c +=+的两个解是122,x c x c==;并且小王在老师的帮助下完成了严谨的证明(证明过程略).小王非常高兴,他向同学提出如下的问题. (1)关于x 的方程221111x x+=+的两个解是1x = 和2x = ;(2)已知关于x 的方程2212111x x +=+-,则x 的两个解是多少? 6.如果一个多位自然数的任意两个相邻数位上,左边数位上的数总比右边数位上数大1,那么我们把这样的自然数叫做“妙数”.例如:321,6543,98,…都是“妙数”. (1)若某个“妙数”恰好等于其个位数的153倍,则这个“妙数”为 .(2)证明:任意一个四位“妙数”减去任意一个两位“妙数”之差再加上1得到的结果一定能被11整除.(3)在某个三位“妙数”的左侧放置一个一位自然数m 作为千位上的数字,从而得到一新的四位自然数A ,且m 大于自然数A 百位上的数字,否存在一个一位自然数n ,使得自然数(9A+n )各数位上的数字全都相同?若存在请求出m 和n 的值;若不存在,请说明理由. 7.如图,已知数轴上点A 表示的数为a ,B 表示的数为b ,满足16120a b -++=.动点P 从点A 出发以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t 秒.(1)写出数轴上点A 表示的数是 ,点B 表示的数是 ;(2)若点P 从A 点出发向左运动,点Q 为AP 的中点,在点P 到达点B 之前,求证BA BPBQ+为定值;(3)现有动点M ,若点M 从点B 以每秒5个单位长度的速度沿数轴向右运动,同时点P 出发,当点P 到达原点O 后M 立即以每秒2个单位长度的速度沿数轴向左运动,求:当3OP OM =时,则P 点运动时间t 的值为 .8.【阅读理解】点A 、B 在数轴上对应的数分别是a ,b ,且()2280a b ++-=.A 、B 两点的中点表示的数为2a b+;当b a >时,A 、B 两点间的距离为AB b a =-. (1)求AB 的长.(2)点C 在数轴上对应的数为x ,且x 是方程282x x +=-的解,在数轴上是否存在点P ,使图1 图2(1)a可以用含e的代数式表示为____________;(2)若42++=时,求出图2中c所表示的日期;a e i(3)在这个月的日历中,求证:e f h i+++的值能被4整除.参考答案:1.【答案】(1)点A,B 两点在数轴上对应的数分别为-100,200,A,B 之间的距离为300(2)点 P 移动的路程为270或330个单位长度 (3)②正确2OA PBMN+= 2.【答案】(1)解:()21002000x y ++-=1000x ∴+= 2000y -=解得100x =- 200y =即点A ,B 两点在数轴上对应的数分别为-100,200,A ,B 之间的距离为300; (2)解: 设点P 运动时间为x 秒时,A ,B 两点相距30个单位长度. 由题意得102030030x x +=- 102030030x x +=+ 解得:9x =,或11x = 则此时点P 移动的路程为309270⨯=,或 3011330⨯=即P 走的路程为 270 或 330;(3)解:运动t 秒后A ,P ,B 三点所表示的数为10010t -+ 30t 20020t +010t <<20010PB t ∴=- 10010OA t =- 301001020100PA t t t =+-=+ 20020OB t =+M ,N 分别是AP ,OB 的中点∴N 表示的数为10010t +,M 表示的数为2050t -15010MN t ∴=-30020OA PB t +=- 2OA PBMN+∴=. 3.【答案】(1)62x -+;(2)P 点在数轴上表示的数为2;(3)正确,MN 的长度不变,为定值84.【答案】解:(1)根据题意得:234与432,345与543,567与765均是一对姊妹数; 设这对“姊妹数”的一个三位数的十位数为b ,则个位数为(b -1),百位数为(b +1),其中位“妙数”,再将四位“妙数”减去任意一个两位“妙数”之差再加上1的结果除以11判断结果是否为整数即可;(3)设三位“妙数”的个位为z ,可知A=1000m+111z+210,继而可得9A+n=9000m+999z+1890+n=1000(9m+z+1)+800+90+n ﹣z ,由﹣8≤n﹣z≤9、1000(9m+z+1)≤1000(9×9+9+1)=91000知其百位数一定是8,且该数为5位数,若存在则该数为88888,从而得出1000(91)88000{9088m z n z ++=+-=,即9m+z=87、n ﹣z=﹣2,由m >z+2知z <m ﹣2,而z=87﹣9m <m ﹣2,解之可得m >8.9,即可得m 值,进一步即可得答案. 7.【答案】(1)解:∵16120a b -++= ∴160-=a 120b += ∴16a = 12b =-∴点A 表示的数是16,点B 表示的数是12-. 故答案为:16;-12.(2)证明:∵点A 表示的数是16,点B 表示的数是12- ∴161228AB () 12OB = 16OA =∵动点P 从点A 出发以每秒4个单位长度的速度沿数轴向左匀速运动,运动时间为t 秒 ∴4AP t = 284BP AB AP t =-=- ∵点Q 为AP 的中点 ∴114222AQ AP t t ==⨯= ∴282BQ AB AQ t =-=-在点P 到达点B 之前,即0<t <7时282845642282282BA BP t tBQ t t++--===-- ∴BA BPBQ+为定值. (3)∵点M 从点B 以每秒5个单位长度的速度沿数轴向右运动,同时点P 出发,运动时间为()1643125t t解得:2011t=当点M在原点O的右侧,点512OM t=-16OP=()1643512t t解得:5219t=当点P到达原点O时,运动时间为这时点M在原点O的右侧,22)3(82t 解得:2125t=1212 45t t+=+=②当点M在原点∴228OM t =- 24OP t = ∵3OP OM = ∴22)43(28t t解得:212t =∴1241216t t t =+=+= (秒)综上所述,当3OP OM =时,则P 点运动时间t 的值为2011秒或5219秒或325秒或16秒.故答案为:2011秒或5219秒或325秒或16秒.8.【答案】(1)解:22(8)0a b ++-=∴2,8a b =-= ∴10AB =(2)解:282x x +=-∴10x =-∴点C 表示的数为10-设点P 对应的数为y ,由题可知,点P 不可能位于点A 的左侧,所以 ①当点P 在点B 右侧∴(8)[(2)](10)y y y -+--=-- ∴16y =②当点P 在A B 、之间 ∴(8)[(2)](10)y y y -+--=-- ∴0y =综上所述,点P 对应的数为16或0(3)证明:设运动时间为t ,则点E 对应的数是t ,点M 对应的数是28t -- 点N 对应的数是85t +P 是ME 的中点又Q)解:2,=-a c=+6,e c ia42c++=614)解:1,=+f e+=++i e ee+能被4整除4(4)∴e f i+++能被410.【答案】(1)证明:设则其“添彩数”与“减压数”分别为:第 11 页 共 11 页 =110a+11b=11(10a+b )∴对任意一个两位正整数M ,其“添彩数”与“减压数”之和能被11整除.(2)设N 的十位数字为x ,个位数字为y则其“添彩数”与“减压数”分别为:100x+10y+6;10x+y-6∴100()18106106x y f N x y +++-=≤∵10x+y -6>0∴整理得40457x y +≥∵x 为1-9的整数,y 为0-9的整数∴x 值只能为1,此时,解得174y ≥,则y 的可能值为5,6,7,8,9, 则N 的可能值为15,16,17,18,19∵()f N 为整数∴只有N=17时,176(117)161=f =为整数 ∴N 的值为17.。
七年级上册数学一元一次方程试卷一、单项选择题(本大题有12小题,每小题4分,共48分)1、解下列方程:(3x−7=8)A.(x=5)B.(x=3)C.(x=4)D.(x=6)答案: C.(x=5)解析: 将方程两边同时加上7得到(3x=15),再将两边同时除以3得到(x=5)。
2、如果(2(x−4)=10),那么(x)的值是多少?A.(x=7)B.(x=9)C.(x=8)D.(x=6)答案: B.(x=9)解析: 先展开方程得到(2x−8=10),然后将方程两边同时加上8得到(2x=18),最后两边同时除以2得到(x=9)。
3、对于方程(4(2y+3)−5=31),求(y)的值。
A.(y=2)B.(y=3)D.(y=1)答案: A.(y=2)解析: 首先展开方程得到(8y+12−5=31),简化后得到(8y+7=31)。
接着将方程两边同时减去7得到(8y=24),最后两边同时除以8得到(y=3)。
让我们来验证这些答案是否正确。
经过验证,上述单项选择题的答案如下:1、正确答案为 C.(x=5)2、正确答案为 B.(x=9)3、正确答案为 C.(y=3)根据解析过程,我们发现第3题的答案选项中的确应该是 C.(y=3)而不是(y=2)。
因此,请允许我更正第3题的答案和解析:3、对于方程(4(2y+3)−5=31),求(y)的值。
A.(y=2)B.(y=3)C.(y=4)D.(y=1)答案: C.(y=3)解析: 首先展开方程得到(8y+12−5=31),简化后得到(8y+7=31)。
接着将方程两边同时减去7得到(8y=24),最后两边同时除以8得到(y=3)。
4、解下列方程(3x−7=5)的解是:A.(x=1)B.(x=2)D.(x=4)答案: C.(x=3)解析:将方程两边同时加上7得(3x=12),再除以3得到(x=4)。
但注意到这里有个小陷阱,正确解法应该是先加7再除以3,即(3x=12),因此(x=4)是正确的解。
人教版七年级数学上册《第五单元一元一次方程》单元测试题-附答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.一元一次方程2x-1=7的解是()A.x=3B.x=4C.x=5D.x=62.下列变形中,正确的是()A.若5x−6=7,则5x=7−6B.若5x−3=4x+2,则5x−4x=2+3C.若−3x=5,则x=−35D.若x−13+x+12=1,则2(x−1)+3(x−1)=13.把方程2x−14=1−3−x8去分母后,正确的结果是().A.2x−1=1−(3−x)B.2(2x−1)=1−(3−x)C.2(2x−1)=8−(3−x)D.2(2x−1)=8−(3+x)4.若关于x的方程ax-4=a的解是x=-3,则a的值是()A.-2B.2C.-1D.15.要组织一场篮球联赛,每两队之间只赛一场,计划安排15场比赛,如果邀请x个球队参加比赛,根据题意,列出方程为()A.x(x−1)=15B.x(x+1)=15C.x(x−1)2=15D.x(x+1)2=156.我国元代朱世杰所著的《算学启蒙》一书中,有一道题目是“今有良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之.”译文:跑得快的马每日走240里,跑得慢的马每日走150里,慢马先走12天,快马几天可以追上慢马?则下列回答正确的是().A.15天B.16天C.18天D.20天7.如图一个正方形先剪去宽为4的长方形,再剪去宽为5的长方形,且剪下来的两个长方形面积相等,那么原正方形的边长为()A.20B.16C.15D.138.若关于x的方程kx+26=12x−23的解为正整数,则所有符合条件的整数k的和为()A.0B.3C.−2D.−39.如图,这是一个用50个奇数排成的数阵,用三角形的框去框住四个数,并求出这四个数的和.在下列给出的选项中,可能是这四个数的和的是()A.146B.150C.198D.210二、填空题10.如果3x−2与2x+1的值相同;那么x=.11.将方程x+24=2x+36的两边同乘12,可得到3(x+2)=2(2x+3),这种变形叫,其依据是.12.一张桌子由一个桌面和四条脚组成,1立方米的木材可制成桌面50张或制作桌脚300条,现有10立方米的木材,问应如何分配木材,可以使桌面和桌脚配套?设用x立方米的木材做桌面,可列方程.13.如果x=4是方程ax=a+3的解,那么a的值为 .14.为了搞活经济,商场将一种商品A按标价的9折出售(即优惠10%)仍可得利润10%,若商品标价为33元,那么该商品的进货价为 .15.如图一个简单的数值运算程序,当输入x的值-1时,则输出的答案是5,则k的值是.16.爸爸今年的年龄是儿子年龄的13倍,6年后,儿子年龄是爸爸年龄的14,则今年爸爸岁,儿子岁.17.如图,两人沿着边长为70米的正方形,按A→B→C→D→A…的方向行走.甲从点A以65米/分的速度、乙从点B以72米/分的速度行走,甲、乙两人同时出发,当乙第一次追上甲时,将在正方形的边上.三、解答题18.解方程(1)4x+3=5x−1(2)3−2(x+1)=2(x−3)(3)x−24−2x−36=1(4)x−1−x3=x+26−119.小亮是一名七年级学生,在解方程2x−13−2x+m2=10x+16−1时,由于忽视了去分母后分式的分子要加括号,结果方程变形为4x−2−6x+3m=10x+1−6,从而求得方程错误的解为x=12,你能求出m的值吗?如果能,请求出m的值和方程正确的解.20.在大约1500年前的《孙子算经》中记载了这样一个有趣的问题:今有鸡兔同笼,上有头三十五,下有足九十四.问鸡、兔各多少.21.阅读下面的解题过程:解方程:|3x|=6.解:分两种情况:(1)当3x≥0时,原方程可化为一元一次方程3x=6,解得x=2;(2)当3x<0时,原方程可化为一元一次方程﹣3x=6,解得x=﹣2;综合(1)、(2),方程的解为x=2或x=﹣2.请仿照上面例题的解法,解方程:3|x﹣1|﹣2=10.22.某商品的进价为200元,标价为300元,打折销售后的利润率为5%,问此商品是按几折销售的?23.云南省某工厂制作一批零件,由一名工人做要80h完成,现计划由一部分工人先做2h,然后增加5名工人与他们一起做8h,完成了这项工作.假设这些工人的工作效率相同,应先安排几名工人工作?24.根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定对居民生活用电实施“阶梯电价”收费,具体收费标准见下表:一户居民一个月用电量的范围电费价格(单位:元/千瓦时)不超过150千瓦时的部分a超过150千瓦时,但不超过300千瓦时的部分0.6超过300千瓦时的部分a+0.3实施“阶梯电价”收费以后,该市居民陈先生家积极响应号召节约用电,10月用电100千瓦时,交电费50元.(1)a=.(2)陈先生家11月用电280千瓦时,应交费多少元?(3)若陈先生家12月份与11月的电费相差60元,求陈先生家12月份用电量是多少?25.在一元一次方程中,如果两个方程的解相同,则称这两个方程为同解方程.(1)若关于x的两个方程2x=4与mx=m+1是同解方程,求m的值;(2)已知关于x的方程9x−3=kx+14有整数解,那么满足条件的所有整数k=_______.(3)若关于x的两个方程5x+343(m+1)=mn与2x−mn=−193(m+1)是同解方程,求此时符合要求的正整数m,n的值.参考答案1.【答案】B2.【答案】B3.【答案】C4.【答案】C5.【答案】C6.【答案】D7.【答案】A8.【答案】A9.【答案】D10.【答案】D11.【答案】去分母等式的基本性质(或方程的变形规则)或填:等式的两边都乘以(或都除以)同一个数(除数不能为0)所得结果仍是等式。
人教版七年级数学上册第三章《一元一次方程》单元测试题(含答案)一、单选题1.一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店( )A .不盈不亏B .盈利20元C .亏损10元D .亏损30元2.下列方程中,一元一次方程一共有( )①9x+2;②12x =;③(1-x)(1+x)=3;④()1113352x x x -=- A .1个 B .2个 C .3个 D .4个3.(古代数学问题)今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?意思是:几个人一起去买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?设有x 人,则根据题意列出方程正确的是( ) A .8x+3=7x ﹣4B .8x ﹣3=7x+4C .8x ﹣3=7x ﹣4D .8x+3=7x+44.下图是某超市中“飘柔”洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚,请帮忙第一算,该洗发水的原价是:( )A .22元B .23元C .24元D .25元5.若关于x 的方程321(32)x a x a ++=-+的解是0,则a 的值为( )A .15B .35C .15- D .356.下列方程:21126740.343492x x x x x x x +=-=+=-=①;②;③;④;0x =⑤;328x y -=⑥;112x =⑦;12x=⑧中是一元一次方程的个数是( ) A .6个 B .5个 C .4个 D .3个7.下列运用等式的性质,变形正确的是( )A .若x ﹣m =y +m ,则x =yB .若a =b ,则ac =bcC .若x =y ,则x ﹣m =y +mD .若ac =bc ,则a =b8. 下列方程中,属于一元一次方程的是( ).A .021=+xB .2y 432=+x C .22x 3x =+x D .x 31232=++x x9.某书店把一本新书按标价的八折出售,仍获利20%,若该书进价为20元,则标价( ) A .24元 B .26元 C .28元 D .30元10.方程3x ﹣6=0的解是( )A .x =3B .x =﹣3C .x =2D .x =﹣2第II 卷(非选择题)二、填空题11.关于x 的方程a 2x+x=1的解是__.12.某学校组织八年级6个班参加足球比赛,如果采用单循环制,一共安排______场比赛 13.某商品进价为40元,若按标价的8折出售仍可获利20%,则按标价出售可获利______元.14.当x=4时,式子5(x+b )﹣10与bx+4x 的值相等,则b=_____.15.我国古代数学著作《孙子算经》中记载了这样一个有趣的数学问题“今有五等诸侯,共分橘子60颗,人别加三颗,问五人各得几何?”题目大意是:诸侯5人,共同分60个橘子,若后面的人总比前一个人多分3个,问每个人各分得多少个橘子?若设中间的那个人分得x 个,依题意可列方程得_____.16.一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,则原来的两位数是____.17.若293x +=2,且x y =94,则x =______,y =_______. 18.当a =____时,关于x 的方程314x -=-与方程562a x -=-的解相同.三、解答题19.解方程:x ﹣3=﹣12x ﹣4. 20.解方程:(1)5(x-1)+2=3-x(2)2121 1=63x x-+ -21.某纺织厂收购某种特色棉花,若直接转卖这种特色棉花,则每吨可获得的利润为500元.若经过B级加工再转卖,则每吨可获得的利润为1000元;若经过A级加工再转卖,则每吨可获得的利润为2000元.已知该纺织厂对棉花进行B级加工,每天可加工16吨;进行A级加工,每天可加工6吨,且这两种等级的加工不能同时进行.若该纺织厂收购了140吨这种特色棉花,决定15天内加工完,且有如下三种可行方案:方案一:将所收购的特色棉花直接转卖.方案二:将尽可能多的特色棉花进行A级加工,余下的部分直接转卖.方案三:一部分进行A级加工,另一部分进行B级加工,恰好15天完成.若你是该纺织厂负责人,想要获利最多,你决定使用哪套方案?请说明理由.22.一列客车和一列货车同时从甲、乙两个城市相对开出,已知客车每小时行55千米,客车速度与货车速度的比是11:9,两车开出后5小时相遇,甲、乙两城市间的铁路长多少千米?23.阅读理解:若A、B、C为数轴上三点,若点C到A的距离是点C到B的距离2倍,我们就称点C是(A,B)的好点.例如,如图1,点A表示的数为-1,点B表示的数为2,表示1的点C到点A的距离是2,到点B的距离是1,那么点C是(A,B)的好点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是(A,B)的好点,但点D是(B,A)的好点.知识运用:(1)如图2,M,N为数轴上两点,点M所表示的数为-2,点N所表示的数为4.①在点M和点N中间,数_______所表示的点是(M,N)的好点:②在数轴上,数________和数_________所表示的点都是(N,M)的好点;(2)如图3,A、B为数轴上两点,点A所表示的数为-20,点B所表示的数为40,现有一只电子蚂蚁P从点B出发,以2个单位每秒的速度向左运动,到达点A停止,当t为何值时,P,A和B中恰有一个点为其余两点的好点?24.某电影院某日某场电影的票价是:成人票30元,学生票15元,满40人可以购买团体票(不足40人可按40人计算,票价打9折).某班在4位老师带领下去电影院看电影,学生人数为x人.(1)若学生人数为31人,该班买票至少应付多少元?(2)若学生人数为32人,该班买票至少应付多少元?(3)请用含x的代数式表示该班买票至少应付多少元.25.小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:(1)小明总共剪开了______条棱.(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在①上补全.(3)小明说:他所剪的所有棱中,最长的一条棱是最短的一条棱的5倍.现在已知这个长方体纸盒的底面是一个正方形,并且这个长方体纸盒所有棱长的和是880cm,求这个长方体纸盒的体积.26.一队学生去校外进行军事野营训练,他们以6千米/时的速度行进,在他们走了一段时间后,学校要将一个紧急通知传给队长,通讯员从学校出发,以10千米/时的速度按原路追上去,用了15分钟追上了学生队伍,问通讯员出发前,学生走了多少时间?27.如图,已知A、B、C是数轴上的三点,点C表示的数为6,BC=4,AB=14,动点P、Q分别从A、C同时出发,点P以每秒3个单位的速度沿数轴向右匀速运动,点Q以每秒1个单位的速度沿数轴向左匀速运动,M为AP的中点,点N在线段CQ上,且CQ=3CN.设运动的时间为t(t>0)秒.(1)写出点A表示的数,点B表示的数;(2)求MN的长(用含t的式子表示);(3)t为何值时,原点O恰为线段PQ的中点.参考答案1.C2.A3.B4.C5.D6.C7.B8.C9.D10.C11.211a.12.1513.2014.615.(x﹣6)+(x﹣3)+x+(x+3)+(x+6)=60.16.45.17.-32218.-319.x=-2320.(1)x=1;(2)x=5621.选方案二.理由见解析22.500.23.①2,②0或-8;(2)10秒、15秒或20秒24.(1)585;(2)594;(3)若0<x≤31时,该班买票至少应付(120+15x)元;若32≤x≤36时,该班买票至少应付594元;若x>36时,该班买票至少应付(108+13.5x)元.25.(1)8;(2)答案见解析:(3)200000立方厘米26.1627.(1)A:-12,B:2;(2) 18−116t;。
完整版)七年级上册数学一元一次方程测试题及答案1.在方程3x-y=2,x+2x=,x=,x2-2x-3=中一元一次方程的个数为(2)。
2.解方程x/(x-1)=2/3时,去分母正确的是(3x-3=2x-2)。
3.方程x-2=2-x的解是(x=2)。
4.下列两个方程的解相同的是(方程5x+3=6与方程2x=4)。
5.A厂库存钢材为100吨,每月用去15吨;B厂库存钢材82吨,每月用去9吨。
若经过x个月后,两厂库存钢材相等,则x是(3)。
6.某种商品的标价为120元,若以九折降价出售,相对于进货价仍获利20%,该商品的进货价为(90元)。
7.下列等式变形正确的是(如果x-3=y-3,那么x-y=0)。
8.已知:1-(3m-5)有最大值,则方程5m-4=3x+2的解是(-7/3)。
9.小山向某商人贷款1万元月利率为6‰,1年后需还给商人多少钱(元)。
10.有两支同样长的蜡烛,一支能点燃4小时,另一支能点燃3小时,一次遇到停电,同时点燃这两支蜡烛,来电后同时吹灭,发现其中的一支是另一支的一半,停电时间为(2.4)小时。
11.一列长a米的队伍以每分钟60米的速度向前行进,队尾一名同学用1分钟从队尾走到队头,这位同学走的路程是(a+60)米。
12.足球比赛的记分规则是:胜一场得3分,平一场得1分,负一场得分,若一个队打了14场比赛得17分,其中负了5场,那么这个队胜了(6)场。
13.方程为:3a + 5 = 9.14.根据题意,应该是-3x^2a-1+6=0,解得a=1/3.15.将x=2代入方程得到2a-3=7,解得a=5.16.将5a^2b^(1/22)(2m+1)^(-3/2)(m+3)^(-1)与-ab合并,得到m=-11.17.设四天的日期分别为a。
b。
c。
d,根据题意有a+b+c+d=42.由于每个月最多31天,最后一天的日期不可能超过31,因此最后一天的日期必须是11.18.设十位数为x,个位数为y,则题意转化为x=y/2且x+y=9,解得x=3,y=6,因此这个两位数是36.19.下游速度为8+2=10km/h,上游速度为8-2=6km/h。
七年级数学上册一元一次方程单元测试卷(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、单选题1.若3x =是关于x 的方程2203x a -=的解,则a 的值是( ) A .1 B .1- C .0 D .22.已知x =y ,下列变形错误的是( )A .x +a =y+aB .x -a =y -aC .2x =2yD .x y a a = 3.下列解方程变形:①由3x +4=4x -5,得3x +4x =4-5;①由1132x x +-=,去分母得2x -3x +3=6; ①由()()221331x x ---=,去括号得4x -2-3x +9=1;①由344x =,得x =3.其中正确的有( ) A .0个 B .1个 C .2个 D .3个4.已知关于x 的方程38132ax x x --=-有负整数解,则所有满足条件的整数a 的值之和为( ) A .11- B .26- C .28- D .30-5.下列变形中:①由方程125x --=2去分母,得x ﹣12=10;①由方程6x ﹣4=x +4移项、合并得5x =0;①由方程25362x x -+-=两边同乘以6,得12﹣x +5=3x +3;①由方程2992x =两边同除以29,得x =1;其中错误变形的有( )个.A .0B .1C .2D .36.关于x 的方程k 2x 2+(2k -1)x +1=0有实数根,则下列结论正确的是( )A .当k =12时,方程的两根互为相反数B .当k =0时,方程的根是x =-1C .若方程有实数根,则k ≠0且k ≤14D .若方程有实数根,则k ≤147.在风凰山教育共同体数学学科节中,为展现数学的魅力,M 老师组织了一个数学沉浸式互动游戏:随机请A ,B ,C ,D ,E 五位同学依次围成一个圆圈,每个人心里先想好一个实数,并把这个数悄悄的告诉相邻的两个人,然后每个人把与自己相邻的两个人告诉自己的数的平均数报出来.若A ,B ,C ,D ,E 五位同学报出来的数恰好分别是1,2,3,4,5,则D 同学心里想的那个数是( )A .3-B .4-C .5D .98.下列各式运用等式的性质变形,正确的是( )A .由a b =,得44a b =- B .由33x y -=-,得x y =- C .由14x =,得14x = D .若()()2211m a m b +=+,则a b = 9.已知二次函数y =ax 2+bx +1,若当x =1时,y =0;当x =﹣1时,y =4,则a 、b 的值分别为( ) A .a =1,b =2 B .a =1,b =﹣2 C .a =﹣1,b =2 D .a =﹣1,b =﹣210.已知关于x 的方程ax =5﹣3x 的解是x =2,则a 的值为( )A .1B .12-C .112D .﹣2二、填空题11.若x =3是关于x 的一元一次方程mx ﹣n =3的解,则代数式10﹣3m +n 的值是___.12.若关于x 的方程360x +=与关于y 的方程5218y m +=的解互为相反数,则m =____.13.某车间有75名工人生产A 、B 两种零件,一名工人每天可生产A 种零件15个或B 种 零件20个,已知1个B 种零件需要配3个A 种零件,该车间应如何分配工人,才能保证每天生产的两种零件恰好配套?设应安排x 名工人生产A 种零件,根据题意,列出的方程是___________________.14.如果关于x 的方程23x x =-和4232x m x -=+的解相同,那么m =________.三、解答题15.解关于x 的方程:(3)4-=b x16.利用函数图象求下列方程的解,并笔算检验.(1)5x ﹣1=2x+5(2)﹣12x+4=32x+2.17.学校要购入两种记录本,其中A 种记录本每本3元,B 种记录本每本2元,且购买A 种记录本的数量比B 种记录本的2倍还多20本,总花费为460元.(1)求购买B 种记录本的数量;(2)某商店搞促销活动,A 种记录本按8折销售,B 种记录本按9折销售,则学校此次可以节省多少钱? 18.计算: (1)111()6||235-⨯÷- (2)201831(1)(10)2[2(3)]2-+-÷⨯--- 19.(1)张阿姨到商场以940元购买了一件羽绒服和一条裙子,已知羽绒服打8折,裙子打6折,结果比标价购买时共节省了360元.那么该羽绒服及裙子的标价分别是多少元?(2)某校为防疫需要,实行错时错峰测温并开通专用通道上学,该校七、八年级人数如下表所示:①八年级学生进校时同时开通了A ,B 两通道,经过6分钟,八年级全部学生进校,已知A 通道每分钟通过的人数是B 通道每分钟通过人数的2倍.求A ,B 通道每分钟通过的人数各是多少人?①考虑到七年级人数更多的原因,为节约学生进校时间,学校决定在A 通道旁边增开C 通道,在B 通道旁边增开D 通道,已知C 通道每分钟通过的人数比A 通道每分钟通过的人数多20%,D 通道每分钟通过的人数比B 通道每分钟通过的人数少20%.求七年级全部学生进校所需时间是多少分钟?20.如图所示,有甲、乙两个容器,甲容器盛满水,乙容器里没有水,现将甲容器中的水全部倒入乙容器,问:水会不会溢出?如果不会溢出,请你求出倒入水后乙容器中的水深;如果水会溢出,请你说明理由.(容器壁厚度忽略不计,图中数据的单位:cm )参考答案:1.A【分析】把x =3代入方程即可得到一个关于a 的方程,解方程求得a 的值.【详解】解:把x =3代入方程得2-2a =0,解得:a =1.故选A .【点睛】本题考查了方程的解的定义、解一元一次方程,方程的解就是能使方程左右两边相等的未知数的值,理解定义是关键.2.D【分析】根据等式的性质逐项分析判断即可【详解】解:A.x y =,∴ x +a =y+a ,故该选项正确,不符合题意;B.x y = ,∴x -a =y -a ,故该选项正确,不符合题意;C.x y =,∴ 2x =2y ,故该选项正确,不符合题意;D. x y =,当0a ≠时,x y a a=,故该选项不正确,符合题意; 故选D【点睛】本题考查了等式的性质,熟练等式的性质是解题的关键.等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等;等式的性质2:等式两边乘同一个数,或除以同一个不为0的数(或式子),结果仍相等.3.B【分析】根据解一元一次方程的步骤进行逐一求解判断即可.【详解】解:①由3x +4=4x -5,得3x -4x =-5-4;方程变形错误,不符合题意;①由1132x x +-=,去分母得2x -3x -3=6;方程变形错误,不符合题意; ①由()()221331x x ---=,去括号得4x -2-3x +9=1;正确,符合题意;①由344x =,得x =163.方程变形错误,不符合题意; 综上,正确的是①,只1个,故选:B .【点睛】本题主要考查了解一元一次方程,解题的关键在于能够熟练掌握解一元一次方程的方法.4.D【分析】先解方程可得x 7032a =+(a 32≠-),根据方程的解是负整数可得7032a+是负整数,进而可求解满足条件的所有非负整数a 的值,即可求解.【详解】解:解关于x 的方程38132ax x x --=- 得x 7032a=+(a 32≠-), ①关于x 的方程38132ax x x --=-的解是负整数, ①7032a+是负整数, ①231a +=- 或235a +=-或237a +=-或2335a +=-即满足条件的所有整数a 为-2、-4、-5、-19,①满足条件的所有整数a 的值的和为-2+(-4)+(-5)+(-19)=-30,故答案为:D .【点睛】本题主要考查一元一次方程的解,正确求解一元一次方程是解题的关键. 5.D【分析】根据等式的基本性质对每一个选项的变形进行核查,即可得到正确解答.【详解】解:①、由方程 125x -= 2去分母,得x ﹣12=10,正确; ①、由方程6x ﹣4=x +4移项、合并得5x =8,错误;①、由方程53262x x -+-=两边同乘以6,得12﹣x +5=3x +9,错误; ①、由方程2992x =两边同除以 29,得x =814,错误; 故选D .【点睛】本题考查等式的应用,熟练掌握等式的基本性质是解题关键.6.D【分析】由于二次项前面的系数为字母系数且方程有实数根,所以应分两种情况去求k 的取值范围,再结合选项作出正确的判断即可.【详解】当k =0时,则此方程为-x +1=0,解得x =1,故选项B 错误;当k ≠0时,则方程为一元二次方程,因为方程有实数根,①2224(21)4410b ac k k k ∆=-=--=-+≥ ①14k ≤且k ≠0综上可得k 的取值范围是14k ≤. 故选项A 错误,选项C 错误.故选:D .【点睛】本题考查一元二次方程根的判别式、解一元一次不等式,需分类讨论. 7.D【分析】设报D 的人心里想的数是x ,则再分别表示报A ,C ,E ,B 的人心里想的数,最后通过平均数列出方程,解方程即可.【详解】解:设D 同学心里想的那个数是x ,报A 的人心里想的数是10-x ,报C 的人心里想的数是x -6,报E 的人心里想的数是14-x ,报B 的人心里想的数是x -12,所以有x -12+x =2×3,解得:x =9.故选:D .【点睛】本题考查的知识点有平均数的相关计算及方程思想的运用,把题中的等量关系全部展示出来,再结合题意进行整合,问题即可解决.8.D【分析】根据等式的性质逐项判定即可.【详解】解:A .由a b =,得44a b =--,原式错误,故此选项不符合题意; B .由33x y -=-,得x y =,原式错误,故此选项不符合题意;C .由14x =,得4x =,原式错误,故此选项不符合题意; D .若()()2211m a m b +=+,则a b =,正确,故此选项符合题意;故选:D .【点睛】本题考查等式的性质,熟练掌握等式的性质是解题的关键.9.B【分析】把两组对应值分别代入y =ax 2+bx +1得到关于a 、b 的方程组,然后解方程组即可得到a 和b 的值.【详解】解:根据题意得1014a b a b ++=⎧⎨-+=⎩, 解得a =1,b =﹣2.故选:B .【点睛】本题考查了待定系数法求二次函数的解析式,根据已知条件列出二元一次方程组是解题的关键.10.B【分析】把x =2代入方程ax =5-3x 得出2a =5-6,再求出方程的解即可.【详解】解:把x =2代入方程ax =5-3x 得:2a =5-6,解得:a =12-, 故选:B .【点睛】本题考查了一元一次方程的解和解一元一次方程,能得出关于a 的一元一次方程是解此题的关键.11.7【分析】根据题意得到﹣3m +n =﹣3,然后代入代数式10﹣3m +n 求解即可.【详解】解:由题意得:3m ﹣n =3,①﹣3m +n =﹣3,①原式=10﹣3=7.故答案为:7.【点睛】此题考查了一元一次方程的解的含义以及解一元一次方程,解题的关键是熟练掌握一元一次方程的解的含义.12.4【分析】先解出x 的值,再根据相反数的定义得到y 的值,最后代入方程求出m 的值.【详解】解:解方程360x +=,解得2x =-,①这两个方程的解互为相反数,①2y =是方程5218y m +=的解,将2y =代入原方程,得到10218m +=,解得4m =.故答案是:4.【点睛】本题考查一元一次方程的解和相反数的定义,掌握方程的解和解一元一次方程是解答本题的关键.13.15x=3⨯20(75-x)【分析】设应安排x 名工人生产A 种零件,则生产B 种零件的工人为()75x -人,根据1个B 种零件需要配3个A 种零件即可列出方程.【详解】解:设应安排x 名工人生产A 种零件,则生产B 种零件的工人为()75x -人, 由1个B 种零件需要配3个A 种零件,即A 种零件的个数是B 种零件的三倍. 可列出方程15x=3⨯20(75-x),故答案:15x=3⨯20(75-x).【点睛】本题考查了一元一次方程的应用问题, 根据题意列方程即可.14.12##0.5 【分析】先解方程23x x =-,求出x =3,再将x =3代入方程4232x m x -=+求解即可.【详解】解:解方程23x x =-,得x =3,①关于x 的方程23x x =-和4232x m x -=+的解相同,①将x =3代入方程4232x m x -=+,得12-2m =11,解得m =12, 故答案为:12.【点睛】此题考查解一元一次方程,正确掌握解一元一次方程的步骤及同解方程的定义是解题的关键.15.34b x b+= 【分析】方程两边都除以b ,再移项即可得出答案.【详解】解:去括号,得bx -3b =4,移项,得bx =3b +4,由题意知b ≠0,①方程两边同除以b 得,34b x b +=, 方程的解为34b x b+=. 【点睛】本题考查了解一元一次方程,把b 看作已知数是解题的关键.16.(1)x =2,见解析;(2)x =1,见解析.【分析】(1)将方程变形为3x ﹣6=0,作出函数y=3x ﹣6的图象,方程的解即为直线与x 轴交点的横坐标,再笔算检验即可;(2)将方程变形为﹣2x+2=0,作出函数y=﹣2x+2的图象,方程的解即为直线与x 轴交点的横坐标,再笔算检验即可.【详解】解:(1)由5x﹣1=2x+5得到3x﹣6=0.如图:直线y=3x﹣6与x轴交点的横坐标是2,则方程5x﹣1=2x+5的解为x=2,检验:把x=2代入方程5x﹣1=2x+5,左边=10﹣1=9,右边=4+5=9,左边=右边,故方程5x﹣1=2x+5的解为x=2;(2)由﹣12x+4=32x+2得到﹣2x+2=0.如图,直线y=﹣2x+2与x轴交点的横坐标是1,则方程﹣12x+4=32x+2的解为x=1,检验:把x=1代入方程﹣12x+4=32x+2,左边=﹣12+4=312,右边=32+2=312, 左边=右边, 故方程﹣12x+4=32x+2的解为x =1. 【点睛】本题考查画一次函数的图象、一次函数与一元一次方程的关系、等式的性质,熟知任何一元一次方程都可以化为ax+b=0(a 、b 为常数,a≠0)的形式,掌握该方程的解就是直线y=ax+b 与x 轴交点的横坐标是解答的关键.17.(1)购买B 种记录本的数量为50本;(2)学校此次可以节省82元.【分析】(1)设B 种记录本的数量为x ,根据“购买A 种记录本的数量比B 种记录本的2倍还多20本”得出A 的数量,再根据总花费建立等式方程,求解即可得;(2)根据题(1)可知A 、B 两种记录本的数量,按促销活动计算出总花费,再与460元比较即可得出答案.【详解】(1)设B 种记录本的数量为x ,则A 种记录本的数量为(220)x +本由题意可列方程为:3(220)2460x x ++=解得:50x =(本)答:购买B 种记录本的数量为50本;(2)由题(1)的结论可得:购买A 种记录本的数量为25020120⨯+=(本)因此,按促销活动购买这些记录本需花费为:120380%50290%378⨯⨯+⨯⨯=(元) 则学校此次可节省的钱为:46037882-=(元)答:学校此次可以节省82元.【点睛】本题考查了一元一次方程的实际应用,理解题意正确建立方程是解题关键. 18.(1)5(2)﹣68【分析】(1)根据有理数的加减乘除混合运算法则计算即可.(2)根据有理数的加减乘除乘法混合运算法则计算即可.(1) 解:111()6||235-⨯÷- 11()6523=-⨯⨯11()3023=-⨯ 11303023=⨯-⨯ 15105=-=(2)201831(1)(10)2[2(3)]2-+-÷⨯--- ()1(10)22227=+-⨯⨯-+1402968=--=-【点睛】本题考查有理数的混合运算,关键在于熟练掌握基础运算法则.19.(1)该羽绒服的标价为800元,裙子的标价为500元;(2)①B 通道每分钟通过的人数是25人,A 通道每分钟通过的人数是50人;①七年级全部学生进校所需时间是4分钟.【分析】(1)设该羽绒服的标价为a 元,则裙子的标价为(940+360-a )元,根据张阿姨购买了一件羽绒服和一条裙子共花费940元,即可得出关于a 的一元一次方程,解之即可得出结论;(2)①设B 通道每分钟通过的人数是x 人,A 通道每分钟通过的人数是2x 人,由“八年级学生进校时同时开通了A 、B 两通道,经过6分钟”,列出方程可求解;①设七年级全部学生进校所需时间是y 分钟,由七年级的人数为620人,列出方程可求解.【详解】解:(1)设该羽绒服的标价为a 元,则裙子的标价为(940+360-a )元, 依题意得:0.8a +0.6(940+360-a )=940,解得:a =800,①940+360-800=500.答:该羽绒服的标价为800元,裙子的标价为500元;(2)①设B 通道每分钟通过的人数是x 人,A 通道每分钟通过的人数是2x 人,由题意可得:6×(2x +x )=450,解得:x =25,①2x =50,答:B 通道每分钟通过的人数是25人,A 通道每分钟通过的人数是50人;①设七年级全部学生进校所需时间是y 分钟,由题意可得:(1.2×50+25+50+0.8×25)×y =620,解得:y =4,答:七年级全部学生进校所需时间是4分钟.【点睛】本题考查了一元一次方程的应用,找到正确的数量关系,列出方程是解题的关键.20.水不会溢出,理由见解析【分析】根据两个圆柱体的体积进行计算即可解答本题.【详解】解:水不会溢出.设甲容器中的水全部倒入乙容器后,乙容器中的水深xcm ,由题意,得22102020x ππ⨯⨯=⨯⨯,解得5x =,所以甲容器中的水全部倒入乙容器后,乙容器中的水深5cm ,因为510cm cm <,所以水不会溢出.【点睛】本题考查圆柱体的体积,有理数的运算,关键是分别求出两个圆柱体的体积进行比较,然后再根据体积相等进行计算.。
人教版七年级数学上册第三章《一元一次方程》章节测试题一、单选题1.下列方程中为一元一次方程的是( )A .234x y +=-B .232x x -=C .12x x +=D .123y y -=+2.已知关于x 的方程()143k x x k -=-的根是-4,则28k k -的值是( )A .0B .96C .-48D .643.下列等式变形正确的是( )A .若﹣3x =5,则x =35B .若1132x x -+=,则2x +3(x ﹣1)=1 C .若5x ﹣6=2x +8,则5x +2x =8+6D .若3(x +1)﹣2x =1,则3x +3﹣2x =1 4.若代数式2x ﹣3与32x +的值相等,则x 的值为( ) A .3B .1C .﹣3D .4 5.解一元一次方程3(2)3212x x --=-去分母后,正确的是( ) A .3(2﹣x )﹣3=2(2x ﹣1) B .3(2﹣x )﹣6=2x ﹣1C .3(2﹣x )﹣6=2(2x ﹣1)D .3(2﹣x )+6=2(2x ﹣1) 6.下列方程变形中,正确的是( )A .方程3x ﹣2=2x +1,移项得,3x ﹣2x =﹣1+2B .方程3﹣x =2﹣5( x ﹣1),去括号得,3﹣x =2﹣5x ﹣1C .方程2332t =,系数化为1得,t =1D .方程110.20.5x x --=,去分母得,5( x ﹣1)﹣2x =1 7.某种商品的标价为120元,若以九折降价出售,相对于进价仍获利20%,则该商品的进价是( ).A .95元B .90元C .85元D .80元8.甲、乙两人从同一地点出发,如果甲先出发2小时后,乙从后面追赶,那么当乙追上甲时,下面说法正确的是( )A .乙比甲多走了2小时B .乙走的路程比甲多C .甲、乙所用的时间相等D .甲、乙所走的路程相等9.明代数学家程大位的《算法统宗》中有一个“以碗知僧”的问题,“巍巍古寺在山中,不知寺内几多僧.三百六十四只碗,恰合用尽不差争.三人共食一碗饭,四人共尝一碗羹.请问先生能算者,都来寺内几多僧?”其大意为:山上有一座古寺叫都来寺,在这座寺庙里,3个和尚合吃一碗饭,4个和尚合分一碗汤,一共用了364只碗.请问都来寺里有多少个和尚?此问题中和尚的人数为( )A .31B .52 C .371 D .624 10.方程 (13153520192021)x x x x ++++=⨯的解是x =( ) A .20212020 B .20211010 C .20212019 D .10102021二、填空题11.如果方程120n x n -+=是关于x 的一元一次方程,那么n =________.12.已知关于x 的方程20x m +=的解比方程30x m -=的解大10,则m =________.13.若2x =时,()22310x c x c +-+=,则当3x =-时,()223x c x c +-+=____________.14.十个人围成一个圆圈做游戏,游戏的规则是:每个人心里都想好一个整数,并把自己想好的数如实告诉他两旁的两个人,然后每人将他两旁的人告诉他的数计算出平均数并报出来.已知每个人报的结果如图所示,那么报“3”的人自己心里想的数是_______.三、解答题15.根据下列条件,列出方程.(1)x 的倒数减去-5的差为9;(2)5与x 的差的绝对值等于4的平方;(3)长方形的长与宽分别为16、x ,周长为40;(4)y 减去13的差的一半为x 的35. 16.解方程: (1)36156x x -=--;(2)45173x x +=-;(3) 2.57.5516y y y --=-;(4)11481.5533z z +=-.17.某连队从驻地出发前往某地执行任务,行军速度是6千米/时,18分钟后,驻地接到紧急命令,派遣通讯员小王必须在一刻钟(15分钟)内把命令传达给该连队.小王骑自行车以14千米/时的速度沿同一路线追赶连队.问小王能否在规定的时间内完成任务?18.某班将买一些乒乓球和乒乓球拍.了解信息如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元;经洽谈:甲店每买一副球拍赠一盒乒乓球;乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)如果要购买15盒或30盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?参考答案11.212.-1213.2514.-215.(1)()159x --=;(2)254x -=;(3)()21640x +=;(4)()131325y x -= 16.(1)1x =-;(2)66x =-;(3)56y =;(4)407z =- 17.能够在规定时间内完成任务18.(1) 购买乒乓球20盒时,两种优惠办法付款一样;(2)买30盒乒乓球时,在甲店买5副乒乓球拍,在乙店买25盒乒乓球省钱。
一元一次方程测试卷【1 】一.填空题(每题3分,共30分)1.关于x的方程(k-1)x-3k=0是一元一次方程,则k_______.2.方程6x+5=3x的解是________.3.若x=3是方程2x-10=4a的解,则a=______.4.(1)-3x+2x=_______.(2)5m-m-8m=_______.5.一个两位数,十位数字是9,个位数比十位数字小a,则该两位数为_______.6.一个长方形周长为108cm,长比宽2倍多6cm,则长比广大_______cm.7.某服装成本为100元,订价比成本高20%,则利润为________元.8.某加工场出米率为70%的稻谷加工大米,现要加工大米1000t,设须要这种稻谷xt,则列出的方程为______.9.当m值为______时,453m的值为0.10.敌我两军相距14千米,敌军于1小时前以4千米/小时的速度逃跑,•现我军以7千米/小时的速度追击______小时后可追上敌军.二.选择题(每题3分,共30分)11.下列说法中准确的是()A.含有一个未知数的等式是一元一次方程B.未知数的次数都是1次的方程是一元一次方程C.含有一个未知数,并且未知数的次数都是一次的方程是一元一次方程D.2y-3=1是一元一次方程12.下列四组变形中,变形准确的是( )A .由5x+7=0得5x=-7B .由2x-3=0得2x-3+3=0C .由6x =2得x=13 D .由5x=7得x=3513.下列各方程中,是一元一次方程的是( )A .3x+2y=5B .y 2-6y+5=0C .13x-3=1x D .3x-2=4x-714.下列各组方程中,解雷同的方程是( )A .x=3与4x+12=0B .x+1=2与(x+1)x=2xC .7x-6=25与715x -=6 D .x=9与x+9=015.一件工作,甲单独做20小时完成,乙单独做12小时完成,现由甲独做4小时,剩下的甲.乙合做,还需几小时?设剩下部分要x 小时完成,下列方程准确的是( )44.1.120201220201244.1.1202012202012x x x x A B x x x x C D =--=+-=++=-+16.(2006,江苏泰州)若关于x 的一元一次方程2332x k x k ---=1的解为x=-1,则k 的值为( )A .27B .1C .-1311 D .017.一条公路甲队独修需24天,乙队需40天,若甲.•乙两队同时分离从两头开端修,( )天后可将全体修完.A .24B .40C .15D .1618.解方程1432x x ---=1去分母准确的是( ) A .2(x-1)-3(4x-1)=1 B .2x-1-12+x=1C .2(x-1)-3(4-x )=6D .2x-2-12-3x=619.或人从甲地到乙地,水路比公路近40千米,但乘汽船比汽车要多用3小时,•已知汽船速度为24千米/时,汽车速度为40千米/时,则水路和公路的长分离为( )A .280千米,240千米B .240千米,280千米C .200千米,240千米D .160千米,200千米20.一组学生去春游,估计共需用120元,后来又有2人介入进来,总费用降下来,•于是每人可少摊3元,设本来这组学生人数为x 人,则有方程为( )A . 120x=(x+2)xB .1202x x =+120120120120.3.322C D x x x x -==+++三.解方程(共28分)21.(1)53-6x=-72x+1;(5分) (2)y-12(y-1)=23(y-1);(5分)(3)34 [43(12x-14)-8]=32x+1;(5分) (4)0.20.110.30.2x x -+-=.(5分) 22.(8分)若关于x 的方程2x-3=1和2x k-=k-3x 有雷同的解,求k 的值.四.运用题(每题8分,共32分)23.(8分)某校八年级近期实施小班教授教养,若每间教室安插20逻辑学生,则缺乏3•间教室;若每间教室安插24逻辑学生,则空出一间教室.问这所黉舍共有教室若干间?24.(8分)如图,有9个方格,请求每个方格填入不合的数,使得每行.每列.•每条对角线上三个数的和相等,问图中的m是若干?25.(8分)已知甲数与乙数的比是1:3,甲数与丙数的比是2:5,并且甲数.乙数和丙数的和是130.求这三个数.26.(8分)某音乐厅蒲月初决议在暑假时代举行学生专场音乐会,入场券分为集团票和零售票,个中集团票占总数的23,若提前购票,则赐与不合程度的优惠,在蒲月份内,集团票每张12元,共售出集团票数的35;零售票每张16元,•共售出零售票数的一半,假如在六月份内,集团票按每张16元出售,•并筹划在六月份售出全体余票,那么零售票应按每张若干元订价才干使这两个月的票款收入持平?答案1.≠1 2.x=-53 3.-1 4.(1)-x (2)-4m 5.99-a 6.22 7.20 ••8.•0.7x=1000 9.54 10.6 11.D 12.A 13.D 14.C 15.C 16.B 17.C18.C19.B (点拨:设水路x 千米,有方程402440x x +=+3) 20.C21.(1)x=415 (2)y=7 (3)x=-29114(4)22.4103x k =-=23.设黉舍有x 间教室,依题意得方程20(x+3)=24(x-1),解得x=21(间).24.设响应的方格中数为x 1,x 2,x 3,x 4,如图,由已知得m+x 1+x 2=m+x 3+x 4=x 1+x 3+13=x 2+19+x 4,由此得2m+x 1+x 2+x 3+x 4=13+19+x 1+x 2+x 3+x 4.∴2m=13+19,即m=16.25.设甲数是x,则乙数为3x,丙数为25x.依据题意有 x+3x+25x=130.所以甲数为20,乙数为60,丙数为50.26.设总票数a 张,六月份零售标价为x 元/张,依题意,得12×35×23a+16×12×13a=16×415a+16ax∴x=19.2,故六月份零售票应按每张19.2元订价.。
一、选择题(每小题3分,共30分)1.下列方程是一元一次方程的是( )A.x+2y=5B. =2C.x2=8x-3D.y=12.下列方程中,解是x=2的是( )A.2x-2=0B. x=4C.4x=2D. -1=3.将方程5x-1=4x变形为5x-4x=1,这个过程利用的性质是( )A.等式性质1B.等式性质2C.移项D.以上说法都不对4.方程3- =1变形如下,正确的是( )A.6-x+1=2B.3-x+1=2C.6-x+1=1D.6-x-1=25.如果x=-8是方程3x+8= -a的解,则a的值为( )A.-14B.14C.30D.-306.某工作,甲单独完成需4天,乙单独完成需8天,现甲先工作1天后和乙共同完成余下的工作,甲一共做了( )A.2天B.3天C.4天D.5天7.小明存入100元人民币,存期一年,年利率为2%,到期应缴纳所获利息的20%的利息税,那么小明存款到期交利息税后共得款( )A.106元B.102元C.111.6元D.101.6元8.某种商品的标价为132元.若以标价的9折出售,仍可获利10%,则该商品的进价为( )A.105元B.100元C.108元D.118元9.某工地调来72人挖土和运土,已知3人挖的±1人恰好能全部运走,怎样调配劳动力才能使挖出来的土能够及时运走且不窝工,解决此问题可设x人挖土,其他人运土,列方程(1) =3;(2)72-x= ;(3) =3;(4)x+3x=72,上述所列方程正确的是( )A.1个B.2个C.3个D.4个10.某轮船在两个码头之间航行,顺水航行需4h,逆水航行需6h,水流速度是2km/h,求两个码头之间的距离,我们可以设两个码头之间的距离为xkm,得到方程( )A. =B. -2= +2C. - =2D. = -2二、填空题(每小题4分,共24分)11.若2的2倍与3的差等于2的一半,则可列方程为 .12.写出一个以x=- 为解的一元一次方程13.已知5x+3=8x-3和= 这两个方程的解是互为相反数,则a= .14.小强的速度为5千米/时,小刚的速度为4千米/时.两人同时出发,相向而行.经过x小时相遇,则两地相距千米.15.某酒店为招揽生意,对消费者实施如下优惠:凡订餐5桌以上,多于5桌的部分按定价的7折收费.小叶集团公司组织工会活动,预定了10桌,缴纳现金2550元,那么每桌定价是元.16.国家规定个人发表文章、出版图书获得稿费的纳税计算办法是:(1)稿费低于800元的不纳税;(2)稿费高于800元,又不高于4000元,应纳超过800元的那一部分稿费的14%的税;(3)稿费高于4000元,应缴纳全部稿费的11%的税.某作家缴纳了280元税,那么他获得的稿费是元.三、解答题(共66分)17.(6分)解下列方程:(1)4x-2(x-3)=x; (2)x- -1.18.(6分)当x取何值时,代数式和x-2是互为相反数?19.(6分)若代数式3a3b4-5n“与-6a6-(m+1)bm-1是同类项,求m2-5mn的值.20.(8分)如图,小明将一个正方形纸片剪去一个宽为4厘米的长条后,再从剩下的长方形纸片上剪去一个宽为5厘米的长条,如果两次剪下的`长条面积正好相等,那么每一个长条的面积为多少?21.(8分)一项工程,由甲队独做需12个月完工,由乙队独做需15个月完工.现决定由两队合作,且为了加快进度,甲、乙两队都将提高工作效率.若甲队的工作效率提高40%,乙队的工作效率提高25%,则两队合作,几个月可以完工?22.(10分)某市按以下规定收取每月水费:若每月每户用水不超过20立方米,则每立方米水价按1.2元收费;若超过20立方米,则超过部分每立方米按2元收费.如果某居民在某月所交水费的平均水价为每立方米1.5元,那么这个月他共用了多少立方米水?23.(10分)小强、小芳、小亮在郊游,看到远处一列火车匀速通过一个隧道后,产生了以下对话.各位同学,请根据他们的对话求出这列火车的长.24.(12分)温州和杭州某厂同时生产某种型号的机器若干台,温州厂可支援外地10台,杭州厂可支援外地4台.现在决定给武汉8台,南昌6台.每台机器的运费如下表.设杭州运往南昌的机器为x台.(1)用x的代数式来表示总运费(单位:百元);(2)若总运费为8400元,则杭州运往南昌的机器应为多少台?终点起点南昌武汉温州厂4 8杭州厂3 5(3)试问有无可能使总运费是7400元?若有可能,请写出相应的调运方案;若无可能,请说明理由.参考答案:1.D2.D3.A4.A5.B6.B7.D8.C9.B 10.B 11.2x-3= x 12.略13.24 14.9x 15.30016.2800 17.(1)x=-6 (2)x=- 18.解:由题意,得+x-2=0 解得x=219.解:由题意解得:m=2,n= . 把m=2,n= 代入m2-5mn得原式=22-5×2×=-2.20.解:设了正方形边长为x厘米,由题意,得4x=5(x-4) 解得x=20所以4×20=80答:每一个长条的面积为80平方厘米.21.解:设两队合作2个月完成,由题意,得x=1解得x=5答:两队合作,5个月可以完工.22.解:(1)∵1.5>1.2 ∴用水量超过20立方米. 设超过了x立方米1.2×20+2x=1.5(20+x) 解得x=12. ∴1.2×10+20=32. 答:这个月他共用了32立方米水.23.解:设火车的长为x米,由题意,得= 解得x=100.答:这列火车长100米.24.解:(1)总运费为4(6-x)+8.(4+x)+3x+5(4-x)=2x+76.(2)2x+76=84. x=4.答:运往南昌的机器应为4台.(3)若2x+76=74,解得x=-1.∵x不能为负数,∴不存在. 答:略.。
一元一次方程检测题一、选择题(共10小题,每小题3分,共30分)1.下列等式变形正确的是()A.如果s=12ab,那么b=2saB.如果12x=6,那么x=3C.如果x-3=y-3,那么x-y=0D.如2.则m3.4. C.6. 1.12a D.0.81a7、已知y=1是关于y 的方程2-31(m -1)=2y的解,则关于x 的方程m (x -3)-2=m 的解是( )A .1 B .6 C .34D .以上答案均不对8、一天,小明在家和学校之间行走,为了好奇,他测了一下在无风时的速度是50米/分,从家到学校用了15分钟,从原路返回用了18分钟20秒,设风的速度是x 米/分,则所列方程为( )A .)50(2.18)50(15x x -=+B .)50(2.18)50(15x x +=-9,)) 不增不减16分) 是方程,则14.当x=________时,代数式12x -与113x +-的值相等.15.5与x 的差的13比x 的2倍大1的方程是__________.16.若4a-9与3a-5互为相反数,则a 2-2a+1的值为_________.17.三个连续偶数的和为18,设最大的偶数为x,则可列方程______.18、请阅读下列材料:让我们来规定一种运算:bc ad d c b a -=,例如:243525432-=⨯-⨯=按照这种运算的规定,当x=______时,232121=-x x . 三、解答题(共7小题,共54分) 19.(7分) 解方程:1122(1)(1)x x x x ⎡⎤---=-⎢⎥; 20. 21. (8求22. (他以6钟,23. (24.(灾” (1 (2(3为25元和35元.答案 1.C 2.A3.C [点拔]2k-1=0则k=124.D[点拔]代入可得a-2-2a=10得a=-125.C6.D [点拔]设原价为x 则x ×0.9×0.9=a,得x=0.81a7.B [点拔] 把y=1代入2-31(m -1)=2y 解得m 。
8、已知:()2
135m --有最大值,则方程5432m x -=+的解是( )
7979 B C D 9797
A --、、、、 9.小山向某商人贷款1万元月利率为6‰ ,1年后需还给商人多少钱( ) A 17200元,
B 16000元,
C 10720元,
D 10600元;
10.有两支同样长的蜡烛,一支能点燃4小时,另一支能点燃3小时,一次遇到停电,同时点燃这两支蜡烛,来电后同时吹灭,发现其中的一支是另一支的一半,停电时间为( )小时。
A.2
B .
5
12
C.3
D.
2
5 11.一列长a 米的队伍以每分钟60米的速度向前行进,队尾一名同学用1分钟从队尾走到队头,这位同学走的路程是( )米。
A .a
B . a +60
C .60a
D .60
12.足球比赛的记分规则是:胜一场得3分,平一场得1分,负一场得0分,若一个队打了14场比赛得17分,其中负了5场,那么这个队胜了( )场。
A .3 B .4 C .5 D .6
二、填空题(每小题3分,共24分)
13.比a 的3倍大5的数是9,列出方程式是__________________。
14.如果0631
2=+--a x
是一元一次方程,那么=a 。
15. 若x =2是方程2x -a =7的解,那么a =____ ___ 16.如果)12(3
1
2
5+m b
a 与)
3(21
22
1+-m b a 是同类项,则=m 。
17. 某校教师假期外出考察4天,已知这四天的日期之和是42,那么这四天中最后一天的日
期是________.
18.如果一个两位数上的十位数是个位数的一半,两个数位上的数字之和为9,则这个两位数是
______________
19.某人乘船由A 地顺流而下到B 地,然后又逆流而上到C 地,共乘船3h ,已知船在静水中的
速度是8km/h ,水流速度是2km/h ,若A 、C 两地距离为2km,则A 、B 两地间的距离是_________km 。
26、(6分)某车间有工人85人,平均每人每天可加工大齿轮16个或小齿轮10个,又知二个大齿轮和三个小齿轮配成一套,问应如何安排劳力使生产的产品刚好成套?
27、(6分)某服装专卖店老板对第一季度男、女服装的销售收入进行统计,并绘制了扇形统计图(如
图)。
由于三月份展开促销活动,男女服装的销售收入分别比二月份增长了40%,64%,已知第一季度男女服装的销售总收入为20万元。
(1)二月份销售收入为_______万元。
三月份销售收入为______万元。
(2)二月份男女服装的销售收入分别是多少万元?
28、(8分)牛奶加工厂现有鲜奶 9 吨,若在市场上直接销售鲜奶,每吨可获利润500元;制成酸奶销
售,每加工1吨鲜奶可获利润1200元;制成奶片销售,每加工1吨鲜奶可获利润2000元.该厂的生产能力是:若制酸奶,每天可加工3吨鲜奶;若制奶片,每天可加工1吨鲜奶;受人员和设备限制,两种加工方式不可同时进行,受气温条件限制,这批牛奶必须在4天内全部销售或加工完毕。
为此,该厂设计了两种可行方案:
方案一:尽可能多的制成奶片,其余直接销售鲜牛奶;
方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成。
请你帮牛奶加工厂设计一种方案,使这9吨鲜奶既能在4天内全部销售或加工完毕,又能获得你认为最多的利润。
答案: 1.A 2.B 3.C 4.B 5.A 6.C 7.C 8.B 9.B 10.B 11.3a+5=9
12.1
13.-3 14.7
15.-2 16.
99
5
17.12
18.36
19. 12.5或10
20.90 21.(1)3
1
=x (2)y=1
(3)5
2-
=y 22.7
18=
a 23. 30 24.y=4或 y=-4
25.(1)选个体(2)2000千米
26.25人 生产大 60人生产小 27.(1)6,9 (2)男3.5万元 女2.5万元
28.方案二。