动点问题最值三角形性质专练
- 格式:docx
- 大小:146.28 KB
- 文档页数:7
1.如图1,在平面直角坐标系中,A(0,a) ,C(b,0),B(-2,0)且()02272≤--+-+b a b a 。
(1)求ABC S ∆的值。
(2)若点P 的坐标是(m,4),且ABC ABP S S ∆∆≥,求m 的取值范围。
(3)如图2,D 为线段OA 上一个动点(不与O,A 重合),直线BD 交AC 于E 点,BEA DAE ∠∠,的平分线交于F 点,过O 点作AOC ∠的平分线与DBO ∠的平分线交于G 点,在(1)的条件下,下列结论:(1)BGO AFE ∠-∠的值不变。
(2)BGO AFE ∠+∠的值不变,其中有且只有一个是正确的 ,请选出正确的结论,并给出证明x2.如图,设一个三角形的三边分别是3 ,1-3m ,8。
(1)求m 的取值范围;(2)是否存在整数m 使三角形的周长为偶数,若存在,求出三角形的周长,若不存在,说明理由; (3)如图,在(2)的条件下,当AB=8,AC=1-3m ,BC=3时,若D 是AB 的中点,连CD ,P 是CD 上一动点(不与C,D 重合,当P 在线段CD 上运动时,有两个式子:(1)BPD APC ABC S S S ∆∆∆+;(2)ABPBPA +。
其中有一个的值不变,另一个的值改变。
问题:A.请判断出谁不变,谁改变;B.若不变的求出其值,若改变的求出变化的范围。
A BCD P3.如图1,在平面直角坐标系中,A(-a, 0),B(2,b),且0162)4(2≤-+++-b a b a ,点C 是OB 上一点,AC 交y 轴于点D 。
(1)求ABO S ∆;(2)若︒=∠-∠∠=∠14,B CAO BOD BAC ,求ACO ∠的度数;(3)如图2,点M 是y 轴负半轴上一点,MG//AC 交x 轴于点N ,CDO ∠与ONG ∠的角平分线交于点P 。
当点M 运动时,问P ∠的大小是否发生变化?若不变,求其度数;若变化,请说明理由。
O C x y 图1BA O Cx y G 图2N M PDB A4.已知,如图1,A(4,4) , B(8,0) , 点C 在y 轴的正半轴上。
七年级数学上册三角形上的动点问题专题训练在七年级数学上册的研究中,我们将会遇到许多与三角形上的动点问题有关的题目。
本文档将为同学们提供一些专题训练,帮助大家更好地理解和解决这类问题。
一、什么是三角形上的动点问题?三角形上的动点问题是指在一个三角形内部或边上存在一个或多个移动的点,通过观察这些点的运动和变化,我们可以得到一些有关三角形的性质和关系的信息。
二、为什么要训练三角形上的动点问题?训练三角形上的动点问题可以帮助我们更好地理解和掌握三角形的性质和相关知识。
通过解决这类问题,我们可以培养逻辑思维和分析问题的能力,并且提高解决复杂问题的能力。
三、训练题目1.设三角形 ABC 中,D 为边 BC 上的一个动点,在边 AB、AC 上分别分别作线段DE、DF,使得三角形DEF 是一个等边三角形。
证明:线段 AE=AF。
2.在一个等边三角形 ABC 中,点 D 在边 BC 上移动。
若线段AD 的长度为 a,线段 AC 的长度为 b,则线段 BD 的长度为多少?3.在三角形 ABC 中,点 D 在边 AC 上移动,点 E 在边 BC 上移动。
若线段 AD 的长度为 a,线段 CE 的长度为 b,则线段 BD 的长度可以表示为多少?4.在三角形 ABC 中,点 D 在边 BC 上移动,点 E 在边 AC 上移动。
若线段 AD 的长度为 a,线段 CE 的长度为 b,则线段 DE 的长度可以表示为多少?5.在三角形 ABC 中,点 D 在边 BC 上移动,点 E 在边 AC 上移动。
若线段 AD 的长度为 a,线段 CE 的长度为 b,则直线 DE 经过定点 F,请问点 F 在哪条边上?以上是一些三角形上的动点问题的训练题目,希望同学们通过解答这些题目,提高对三角形的理解和运用能力。
四、总结通过训练三角形上的动点问题,我们可以深入理解和掌握三角形的性质和相关知识。
同时,这类问题也能够培养我们的逻辑思维和解决问题的能力。
中考九年级数学高频考点专题训练--三角形-动点问题一、单选题1.如图,正方形ABCD和等腰直角三角形EFG,斜边EF与AD在一条直线上,AB=6,EG=4,△EFG沿射线DA方向运动(点E从点D出发),设ED=x,△EFG与正方形ABCD重叠部分的面积为y.若y=7,则x的值为()A.3√2或4√2B.3√2或6+√2C.6+√2或6−√2D.3√2或6−√22.如图,在等边△ABC中,AB=2 √3,点D在△ABC内或其边上,AD=2,以AD为边向右作等边△ADE,连接CD,CE.设CE的最小值为m;当ED的延长线经过点B时,∠DEC=n∘,则m,n的值分别为()A.√3,55B.√3,60C.2 √3-2,55D.2 √3-2,603.如图,Rt△ABC中,∠C=90°,∠A=30°,AB=20,点P是AC边上的一个动点,将线段BP绕点B顺时针旋转60°得到线段BQ,连接CQ,则在点P运动过程中,线段CQ的最小值为()A.5B.10C.20D.25 4.如图,在等边△ABC中,AB=12,点D在AB边上,AD=4,E为AC中点,P为△ABC内一点,且∠BPD=90°,则线段PE的最小值为()A.3 √3﹣2B.4√3−2C.2 √13﹣4D.4 √13﹣85.如图,线段AB的长为8,点D在AB上,ΔACD是边长为3的等边三角形,过点D作与CD垂直的射线DP,过DP上一动点G(不与D重合)作矩形CDGH,记矩形CDGH的对角线交点为O,连接OB,则线段BO的最小值为()A.5B.4C.4√3D.5√3 6.如图,在△ABC中,AB=BC=3,∠ABC=30°,点P为△ABC内一点,连接PA、PB、PC,求PA+PB+PC的最小值()A.3√2B.3+ √2C.3√3D.3+ √3 7.如图,直角三角形ABC中,AC=BC,AD是△ABC的角平分线,动点M、N同时从A点出发,以相同的速度分别沿A→C→B和A一B→C方向运动,并在边BC上的点E相遇,连接AE,①AE平分△ABC的周长,②AE是△ABD的角平分线,③AE是△ABD的中线.以上结论正确的有()A.①②B.①③C.②③D.①②③8.正方形ABCD的边长为8,点E、F分别在边AD、BC上,将正方形沿EF折叠,使点A 落在A′处,点B落在B′处,A′B′交BC于G.下列结论错误的是()A.当A′为CD中点时,则tan∠DA′E=34B.当A′D:DE:A′E=3:4:5时,则A′C=163C.连接AA′,则AA′=EFD.当A′(点A′不与C、D重合)在CD上移动时,△A′CG周长随着A′位置变化而变化二、填空题9.如图,△ABC中.AC=BC,∠ACB=100°,点D在线段AB上运动(D不与A、B重合),连接CD,作∠CDE=30°,DE交BC于点E,若△BDE是等腰三角形,则∠ADC的度数是.10.如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,BC=2,边AB上有一动点P,将△ABC绕点C逆时针旋转90°得△DEC,点P的对应点为P′,连接PP′,则PP′长的最小值为.11.如图,在Rt△ABC中,∠ACB=90°,∠A=3∠B,AB=20cm,点D是AB中点,点M从点A出发,沿线段AB运动到点B,点P始终是线段CM的中点.对于下列结论:①CD=10cm;②∠CDA=60°;③线段CM长度的最小值是5 √2cm;④点P运动路径的长度是10cm.其中正确的结论是(写出所有正确结论的序号).12.如图,在平面直角坐标系中,直线l:y= √33x﹣√33与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B22作A2B3平行于x轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,则点A2017的横坐标是.13.如图,在△ABC中,∠BAC=90°,点D是BC的中点,点E、F分别是AB、AC 上的动点,∠EDF=90°,M、N分别是EF、AC的中点,连接AM、MN,若AC=6,AB=5,则AM﹣MN的最大值为.14.如图,在Rt△ABC中,∠C=90°,AC=4,AB=12,AD平分∠BAC交BC于点D,过点D作DE⊥AD交AB于点E,P是DE上的动点,Q是BD上的动点,则BP+PQ的最小值为.三、综合题15.如图1,在直角坐标系中,O是坐标原点,点A在y轴正半轴上,二次函数y=ax2+16x+c的图象F交x轴于B、C两点,交y轴于M点,其中B(﹣3,0),M (0,﹣1).已知AM=BC.(1)求二次函数的解析式;(2)证明:在抛物线F上存在点D,使A、B、C、D四点连接而成的四边形恰好是平行四边形,并请求出直线BD的解析式;(3)在(2)的条件下,设直线l过D且l⊥BD,分别交直线BA、BC于不同的P、Q两点,AC、BD相交于N,求1BP+1BQ的值;16.在直线上顺次取A,B,C三点,分别以AB,BC为边长在直线的同侧作正三角形,作得两个正三角形的另一顶点分别为D,E.(1)如图①,连结CD,AE,求证:CD=AE;(2)如图②,若AB=1,BC=2,求DE的长;(3)如图③,将图②中的正三角形BEC绕B点作适当的旋转,连结AE,若有DE2+BE2=AE2,试求∠DEB的度数.17.如图,△ABC中,AB =BC=AC =6cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边顺时针运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M、N同时停止运动.(1)点M、N运动几秒后,M、N两点重合?(2)点M、N运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M、N运动的时间.(3)点M、N运动几秒后,可得到直角三角形△BMN?18.在△ABC中,∠ACB=90°,AC=BC,点A、C分别是x轴和y轴上的一动点.(1)如图1.若点B的横坐标为﹣4,求点C的坐标;(2)如图2,BC交x轴于点D,若点B的纵坐标为3,A(5,0),求点C的坐标;(3)如图3,当A(5,0),C(0,﹣2)时,以AC为直角边作等腰直角△ACE,(﹣2,0)为F点坐标,连接EF交y轴于点M,当点E在第一象限时,求S△CEM:S△ACO的值.19.已知ΔABC是边长为8cm的等边三角形,动点P,Q同时出发,分别在三角形的边或延长线上运动,他们的运动时间为t(s).(1)如图1,若P点由A向B运动,Q点由C向A运动,他们的速度都是1cm/s,连接PQ.则AP=,AQ=,(用含t式子表示);(2)在(1)的条件下,是否存在某一时刻,使得ΔAPQ为直角三角形?若存在,请求出t的值,若不存在,请说明理由;(3)如图2,若P点由A出发,沿射线AB方向运动,Q点由C出发,沿射线AC方向运动,P的速度为3cm/s,Q的速度为.acm/s是否存在某个a的值,使得在运动过程中ΔBPO恒为以BP为底的等腰三角形?如果存在,请求出这个值,如果不存在,请说明理由.20.如图,在△ABC中,AD⊥BC于点D,AD=4,BD=3,DC=8,点P是BC边上一点(不与点B、D、C重合),过点P作PQ⊥BC交AB或AC于点Q,作点Q关于直线AD的对称点M,连结QM,过点M作MN⊥BC交直线BC 于点N.设BP=x,矩形PQMN与△ABC重叠部分图形的周长为y.(1)直接写出PQ的长(用含x的代数式表示).(2)求矩形PQMN成为正方形时x的值.(3)求y与x的函数关系式.(4)当过点C和点M的直线平分△ADC的面积时,直接写出x的值.答案解析部分1.【答案】B 2.【答案】D 3.【答案】A 4.【答案】C 5.【答案】B 6.【答案】A 7.【答案】B 8.【答案】D9.【答案】50º或80º或110º 10.【答案】√6 11.【答案】①③④ 12.【答案】22017−1213.【答案】251214.【答案】815.【答案】(1)解:∵二次函数y=ax 2+16x+c 的图象经过点B (-3,0),M (0,-1),∴{9a +16×(−3)+c =0c =−1, 解得a=16,c=-1. ∴二次函数的解析式为:y=16x 2+16x-1.(2)证明:∵二次函数的解析式为:y=16x 2+16x-1,令y=0,得0=16x 2+16x-1,解得x 1=-3,x 2=2, ∴C (2,0), ∴BC=5; 令x=0,得y=-1, ∴M (0,-1),OM=1. 又AM=BC , ∴OA=AM-OM=4, ∴A (0,4).设AD ∥x 轴,交抛物线于点D ,如图1所示, 则y D =16x 2+16x −1=OA =4,解得x 1=5,x 2=-6(位于第二象限,舍去) ∴D 点坐标为(5,4). ∴AD=BC=5, 又∵AD ∥BC ,∴四边形ABCD 为平行四边形.即在抛物线F 上存在点D ,使A 、B 、C 、D 四点连接而成的四边形恰好是平行四边形.设直线BD 解析式为:y=kx+b , ∵B (3,0),D (5,4),∴{−3k +b =05k +b =4, 解得:k=12,b=32,∴直线BD 解析式为:y=12x+32.(3)解:在Rt △AOB 中,AB =√OA 2+OB 2=5, 又AD=BC=5, ∴▱ABCD 是菱形.①若直线l ∥BD ,如图1所示. ∵四边形ABCD 是菱形, ∴AC ⊥BD , ∴AC ∥直线l ,∴BA BP =BC BQ =BN BD =12,∵BA=BC=5, ∴BP=BQ=10,∴1BP +1BQ =110+110=15.16.【答案】(1)证明:∵△ABD 是等边三角形,∴AB=BD ,∵△BCE 是等边三角形, ∴BC=BE ,∵∠ABD=∠CBE=60°, ∴∠ABE=∠CBD , ∴△ABE ≌△DBC (SAS ), ∴CD=AE ;(2)解: 取BE 的中点F ,连接DF ,∵BD=BF=1,∠DBF=60°,∴△BDF为等边三角形,∴DF=1,∴FD=FE=FB=1,∴△BED为直角三角形,即∠BDE=90°,∴DE=√BE2−BD2=√3;(3)解:如图,连接DC,∵△ABD和△ECB都是等边三角形,∴AD=AB=BD,BC=BE=EC,∠ABD=∠EBC= 60°,∴∠ABE=∠DBC,∴AB=BD,在△ABE和△DBC中,AB=AD,∠ABE =∠DBC,BE=BC,∴△ABE≌△DBC ( SAS) ,∴AE=DC,∴DE2+BE2=AE2,BE=CE ,∴DE2+CE2=CD2 ,∴∠DEC=90° ,∴∠BEC=60° ,∴∠DEB=∠DEC-∠BEC=30° .17.【答案】(1)解:设M、N运动t秒后,M、N两点重合,依题可得,t×1+6=2t,解得:t=6.答:点M、N运动6秒后,M、N两点重合.(2)能得到以MN为底边的等腰△AMN,①当点M在AC上,点N在AB上,如图①所示:设运动时间为t秒,依题可得,AM=t,AN=6-2t,∵△AMN是以MN为底边的等腰三角形,∴AM=AN,∴t=6-2t,解得:t=2;②当点M、N都在BC上时,如图②所示:设运动时间为t秒,依题可得,CM=t-6,BN=18-2t,∵△AMN是以MN为底边的等腰三角形,∴AM=AN,∴∠AMN=∠ANM,∴∠AMC=∠ANB,∵△ABC是正三角形,∴∠B=∠C,AC=AB,在△ACM和△ABN中,{∠AMC=∠ANB∠C=∠BAC=AB,∴△ACM≌△ABN(AAS),∴CM=BN,即t-6=18-2t,解得:t=8;综上所述:能得到以MN为底边的等腰三角形AMN,此时,M、N的运动时间为2秒或8秒.(3)解:①当∠BNM=90°时,如图所示:设M、N运动时间是t秒,依题可得:BN=2t,AN=6-2t,AM=t,∵△ABC为等边三角形,∴∠A=60°,∴∠AMN=30°,∴AM=2AN,即t=2(6-2t),解得:t=2.4;②当点M、N都在AC上时,当∠BNM=90°时,如图所示:设M、N运动时间是t秒,依题可得:AN=2t-6,∴CN=6-AN=12-2t,∵△ABC为等边三角形,∴∠C=60°,∴∠CBN=30°,∴BC=2CN,即6=2(12-2t),解得:t=4.5;③当点M、N都在AC上时,当∠BMN=90°时,如图所示:设M、N运动时间是t秒,依题可得:AM=t,∴CM=6-AM=6-t,∵△ABC为等边三角形,∴∠C=60°,∴∠CBM=30°,∴BC=2CM,即6=2(6-t),解得:t=3;综上所述:当点M、N运动2.4秒或3秒或4.5秒时,可得到直角△BMN. 18.【答案】(1)解:如图1中,作BH⊥y轴于H.∵∠BHC=∠BCA=∠AOC=90°,∴∠BCH+∠ACO=90°,∠ACO+∠OAC=90°,∴∠BCH=∠OAC,∵BC=AC,∴△BHC≌△COA(AAS),∴OC=BH,∵点B的横坐标为−4,∴BH=4,∴OC=4,∴C(0,−4);(2)解:如图2中,作BH⊥y轴于H.由(1)可知△BHC≌△COA∴OC=BH,OA=CH,∵若点B的纵坐标为3,A(5,0),∴OA=CH=5,OH=3,∴BH=OC=2,∴C(0,−2);(3)解:如图3中,由题意点E在第一象限,作EH⊥OA于H.同法可证:△AHE≌△COA(AAS),∴AH =OC ,AO =EH , ∵A (5,0),C (0,−2), ∴EH =OA =5,OC =AH =2, ∴E (3,5),设直线 FE 的解析式为: y =kx +b , 则 {0=−2k +b 5=3k +b ,解得 {k =1b =2 ,∴直线 FE 的解析式为: y =x +2 , 令 x =0 ,则 y =2 , ∴OM =2,∴S △CEM :S △ACO = (12×4×3):(12×2×5)=6:5 .19.【答案】(1)tcm ;(6-t )cm(2)解:存在 t =83s 或16s时,使得 ΔAPQ 为直角三角形,理由是①当 PA ⊥AB 时,由题意有 2t =8−t ,解得 t =83s②当 PQ ⊥AC 时,由题意有 t =2(8−t), 解得 t =163s∴ 综上所述,存在 t =83s 或16s时,使得 ΔAPQ 为直角三角形(3)解:存在 a =3cm/s 时, ΔBPQ 恒为以 BP 为底的等腰三角形,理由是: 作 QM ⊥BP 于M ,如图2所示由题意得: AP =3t,CQ =at ,则 AQ =8+at,BP =|8−3t|∵PQ =BQ,QM ⊥BP ∴PM =BM =12BP∵ΔABC 是等边三角形,∴∠A =60° ∴∠AQM =30° ∴AQ =2AM ,①当 t ≤83 时,由题意有 2(3t +8−3t2)=8+at ,解得 a =3cm/s ,②当 t ≥83 时,由题意有 2(3t −3t−82)=8+at ,解得 a =3cm/s ,∴ 综上所述,存在 a =3cm/s 时, ΔBPQ 恒为以 BP 为底的等腰三角形.20.【答案】(1)解:①当PQ 交AB 于点Q 时,0<x<3,∵AD ⊥BC ,AD=4,BD=3,∴tan ∠B= 43,∵PQ ⊥BC , ∴PQ BP =43, ∴当0<x<3时,PQ= 43x ;②当PQ 交AC 于点Q 时,3<x<11, ∵AD ⊥BC ,AD=4,CD=8, ∴tan ∠C= 12 ,∵PQ ⊥BC ,∴PQ PC =12,PC=11-x , ∴当3<x<11时,PQ= 11−x 2;(2)解:①当PQ 交AB 于点Q 时,0<x<3, ∵四边形PQMN 为正方形, ∴PQ=QM=MN=NP , ∵QM=2(3-x ), ∴43x=2(3-x ), 解得x= 95;②当PQ 交AC 于点Q 时,3<x<11, ∵四边形PQMN 为正方形,∴PQ=QM=MN=NP , ∵QM=2(x-3), ∴(11−x)2=2(x-3),解得x= 235(3)解:y=PQ+MN+QM+PN , =2× 43x+2×2(3-x ),=12- 43x ;(4)解:如图,连接CM 交AD 于O ,由题可知: AE =DE =12AD =2 ,∵QP =ED =43x ,∴OE =OD −DE =2−43x , EM =QE =PD =3−x ,∵QM ∥BC , ∴△OME ∼△OCD , ∴EO DO =EM DC, ∴2−43x 2=3−x 8, 化简得: 4(2−43x)=3−x ,∴x =1513.。
动点问题产生的最值综合训练(培优)一.试题(共30小题)1.如图,把正方形ABCD沿着对角线AC的方向移动到正方形A′B′C′D′的位置,它们的重叠部分的面积是正方形ABCD面积的一半,若AC=,则正方形移动的距离AA′为()A.B.1C.﹣1D.1﹣2.如图,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是()A.8B.6C.4D.23.一次函数y=kx﹣2k的大致图象是()A.B.C.D.4.如图,在矩形ABCD中,AB=8cm,BC=16cm,动点P从点A出发,以1cm/秒的速度向终点B移动,动点Q从点B出发以2cm/秒的速度向终点C移动,则移动第到秒时,可使△PBQ的面积最大.5.如图,已知A、B两点的坐标分别为(8,0)、(0,﹣6),⊙C的圆心坐标为(0,7),半径为5.若P是⊙C上的一个动点,线段PB与x轴交于点D,则△ABD面积的最大值是.6.如图,已知A(2,0)、B(0,5),⊙C的圆心坐标为C(﹣1,0),半径为1,若D是⊙C上一个动点,线段DA与y轴交于点E,则△ABE面积的最小值是.7.函数y=的图象如图所示,在同一平面直角坐标系内,如果将直线y=﹣x+1沿y轴向上平移2个单位后,那么所得直线与函数y=的图象的交点共有个.8.如图,在锐角三角形ABC中,BC=12,△ABC的面积为48,D,E分别是边AB,AC 上的两个动点(D不与A,B重合),且保持DE∥BC,以DE为边,在点A的异侧作正方形DEFG.(1)当正方形DEFG的边GF在BC上时,求正方形DEFG的边长;(2)设DE=x,△ABC与正方形DEFG重叠部分的面积为y,试求y关于x的函数关系式,写出x的取值范围,并求出y的最大值.9.如图1,在▱ABCD中,AH⊥DC,垂足为H,AB=4,AD=7,AH=.现有两个动点E,F同时从点A出发,分别以每秒1个单位长度、每秒3个单位长度的速度沿射线AC方向匀速运动,在点E,F的运动过程中,以EF为边作等边△EFG,使△EFG 与△ABC在射线AC的同侧,当点E运动到点C时,E,F两点同时停止运动,设运动时间为t秒.(1)求线段AC的长;(2)在整个运动过程中,设等边△EFG与△ABC重叠部分的面积为S,请直接写出S与t之间的函数关系式,并写出相应的自变量t的取值范围;(3)当等边△EFG的顶点E到达点C时,如图2,将△EFG绕着点C旋转一个角度α(0°<α<360°),在旋转过程中,点E与点C重合,F的对应点为F′,G的对应点为G′,设直线F′G′与射线DC、射线AC分别相交于M,N两点.试问:是否存在点M,N,使得△CMN是以∠MCN为底角的等腰三角形?若存在,请求出CM的长度;若不存在,请说明理由.10.如图所示,在矩形OCBD中,OD=1,OC=3,∠DOC的角平分线交DB于A,动点P 从O点出发,沿射线OC方向以每秒1个单位长度的速度移动,过点P作PQ⊥射线OA,垂足为Q,设点P移动的时间为t秒(0<t<4),△OPQ与直角梯形OABC重叠部分的面积为S.(1)求S与t的函数关系式;(2)画出S与t的函数图象.11.如图,过A(1,0)、B(3,0)作x轴的垂线,分别交直线y=4﹣x于C、D两点.抛物线y=ax2+bx+c经过O、C、D三点.(1)求抛物线的表达式;(2)点M为直线OD上的一个动点,过M作x轴的垂线交抛物线于点N,问是否存在这样的点M,使得以A、C、M、N为顶点的四边形为平行四边形?若存在,求此时点M 的横坐标;若不存在,请说明理由.12.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点A(1,4),对称轴是直线x=﹣,线段AD平行于x轴,交抛物线于点D.在y轴上取一点C(0,2),直线AC交抛物线于点B,连接OA、OB、OD、BD.(1)求该二次函数的解析式;(2)求点B的坐标和坐标平面内使△EOD∽△AOB的点E的坐标;(3)设点F是BD的中点,点P是线段DO上的动点,问PD为何值时,将△BPF沿边PF翻折,使△BPF与△DPF重叠部分的面积是△BDP的面积的?13.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴交于A(6,0),C(﹣4,0)两点,与y轴交于点B(0,3).(1)求抛物线的解析式;(2)点D、点E同时从点O出发以每秒1个单位长度的速度分别沿x轴正半轴,y轴正半轴向点A、点B方向移动,当点D运动到点A时,点D、E同时停止移动.过点D作x轴的垂线交抛物线于点F,交AB于点G,作点E关于直线DF的对称点E′,连接FE′,射线DE′交AB于点H.设运动时间为t秒.①t为何值时点E′恰好在抛物线上,并求此时△DE′F与△ADG重叠部分的面积;②点P是平面内任意一点,若点D在运动过程中的某一时刻,形成以点A、E′、D、P为顶点的四边形是菱形,那么请直接写出点P的坐标.14.在△AOB中,OA=OB=8,∠AOB=90°,矩形CDEF的顶点C、D、F分别在边AO、OB、AB上.(1)如图1,若C、D恰好是边AO、OB的中点,则此时矩形CDEF的面积为;(2)如图2,若=,求矩形CDEF面积的最大值.15.如图,在Rt△ABC中,∠A=90°,AB=8,AC=6.若动点D从点B出发,沿线段BA运动到点A为止,运动速度为每秒2个单位长度.过点D作DE∥BC交AC于点E,设动点D运动的时间为x秒,AE的长为y.(1)求出y关于x的函数关系式,并写出自变量x的取值范围;(2)当x为何值时,△BDE的面积S有最大值,最大值为多少?16.两个反比例函数和(k1>k2>0)在第一象限内的图象如图所示,动点P 在的图象上,PC⊥x轴于点C,交的图象于点A,PD⊥y轴于点D,交的图象于点B.(1)求证:四边形P AOB的面积是定值;(2)当时,求的值;(3)若点P的坐标为(5,2),△OAB、△ABP的面积分别记为S△OAB′S△ABP.设S=S﹣S△ABP′△OAB①求k1的值;②当k2为何值时,S有最大值,最大值为多少?17.在矩形AOBC中,OB=6,OA=4.分别以OB,OA所在直线为x轴和y轴,建立如图所示的平面直角坐标系.F是边BC上的一个动点(不与B,C重合),过F点的反比例函数的图象与AC边交于点E.(1)设点E,F的坐标分别为:E(x1,y1),F(x2,y2),△AOE与△FOB的面积分别为S1,S2,求证:S1=S2;(2)若y2=1,求△OEF的面积;(3)当点F在BC上移动时,△OEF与△ECF的面积差记为S,求当k为何值时,S有最大值,最大值是多少?18.如图,矩形OABC的长OA=,宽OC=1,将△AOC沿AC翻折得△APC.(1)填空:∠PCB=度,P点坐标为;(2)若P、A两点在抛物线上,求b,c的值;(3)若直线y=kx+m平行于CP,且于(2)中的抛物线有且只有一个交点,求k,m的值;(4)在(2)中抛物线CP段(不包括C,P点)上,是否存在一点M,使得四边形MCAP 的面积最大?若存在求此时M的坐标;若不存在,请说明理由.19.如图所示,抛物线y=ax2+bx+c(a≠0)的顶点为M(﹣2,﹣4),与x轴交于A、B两点,且A(﹣6,0),与y轴交于点C.(1)求抛物线的函数解析式;(2)求直线AC的解析式;(3)能否在抛物线第三象限的图象上找到一点P,使△APC的面积最大?若能,请求出点P的坐标;若不能,请说明理由.20.如图,已知抛物线y=ax2+bx(a≠0)经过A(3,0),B(4,4)两点.(1)求抛物线的解析式;(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m的值.21.已知反比例函数的图象经过点(4,),若一次函数y=x+1的图象平移后经过该反比例函数图象上的点B(2,m).(1)求平移后的一次函数图象与x轴的交点坐标;(2)求平移后的一次函数图象与反比例函数的图象的交点坐标.22.已知抛物线F:y=ax2+bx+c的顶点为P.(Ⅰ)当a=1,b=﹣2,c=﹣3,求该抛物线与x轴公共点的坐标;(Ⅱ)设抛物线F:y=ax2+bx+c与y轴交于点A,过点P作PD⊥x轴于点D.平移该抛物线使其经过点A、D,得到抛物线F:y=a′x2+b′x+c′(如图所示).若a、b、c满足了b2=2ac,求b:b′的值;(Ⅲ)若a=3,b=2,且当﹣1<x<1时,抛物线F与x轴有且只有一个公共点,求c 的取值范围.23.已知关于x的一元二次方程x2+(4﹣m)x+1﹣m=0.(1)求证:无论m取何值,此方程总有两个不相等的实数根;(2)此方程有一个根是﹣3,在平面直角坐标系xOy中,将抛物线y=x2+(4﹣m)x+1﹣m向右平移3个单位,得到一个新的抛物线,当直线y=x+b与这个新抛物线有且只有一个公共点时,求b的值.24.已知关于x的一元二次方程2x2+4x+k﹣1=0有实数根,k为正整数.(1)求k的值;(2)当此方程有两个非零的整数根时,将关于x的二次函数y=2x2+4x+k﹣1的图象向下平移8个单位,求平移后的图象的解析式;(3)在(2)的条件下,将平移后的二次函数得到图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象讨论直线y=x+b (b<k)与此图象交点个数,并求出相应的b的取值范围.25.如图,已知二次函数y=x2+bx+c的图象经过两点C(﹣2,5)与D(0,﹣3),且与x 轴相交于A、B两点,其顶点为M.(1)求b和c的值;(2)在二次函数图象上是否存在点P,使S△P AB=S△MAB?若存在,求出p点的坐标;若不存在,请说明理由;(3)过点D作直线l∥x轴,将二次函数图象在y轴左侧的部分沿直线l翻折,二次函数图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象直接写出当m为何值时直线y=x+m与此图象只有两个公共点.26.如图,在平面直角坐标系xOy中,抛物线y=mx2﹣2mx+n与x轴交于A、B两点,点A 的坐标为(﹣2,0).(1)求B点坐标;(2)若对于每一个给定的x的值,它所对应的函数值都不小于﹣5,求m的取值范围.(3)直线y=x+4m+n经过点B.①求直线和抛物线的解析式;②设抛物线与y轴的交点为C,过点C作直线l∥x轴,将抛物线在y轴左侧的部分沿直线l翻折,抛物线的其余部分保持不变,得到一个新图象,请你结合新图象回答:当直线y=x+b与新图象只有一个公共点P(x0,y0)且y0≤8时,求b的取值范围.27.已知点A(2,﹣3)在抛物线y=x2﹣2x+m上,求经过点A且与抛物线只有一个公共点的直线解析式.28.已知关于x的一元二次方程x2﹣3x+k﹣1=0有实数根,k为正整数.(1)求k的值;(2)当此方程有两个不为0的整数根时,将关于x的二次函数y=x2﹣3x+k﹣1的图象向下平移2个单位,求平移后的函数图象的解析式;(3)在(2)的条件下,将平移后的二次函数图象位于y轴左侧的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象G.当直线y=5x+b与图象G有3个公共点时,请你直接写出b的取值范围.29.已知,抛物线y=ax2﹣2ax﹣3与x轴交于A(﹣1,0)和B两点,与y轴交于点C,其顶点为M.(1)求a的值和M的坐标;(2)将抛物线平移,使其顶点在射线CB上,且A点的对应点为A′,若S△A'AC=9,求平移后的抛物线的解析式;(3)如图2,将原抛物线x轴下方的部分沿x轴翻折到x轴上方得到新图象,当直线y =kx﹣2k+5与新图象有三个公共点时,求k的值.30.如图1,在平面直角坐标系中,抛物线C1:y=ax2﹣a2(a>0)经过点B(1,0),顶点为A(1)求抛物线C1的解析式;(2)如图2,先将抛物线C1向上平移使其顶点在原点O,再将其顶点沿直线y=x平移得到抛物线C2,设抛物线C2与直线y=x交于C、D两点,求线段CD的长;(3)在图1中将抛物线C1绕点B旋转180°后得到抛物线C3,直线y=kx﹣2k+4总经过一定点M,若过定点M的直线l与抛物线C3只有一个公共点,求直线l的解析式.。
2023年中考数学高频考点提升练习--三角形的动点问题一、单选题1.如图,在钝角三角形ABC中,AB=6cm,AC=12cm,动点D从点A出发沿AB以1cm/s的速度向点B运动,同时动点E从点C出发沿CA以2cm/s的速度向点A运动,当以A,D,E为顶点的三角形与△ABC相似时,运动时间是()A.3s或4.8s B.3s C.4.5s D.4.5s或4.8s2.如图,在平面直角坐标系中,等边△OBC的边OC在x轴正半轴上,点O为原点,点C坐标为(12,0),D是OB上的动点,过D作DE⊥x轴于点E,过E作EF⊥BC于点F,过F作FG⊥OB于点G.当G与D重合时,点D的坐标为()A.(1,√3)B.(2,2√3)C.(4,4√3)D.(8,8√3)3.如图,在等腰三角形ACB中,AC=BC=5,AB=8,D为底边AB上一动点(不与点A,B重合),DE△AC,DF△BC,垂足分别为E,F,则DE+DF的值等于()A.125B.3C.245D.64.如图,点C是线段AB上一点,分别以AC,BC为边在线段AB的同侧作等边△ACD和等边△BCE,连结DE,点F为DE的中点,连结CF.若AB=2a(a为常数,a>0),当点C在线段AB上运动时,线段CF的长度l的取值范围是()A.√3a3≤l≤√3a2B.√3a2≤l≤aC.a2≤l≤√3a3D.√3a3≤l≤a5.如图,在等边△ABC中,BC=12,D、E是BC边上的两点,BD=CE=2,点M,N,P分别是线段AB,AC,DE上的一动点,连接MN、AP,MN与AP交于点G,若四边形AMPN是平行四边形,则点P由点D移动到点E的过程中,下列结论正确的是()①MG=NG;②△NPC∼△ABC;③当P运动到BC中点时,四边形AMPN是菱形,且菱形面积为18√3;④点P由点D移动到点E的过程中,点G所走的路径长为4A.1个B.2个C.3个D.4个6.如图:已知AB=10,点C、D在线段AB上且AC=DB=2;P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作等边△AEP和等边△PFB,连接EF,设EF的中点为G;当点P从点C运动到点D时,则点G移动路径的长是()A.5B.4C.3D.07.在四边形ABCD中,△A=45°,△D=90°,AD△BC,BC=1,CD=3.点P,Q同时从点A出发,点P以√2个单位长度/秒向点B运动,到达点B停止运动;点Q以2个单位长度/秒沿着AD→DC向点C运动,到达点C停止运动.设点Q运动时间为ts,△APQ的面积为S,则S随t变化的函数图象大致为()A.B.C.D.8.如图,在直角坐标系中,等腰直角△ABO的O点是坐标原点,A的坐标是(﹣4,0),直角顶点B在第二象限,等腰直角△BCD的C点在y轴上移动,我们发现直角顶点D点随之在一条直线上移动,这条直线的解析式是()A.y=﹣2x+1B.y=﹣x+2C.y=﹣3x﹣2D.y=﹣x+2二、填空题9.在△ABC中,AB=AC,BC=5,∠BAC=90°,点D为直线BC上一动点,以AD为直角边在AD的右侧作等腰Rt△ADE,使∠DAE=90°,AD=AE,A、E两点间的最小距离为.10.如图,在Rt△ABC中,△C=90°,AC=6,△B=30°,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是.11.如图,在矩形ABCD中,边AB,AD的长分别为3和2,点E在CD上,点F在AB的延长线上,且EC=BF,连接FC。
初中数学动点问题及练习题附参考答案所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静.数学思想:分类思想函数思想方程思想数形结合思想转化思想注重对几何图形运动变化能力的考查。
从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。
选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。
在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点.专题一:建立动点问题的函数解析式函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析.一、应用勾股定理建立函数解析式。
专题1.2 三角形中四类重要的最值模型专题讲练三角形中重要的四类最值模型(将军饮马模型、瓜豆模型(动点轨迹)、胡不归模型、费马点模型等)在考试中,无论是解答题,还是选择、填空题,都是学生感觉有困难的地方,也恰是学生能力区分度最重要的地方,主要考查转化与化归等的数学思想。
在各类考试中都以中高档题为主,中考说明中曾多处涉及。
在解决几何最值问题主要依据是:①两点之间,线段最短;②垂线段最短,涉及的基本方法还有:利用轴对称变换、旋转变换化归到“三角形两边之和大于第三边”、“三角形两边之差小于第三边”等。
特殊三角形中的分类讨论则体现了另一种数学思想,希望通过本专题的讲解让大家对这两类问题有比较清晰的认识。
重要模型模型1:将军饮马模型【模型图示】将军饮马拓展型:1)点P位定点,在直线1l,2l上分别找点M,N,使PMN△周长(即MNPNPM++)最小操作:分别作点P关于直线1l,2l的对称点’P和”P,连结”’PP与直线1l,2l的交点为M,N,()”’最小值△PPCPMN=求”’P P 长度通法:如上图,一般会给一个特殊角(15°,30°,45°,60°,75°)A ,连结’AP ,AP ,”AP ,由对称性可求A AP P ∠=∠2”’也为特殊角(30°,60°,90°,120°,150°),”’AP AP AP ==,可得特殊等腰”’△P AP ,利用三边关系求出”’P P 2)点P ,Q 为定点,直线1l ,2l 上分别找M ,N ,使PQMN 周长(即MN PN PM PQ +++)小操作:分别作点P ,Q 关于直线1l ,2l 的对称点’P 和’Q ,连结’’Q P 与直线1l ,2l 的交点为M ,N ,()’’最小值四边形Q P PQ C PQMN +=例1.(2022·广东·九年级专题练习)已知点(1,1)A ,(3,5)B ,在x 轴上的点C ,使得AC BC +最小,则点C 的横坐标为_______.变式1.(2022·河南南阳·八年级阶段练习)如图,等边ABC D 的边长为4,点E 是AC 边的中点,点P 是ABCD 的中线AD 上的动点,则EP CP +的最小值是_____.例2.(2022·山东潍坊·八年级期末)如图,在平面直角坐标系中,已知()0,1A ,()4,2B ,PQ 是x 轴上的一条动线段,且1PQ =,当AP PQ QB ++取最小值时,点Q 坐标为______.变式2.(2022·成都市·八年级专题练习)如图,四边形ABCD 是平行四边形,4AB =,12BC =,60ABC ∠=°,点E 、F 是AD 边上的动点,且2EF =,则四边形BEFC 周长的最小值为______.例3.(2022·安徽·八年级期末)已知在平面直角坐标系中,点A(-1,-2),点B(4,12),试在x轴上找一点P,使得|PA-PB|的值最大,求P点坐标为_________.变式3.(2022·河南南阳·一模)如图,已知△ABC为等腰直角三角形,AC=BC=6,∠BCD=15°,P为直线CD上的动点,则|PA-PB|的最大值为____.例4.(2022·江苏·无锡市东林中学八年级期末)如图,已知∠AOB的大小为α,P是∠AOB内部的一个定点,且OP=4,点E、F分别是OA、OB上的动点,若△PEF周长的最小值等于4,则α=()A.30°B.45°C.60°D.90°变式4.(2022·安徽·合肥市八年级阶段练习)如图,在平面直角坐标系中,∠AOB=30°,P(5,0),在OB 上找一点M,在OA上找一点N,使△PMN周长最小,则此时△PMN的周长为___.例5.(2022·湖北武汉市·八年级期末)如图,点A在y轴上,G、B两点在x轴上,且G(﹣3,0),B(﹣2,0),HC与GB关于y轴对称,∠GAH=60°,P、Q分别是AG、AH上的动点,则BP+PQ+CQ的最小值是( )A .6B .7C .8D .9变式5.(2022·湖北黄冈·八年级期末)已知,如图,30AOB ∠=°,点M ,N 分别是边OA ,OB 上的定点,点P ,Q 分别是边OB ,OA 上的动点,记MPQ a ∠=,PQN b ∠=,当MP PQ QN ++最小时,则b a -=______.模型2:瓜豆原理 (动点轨迹)【解题技巧】1)动点轨迹为直线时,利用“垂线段最短”求最值。
动点最值问题通常涉及在给定条件下寻找动点的位置,以使得某个特定的函数或表达式达到最大值或最小值。
下面给出一个经典的动点最值问题例题:
例题:在直角坐标系中,点A的坐标为(0,4),点B的坐标为(4,0)。
动点P在线段AB上运动,求线段OP(O为坐标原点)长度的最小值。
解:线段AB的长度可以根据勾股定理求出,为4√2。
由于点P在线段AB上运动,因此线段OP的长度最小值为O到AB的距离。
为了找到这个距离,可以过O作AB的垂线,交AB于点C。
由于△AOB是等腰直角三角形,所以OC = AC = BC = 2√2。
因此,线段OP的最小值为2√2。
这个问题考察了动点最值问题的基本思路和方法,即通过寻找动点的位置来使得某个特定的函数或表达式达到最大值或最小值。
同时,这个问题也涉及到了几何、代数和三角函数等多个数学知识点,需要综合运用这些知识点来解决问题。
专题12三角形中的动点问题1.(2022春•和平区校级月考)如图1,7AB cm =,AC BD ⊥,BD AB ⊥,垂足分别为A 、B ,5AC cm =,点P 在线段AB 上以2/cm s 的速度由点A 向点B 运动,同时点Q 在射线BD 上运动,它们运动的时间为t 秒.(当点P 运动结束时,点Q 运动随之结束)(1)若点Q 的运动速度与点P 的运动速度相等,当1t =时,ACP ∆与BPQ ∆是否全等,并判断此时线段PC 和线段P Q 的位置关系,请分别说明理由;(2)如图2,若“AC AB ⊥,BD AB ⊥”改为“CAB DBA ∠=∠”,点Q 的运动速度为x /cm s ,其他条件不变,当点P 、Q 运动到何处时有ACP ∆与BPQ ∆全等,则x 的值为.(直接写出x 的值)2.(2022秋•潢川县校级期末)已知:如图,在梯形ABCD 中,12AB DC cm ==,15BC cm =,B C ∠=∠,点E 为边AB 上一点,且5AE cm =.点P 在线段BC 上以每秒3cm 的速度由点B 向点C 运动,同时点Q 在线段CD 上由点C 向点D 运动.设点P 运动时间为t 秒,请回答下列问题:(1)线段BP ,C P 的长可用含t 的式子分别表示为:B P =,CP =.(2)若某一时刻B P E ∆与CQP ∆全等,求此时t 的值和线段B P 的长3.(2022秋•洮北区校级月考)如图,已知正方形ABCD 中,边长为10cm ,点E 在AB 边上,6BE cm =.点P 在线段BC 上以4/cm 秒的速度由B 点向C 点运动,同时,点Q 在线段CD 上以a 厘米/秒的速度由C 点向D 点运动,设运动的时间为t 秒.(1)B P =cm ,CP =cm .(用含t 的代数式表示)(2)若以E 、B 、P 为顶点的三角形和以P 、C 、Q 为顶点的三角形全等,求a 的值.4.(2020秋•新市区校级期末)如图,已知ABC ∆中,12AB AC ==厘米.9BC =厘米,点D 为AB 的中点.(1)如果点P 在BC 边上以3厘米/秒的速度由B 向C 点运动,同时点Q 在C A 边上由C 点向A 点运动.①若点Q 与点P 的运动速度相等,1秒钟时,B P D ∆与CQP ∆是否全等?请说明理由;②若点Q 与点P 的运动速度不相等,要使B P D ∆与CQP ∆全等,点Q 的运动速度应为多少?并说明理由;(2)若点Q 以②的运动速度从点C 出发点,P 以原来运动速度从点B 同时出发,都沿ABC ∆的三边按逆时针方向运动,当点P 与点Q 第一次相遇时,求它们运动的时间,并说明此时点P 与点Q 在ABC ∆的哪条边上.5.(2022春•华容县期中)如图,已知正方形ABCD 的边长为10cm ,点E 在AB 边上,6BE cm =.(1)如果点P 在线段BC 上以4/cm s 的速度由B 点向C 点运动,同时,点Q 在线段CD 上由C 点向D 点运动.①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,B P E ∆与CQP ∆是否全等.请说明理由.②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使B P E ∆与CQP ∆全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿正方形ABCD 四边运动,求经过多长时间点P 与点Q 第一次在正方形ABCD 边上的何处相遇?相遇点在何处?6.(2021秋•濮阳期中)如图,已知四边形ABCD 中,8AB BC cm ==,6CD cm =,B C ∠=∠,动点P 、Q 同时从A 、B 两点出发,分别沿AB 、BC 方向匀速运动,点Q 运动的速度是每秒2cm ,点P 运动的速度是每秒a (2)cm a ,当点Q 到达点C 时,P 、Q 两点都停止运动,设运动时间为t 秒,(1)BQ =;B P =;(用含a 或t 的代数式表示)(2)运动过程中,连接P Q 、DQ ,BPQ ∆与CDQ ∆是否全等?若能,请求出相应的t 和a 的值;若不能,请说明理由.7.(2022秋•南召县期末)如图,在四边形ABCD 中,B C ∠=∠,20AB cm =,15BC cm =,E 为AB 的中点,若点P 在线段BC 上以5/cm s 的速度由点B 向点C 运动,同时,点Q 在线段CD 上由点C 向点D 运动.(1)若点Q 运动的速度是5/cm s ,经过1秒后,B P E ∆与CQP ∆是否全等,请说明理由;(2)若点Q 的运动速度与点P 的运动速度不相等,当B P E ∆与CQP ∆全等时,求出点Q 的运动速度.8.(2022秋•蒸湘区校级期末)如图,在ABC ∆中,2AB AC ==,40B ∠=︒,点D 在线段BC 上运动(D 不与B 、C 重合),连接AD ,作40ADE ∠=︒,DE 与AC 交于E .(1)当115BDA ∠=︒时,BAD ∠=︒,DEC ∠=︒;当点D 从B 向C 运动时,B D A ∠逐渐变(填”大”或”小”);(2)当2DC AB ==时,A B D ∆与D CE ∆是否全等?请说明理由:(3)在点D 的运动过程中,A D E ∆的形状可以是等腰三角形吗?若可以,请直接写出B D A ∠的度数;若不可以,请说明理由.9.(2022秋•浠水县校级期中)如图(1),14AB cm =,10AC cm =,AC AB ⊥,BD AB ⊥垂足分别为A 、B ,点P 在线段AB 上以2/cm s 的速度由点A 向点B 运动,同时点Q 在射线BD 上运动.它们运动的时间为()t s (当点P 运动结束时,点Q 运动随之结束).(1)若点Q 的运动速度与点P 的运动速度相等,当2t =时,ACP ∆与BPQ ∆是否全等,并判断此时线段PC 和线段P Q 的位置关系,请分别说明理由;(2)如图(2),若“AC AB ⊥,BD AB ⊥”改为“CAB DBA ∠=∠”,点Q 的运动速度为x /cm s ,其它条件不变,当点P 、Q 运动到何处时有ACP ∆与BPQ ∆全等,求出相应的x 和t 的值.10.(2022秋•潍坊期中)如图,已知正方形ABCD 的边长为10cm ,点E 在AB 边上,6BE cm =.(1)如果点P 在线段BC 上以4/cm s 的速度由B 点向C 点运动,点Q 同时在线段CD 上由C 点向D 点运动,①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,B P E ∆与COP ∆是否全等?并说明理由;②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,B P E ∆与CQP ∆全等?(2)若点?以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿正方形ABCD 四边运动,求经过多长时间点P 与点Q 第一次相遇?相遇点在何处?11.(2022秋•慈溪市月考)如图①,在Rt ABC ∆中,90C ∠=︒,9BC cm =,12AC cm =,15AB cm =,现有一动点P 从点A 出发,沿着三角形的边AB BC →运动,到点C 停止,速度为3/cm s ,设运动时间为t .(1)如图①,当t =时,APC ∆的面积等于ABC ∆面积的一半;(2)如图②,在DE F ∆中,90E ∠=︒,4DE cm =,5DF cm =,D A ∠=∠.在ABC ∆的边上,若另外有一动点Q ,与点P 同时从点A 出发,沿着边AC 运动,到点C 停止.在两点运动过程中的某一时刻,恰好使APQ ∆与D E F ∆全等,求点Q 的运动速度.12.(2022秋•安化县期末)如图,已知12AB cm =,CA AB ⊥于点A ,D B AB ⊥于点B ,且4AC cm =,点P 从点B 向点A 运动,每秒钟走1cm ,点Q 从点B 向点D 运动,每秒钟走2cm ,两点同时出发,运动几秒钟后,CPA ∆与PQB ∆全等?13.(2022秋•江宁区校级月考)如图,已知ABC ∆中,6AB AC cm ==,B C ∠=∠,4BC cm =,点D 为AB 的中点.(1)如果点P 在线段BC 上以/lcm s 的速度由点B 向点C 运动,同时,点Q 在线段C A 上由点C 向点A 运动.①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,B P D ∆与CQP ∆是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使B P D ∆与CQP ∆全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC ∆三边运动,则经过多少时间后,点P 与点Q 第一次在ABC ∆的哪一边上相遇?14.(2022秋•日照期末)如图(1),4AB cm =,AC AB ⊥,BD AB ⊥,3AC BD cm ==.点P 在线段AB 上以1/cm s 的速度由点A 向点B 运动,同时,点Q 在线段BD 上由点B 向点D 运动.它们运动的时间为()t s .(1)若点Q 的运动速度与点P 的运动速度相等,当1t =时,ACP ∆与BPQ ∆是否全等,并判断此时线段PC 和线段P Q 的位置关系,请分别说明理由;(2)如图(2),将图(1)中的“AC AB ⊥,BD AB ⊥”改为“60CAB DBA ∠=∠=︒”,其他条件不变.设点Q 的运动速度为x /cm s ,是否存在实数x ,使得ACP ∆与BPQ ∆全等?若存在,求出相应的x 、t 的值;若不存在,请说明理由.1115.(2022秋•东西湖区校级期末)如图,已知ABC ∆中,20AC CB cm ==,16AB cm =,点D 为AC 的中点.(1)如果点P 在线段AB 以6/cm s 的速度由A 点向B 点运动,同时,点Q 在线段BC 上由点B 向C 点运动.①若点Q 的运动速度与点P 的运动速度相等,经过1s 后,A P D ∆与BQP ∆是否全等?说明理由;②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使A P D ∆与BQP ∆全等?(2)若点Q 以②中的运动速度从点B 出发,点P 以原来的运动速度从点A 同时出发,都逆时针沿ABC ∆三边运动,求经过多长时间点P 与点Q 第一次在ABC ∆的哪条边上相遇?。
动点问题最小值典型练习一.解答题(共25小题)1.如图,正三角形ABC的边长为2,M是BC边上的中点,P是AC边上的一个动点,求PB+PM的最小值.2.如图,在▱ABCD中,E、F是对角线BD上的两个动点,且BE=DF.试猜想并证明AE 与CF的关系.3.在矩形ABCD中,P为AB上的动点,PE⊥AC于E,PF⊥BD于F,求证:PE+PF为定值.4.如图,△ABD、△BCD都是等边三角形,E、F分别是AD、CD上的两个动点,且满足DE=CF.求证:BE=BF.5.已知等边△ABC中,D是BC边上的动点,∠EDF=60°.求证:△BDE∽△CFD.6.如图,等边三角形ABC中,D是AB边上的动点,以CD为一边,向上作等边三角形EDC,连接AE.求证:(1)△ACE≌△BCD;(2)AE∥BC.7.如图,在锐角三角形ABC中,BC=4√2,∠ABC=45°,BD平分∠ABC,M、N分别是BD、BC上的动点,试求CM+MN的最小值.8.如图,已知⊙O的半径为R,C、D是直径AB同侧圆周上的两点,AC的度数为96°,BD的度数为36°,动点P在AB上.求PC+PD的最小值.9.如图,在矩形ABCD中,B(16,12),E、F分别是OC、BC上的动点,EC+CF=8.当F运动到什么位置时,△AEF的面积最小,最小为多少?10.已知点A的坐标为(2,0),动点P在直线y=1/2 x−3上,求使△PAO为直角三角形的点P的坐标.11.如图,四边形ABCD中,AB∥CD,P为BC上一点,设∠CDP=α,∠CPD=β,当点P在BC上移动时,猜想α,β与∠B的关系,并说明理由.12.如图,已知正方形ABCD的边长是8,点E在BC边上,且CE=2,点P是对角线BD 上的一个动点,求PE+PC的最小值.13.如图,在菱形ABCD中,P是AB上的一个动点(不与A,B重合),连接DP交对角线AC于E,连接EB,求证:∠APD=∠EBC.14.正方形ABCD的边长为4,M、N分别是BC、CD上的两个动点,且始终保持AM⊥MN.当BM为多少时,四边形ABCN的面积最大?15.如图,平面直角坐标系中A(1,4),B(3,2),C、D为x轴上两动点,且CD=1,试求四边形ACDB周长最小时,C、D两点的坐标.16.如图,矩形ABCD,AB=3,BC=4,E、F是AB、BC边上的动点,以EF为轴翻折△BEF 得△B′EF,连接AB′,求AB′的最小值.17.如图,矩形ABCD中,AB=6,BC=8,P是边AD上的动点,PE⊥AC于点E,PF⊥BD 于点F,PE+PF的值是多少?18.如图,直角坐标系中,A(2,0),B(6,0),C在直线y=4上移动,试求出C点坐标使得∠ACB最大.19.如图:(1)分别求出直线和抛物线的解析式;(2)若M为抛物线第一象限的动点,求S△AMB的最值.20.如图:点A的坐标是(2,2),点P是x轴正半轴上的一个动点,若△AOP是等腰三角形,求P点的坐标.21.已知任意△ABC,D、E是AB、BC上的两个点,D是定点,E是动点.请问如何尺规操作才能使S△BED=S△ADC.22.如图,已知矩形ABCD,AB=2,AD=4,点P在BC上移动,△ABP和△PCD能相似吗?若能,求出点P的位置;若不能,请说明理由.23.如图,等边△ABC中,D是AB边上动点,作等边△EDC,连AE.(1)△DBC和△EAC全等吗?说说你的理由.(2)求证:AE∥BC.24.已知正方形ABCD的边长为2,点P、Q为AD、CD的中点,E、F为AB、BC边上的两个动点,求四边形PQFE周长的最小值.25.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分线,若P,Q分别是AD和AC上的动点,求PC+PQ的最小值.。