第七章 平行线的证明复习导学案
- 格式:doc
- 大小:41.00 KB
- 文档页数:2
八年级数学上册第七章平行线的证明导学案2(新版)北师大版2、了解定义、命题、公理和定理的含义、3、平行线的性质定理和判定定理、4、三角形的内角和定理及推论、5、使学生在证明过程中积极投入,全力以赴,享受合作的快乐。
重点:1、平行线的性质定理和判定定理的应用、2、三角形内角和定理及其推论的应用、3、证明的步骤及书写格式、难点:证明过程的书写、一、梳理本章的知识结构图、(举例说明)本章重点:证明一个命题是真命题的基本步骤是:(1)根据题意,(2)根据条件、结论,结合图形,(3)经过分析,找出由已知推出求证的途径,专题研究:1、下列语句中,是命题的为()、A、延长线段AB到CB、垂线段最短C、过点O作直线a∥bD、锐角都相等吗判断的依据是、2、下列命题中是真命题的为()、A、两锐角之和为钝角B、两锐角之和为锐角C、钝角大于它的补角D、锐角大于它的余角3、下列四个命题中,真命题有()、(1)两条直线被第三条直线所截,内错角相等、(2)如果∠1和∠2是对顶角,那么∠1=∠2、(3)一个角的余角一定小于这个角的补角、(4)如果∠1和∠3互余,∠2与∠3的余角互补,那么∠1和∠2互补、A、1个B、2个C、3个D、4个解题方法:4、“两条直线相交,有且只有一个交点”的题设是()、A、两条直线B、交点C、两条直线相交D、只有一个交点5、“同角的余角相等”的题设是__________,结论是__________。
解题方法:。
6、若三角形的一个外角等于与它不相邻的一个内角的4倍,等于与它相邻的内角的2倍,则三角形各角的度数为( )、A、45,45,90B、30,60,90C、25,25,130D、36,72,72应用的知识点有:。
7、如图所示,∠B=∠C,则∠ADC与∠AEB的大小关系是()、A、∠ADC>∠AEBB、∠ADC=∠AEBC、∠ADC<∠AEBD、大小关系不能确定应用的知识点是:8、补充理由:如图所示,若∠1+∠2=180,∠1=∠3,EF与GH 平行吗?解:EF∥GH,理由如下∠1+∠2=180()∴AB∥_______()又∠1=∠3()∴∠2+∠________=180()∴EF∥GH ()9、如图所示,已知直线BF∥DE,∠1=∠2,求证:GF∥BC、解题技巧:要求两直线平行,需找。
第七章 平行线的证明教学目标: 知识与技能:(2)使学生进一步熟悉平行线的性质定理与判定定理,三角形内角和定理及三角形的外角的性质等概念; (3)进一步体会证明的必要性; 数学能力:(1)培养学生的逻辑思维能力,发展学生的合情推理能力; (2)掌握证明的步骤与格式. 三、教学过程 第一环节 知识回顾 活动内容:2.平行线的性质定理与判定定理分别是什么?3.三角形内角和定理是什么?4.与三角形的外角相关有哪些性质?5.证明题的基本步骤是什么?}⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⇒⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⇒⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⇒⎩⎨⎧⇒⇒⇒⇒⇒⇒结论题设部分条件结构反例假命题公理外角推论内角和定理三角形性质判定平行线应用证明推论定理真命题分类命题证明)()(第二环节 做一做(1)两点之间线段最短;(2)向雷锋同志学习;(3)对顶角相等;(4)花儿在春天开放;(4)对应角相等的两个三角形是全等三角形;(1)同角的补角相等;(2)同位角相等,两直线平行;(3)若|a |=|b |,则a =b .3. 如图,AD 、BE 、CF 为△ABC 的三条角平分线,则:∠1+∠2+∠3=________.4. 用两个全等的等腰直角三角尺拼成四边形,则此四边形一定是_____。
5. 如图所示,△ABC 中,∠ACD=115°,∠B=55°, 则∠A= , ∠ACB=6. △ABC 的三个外角度数比为3∶4∶5,则它的三个外角度数分别为 _____.7. 已知,如图,AB ∥CD ,若∠ABE =130°, ∠CDE =152°,则∠ BED =__________.1 ABCDEF23ABCDA BC DEF第3题图第5题图第7题图第三环节想一想活动内容:1、已知,如图,直线a,b被直线c所截,a∥b。
求证:∠1+∠2=180°第1小题图第2小题图2、已知,如图,∠1+∠2=180°,求证:∠3=∠4.第四环节试一试活动内容:3、已知,如图,直线AB∥ED.求证:∠ABC+∠CDE=∠BCD.(1)(2)本题有多种证法.4、将正方形的四个顶点用线段连接,什么样的连法最短?研究发现,并非对角线最短.而是如图的连法最短(即用线段AE、DE、EF、CF、BF把四个顶点连接起来),已知图中∠DAE=∠ADE=30°,∠AEF=∠BFE=120°,你能证明此时AB∥EF吗?第五环节 反馈练习 活动内容:1、如图,△ABC 中,∠B =55°,∠C =63°,DE ∥AB ,则∠DEC 等于 【 】 (A )63°(B) 62° (C) 55°(D )118°(A )垂直 (B)两条直线 (C)同一条直线 (D )两条直线垂 直于同一条直线 3.如图,BD 平分∠ABC ,若∠1=∠2,则 【 】 (A )AB ∥CD (B) AD ∥BC (C) AD=BC (D )AB=CD4.三角形的一个外角是锐角,则此三角形的形状是 【 】 (A )锐角三角形(B)钝角三角形 (C)直角三角形(D )无法确定5.锐角三角形中,最大角α的取值范围是 【 】 (A )0º<α<90º (B) 60º<α<90º (C) 60º<α<180º (D )60º≤α<90º6、如图:∠A=65º ,∠ABD=∠BCE=30º,且CE 平分∠ACB,求∠BEC.7、如图,AB ,CD 相交于O ,且∠C =∠1。
(∠1 图2
,AB
是等腰三角形。
F E D C B A
2、下列四个命题中,真命题有( )
(1)两条直线被第三条直线所截,内错角相等。
(2)如果∠1和∠2是对顶角,那么∠1=∠2. (3)一个角的余角一定小于这个角的补角。
(4)如果∠1和∠3互余,∠2与∠3的余角互补,那么∠1和∠2互补。
A. 1个 B. 2个 C. 3个 D. 4个 3、如图1所示,AD 平分∠CAE , ∠B=30°,∠CAD=65°,∠ACD=( )
4、如图2所示,AB//CD ,_________2,1403,1151=∠︒=∠︒=∠。
5、如图3所示,︒=∠=∠⊥⊥301,,F EF CD EF AB ,那么与∠FCD 相等的角有( ) A. 1个 B. 2个 C. 3个 D. 4个
6、如图4,将一副三角板如图放置,使点A 在DE 上,BC ∥DE ,则∠AFC 的度数为 .
7、如图5所示,AB ∥CD ,∠ABE =66°,∠D =54°,则∠E 的度数为_____.
8、如图:∠A+∠B+∠C+∠D+∠E+∠F 等于( )
9、三角形的一个外角是锐角,则此三角形的形状是( ) A 、锐角三角形 B 、钝角三角形 C 、直角三角形 D 、无法确定 10、已知,如图,∠
1+
∠2=180°,求证:∠3=∠4.
F E
D C B A。
第七章平行线的证明复习教案(教案)教学目标知识与技能:综合掌握平行线的判定定理和性质定理、三角形内角和定理及其推论.过程与方法:通过对知识的系统复习和整合,提升运用知识解决相关问题的能力.情感态度与价值观:培养学生养成良好的学习习惯,增强数学学习意识.教学重难点【重点】1.平行线的性质定理和判定定理的运用.2.三角形内角和定理的推论.【难点】三角形内角和定理和其推论的综合运用.知识总结—专题讲座专题一定义与命题一、定义对名称和术语的含义加以描述,作出明确的规定.如“两点之间线段的长度,叫做这两点之间的距离”是“两点之间的距离”的定义.二、命题判断一件事情的句子叫做命题.反之,如果一个句子没有对一件事情作出任何判断,那么它就不是命题.每个命题都是由条件和结论两部分组成的.条件是已知事项,结论是由已知事项推断出的事项.命题一般都可以写成“如果……那么……”的形式,“如果”引出的部分是条件,“那么”引出的部分是结论.三、真命题、假命题与反例真命题:正确的命题称为真命题.假命题:不正确的命题称为假命题.反例:要说明一个命题是假命题,常常可以举出一个例子,使它具备命题的条件,而不具有命题的结论,这种例子称为反例.四、公理、定理、证明公理:公认的真命题称为公理.定理:经过证明的真命题称为定理.证明:演绎推理的过程称为证明.【专题分析】本专题知识是学习证明问题的开始,对于今后的问题证明具有十分重要的基础地位.重点要领会证明的方法和证明过程的严谨性.将下列命题改成“如果……那么……”的形式,并指出条件和结论.(1)等角的余角相等;(2)一组对边平行且不相等的四边形是梯形.〔解析〕命题的改写要注意下列三点:①改写前后内容要保持一致;②改写后的命题要是一个完整的语句;③改写后的条件和结论要表达清楚,有时要补上原命题省略的部分.解:(1)改为:如果两个角相等,那么它们的余角相等.条件为“两个角相等”.结论为“它们的余角相等”.(2)如果一个四边形是一组对边平行且不相等的四边形,那么该四边形是梯形.条件为“一个四边形是一组对边平行且不相等的四边形”.结论为“该四边形是梯形”.[规律方法] 判断是不是命题,关键是看它能否说明一件事情有何结果.一般的陈述句(包括肯定句和否定句)都为命题,疑问句和感叹句及祈使句都不是命题.找命题的条件和结论,一般先把它化成“如果……那么……”的形式.【针对训练1】下列语句哪些是命题?哪些不是命题?如果是命题,请指出命题的条件和结论,并判断命题的真假.(1)画线段AB=5 cm;(2)你吃饭了吗?(3)相等的角是直角;(4)如果两个角不相等,那么这两个角不是对顶角.〔解析〕严格按照命题的定义判断.解:是命题的有(3)(4),不是命题的有(1)(2).命题(3):条件:两个角相等;结论:这两个角是直角,是假命题.命题(4):条件:两个角不相等;结论:这两个角不是对顶角,是真命题.专题二平行线的判定定理和性质定理的应用一、判定两条直线平行的方法(1)同位角相等,两直线平行.(2)同旁内角互补,两直线平行.(3)内错角相等,两直线平行.(4)平行于同一直线的两直线平行.(5)在同一平面内,垂直于同一直线的两直线平行.二、平行线的性质(1)两直线平行,同位角相等.(2)两直线平行,内错角相等.(3)两直线平行,同旁内角互补.【专题分析】平行线的判定和性质的应用,是研究三角形的角、四边形、多边形相似等知识的重要基础.如图所示,已知AB⊥BC于B,DG⊥AC于D,BE⊥AC于E,∠1=∠2,求证EF⊥AB.证明:∵DG⊥AC,BE⊥AC,∴DG∥BE(平面内,垂直于同一直线的两直线平行),∴∠2=∠EBC(两直线平行,同位角相等).∵∠1=∠2,∴∠EBC=∠1,∴EF∥BC(内错角相等,两直线平行),∴∠EFB+∠CBA=180°(两直线平行,同旁内角互补).∵AB⊥BC,∴∠CBA=90°(垂直的定义),∴∠EFB=90°,∴EF⊥AB(垂直的定义).[规律方法]平行线的性质和判定往往在同一个题目中交替使用,当题目中出现角相等或角之间有互补(互余)关系时,往往要用到判定方法;当题中出现平行时,往往利用性质得到角之间的关系.在今后我们学习多边形时,平行线的性质和判定将起到工具性的作用.【针对训练2】如图,已知AB∥CD,BE,DE分别平分∠ABC和∠ADC,若∠A=45°,∠C=55°,求∠BED的度数.〔解析〕由AB∥CD,可得∠A=∠CDA,∠C=∠ABC,从而求得∠ABE=∠ABC=∠C,∠CDE=∠CDA=∠A,然后过点E作AB的平行线,从而易得∠BED 的度数.解:过点E作E F∥AB.∵AB∥CD,∴AB∥CD∥EF,∴∠A=∠CDA,∠C=∠ABC,∠BEF=∠ABE,∠DEF=∠CDE.∴∠CDA=∠A=45°,∠ABC=∠C=55°.∵BE,DE分别平分∠ABC和∠ADC,∴∠CDE=∠A=×45°=22.5°,∠ABE=∠C=×55°=27.5°.∵∠BEF=∠ABE,∠DEF=∠CDE,∴∠BED=22.5°+27.5°=50°.专题三三角形内角和定理及有关三角形外角的两个推论1.三角形的内角和等于180°.2.三角形的一个外角等于和它不相邻的两个内角的和.3.三角形的一个外角大于任何一个和它不相邻的内角.【专题分析】本专题三角形角的相关知识是研究几何问题中角的相关知识的基础,它和平行线的知识一起构成了几何问题的两大基点.如图,已知BC⊥DE于O,∠A=27°,∠D=20°,求∠B与∠ACB.〔解析〕∠B在ΔBEO中,已知另外两个角即可,所以问题转化为求∠BEO,而∠BEO是ΔAED的外角,求∠ACB的方法有两种:一种是看做ΔBAC的内角,另外也可看做ΔDCO的外角.解:∵BC⊥DE(已知),∴∠B+∠BEO=90°.∵∠BEO=∠A+∠D=27°+20°=47°,∴∠B=90°-∠BEO=90°-47°=43°.∵在ΔBAC中,∠A+∠B+∠ACB=180°,∴∠ACB=180°-∠A-∠B=180-27°-43°=110°.[易错提示]1.借助三角形求角,一般是把所求的角看成是某一个三角形的内角,图上出现外角时,则要考虑用外角的性质.2.三角形的外角一般为图上条件,在已知条件下并不出现,我们称三角形外角为图上隐含条件,所以在审题时要确认图上已知条件,还要认真审阅图上隐含条件.【针对训练3】如图所示,AB∥CD,AD∥BC,∠B=50°,∠EDA=60°,求∠CDF的度数.〔解析〕本题要充分运用AB∥CD,AD∥BC这两个条件,利用平行线进行转化,转化为三角形的外角.解:因为AD∥BC(已知),所以∠F=∠EDA=60°(两直线平行,同位角相等).因为AB∥CD(已知),所以∠BCD+∠B=180°(两直线平行,同旁内角互补).所以∠BCD=180°-∠B=180°-50°=130°(等式的性质).又因为∠BCD=∠F+∠CDF(三角形的一个外角等于和它不相邻的两个内角的和),所以∠CDF=∠BCD-∠F=130°-60°=70°(等式的性质).专题四方程思想【专题分析】本章中,经常遇到利用三角形内角和定理求角度的问题,当题目中有关各角之间的数量关系比较复杂时,可灵活运用方程(组)求解.如图,在ΔABC中,AB=AC,D,E分别在AC,AB边上,且BC=BD,AD=DE=EB,求∠A的度数.〔解析〕根据同一个三角形中等边对等角的性质,设∠ABD=x,结合三角形外角的性质,则可用含x的代数式表示∠A,∠ABC,∠C,再在ΔABC中,运用三角形的内角和为180°,可求∠A的度数.解:∵DE=EB,∴设∠BDE=∠ABD=x,∴∠AED=∠BDE+∠ABD=2x.∵AD=DE,∴∠AED=∠A=2x,∴∠BDC=∠A+∠ABD=3x.∵BD=BC,∴∠C=∠BDC=3x.∵AB=AC,∴∠ABC=∠C=3x.在ΔABC中,3x+3x+2x=180°,解得x=22.5°.∴∠A=2x=22.5°×2=45°.[规律方法](1)几何计算题中,依据题设和相关的几何图形的性质列出方程(或方程组)求解的方法叫做方程思想;(2)求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件;(3)三角形的外角通常情况下是转化为内角来解决.【针对训练4】如图所示,在ΔABC中,P,Q是BC边上的两点,若∠PAB=∠B,∠QAC=∠C,∠BAC=130°,求∠PAQ的度数.〔解析〕由∠PAB=∠B,∠QAC=∠C与三角形内角和定理相结合,可列出关于∠PAQ的方程组,解方程组即可求得∠PAQ的度数.解:∵∠PAB=∠B,∠QAC=∠C,∴设∠PAB=∠B=x,∠QAC=∠C=y,∠PAQ=θ,则得方程组解方程组,得θ=80°,即∠PAQ=80°.[解题策略]本题中列出的方程组由两个方程组成,但未知数却有3个,显然用常规方法不能解得θ.观察方程组的特点,用①×2-②即可求得θ=80°.专题五转化思想【专题分析】在证明角的不等问题时,如果难以找到所证各角之间的关系,那么可设法把问题转化,从而使有关各角之间的关系由隐蔽化为明显,由复杂化为简单,由抽象化为直观.如图所示,CE是ΔABC的外角(∠ACD)平分线,BF是∠ABC的平分线,CE交BF的延长线于点E,请你判断∠ACE与∠ABE的大小关系,并证明.〔解析〕由题意可知∠ACE=∠DCE,∠ABE=∠CBE,则问题转化为判断∠DCE 与∠CBE的大小关系.解:∠ACE>∠ABE.证明如下:∵CE是ΔABC的外角(∠ACD)平分线(已知),∴∠DCE=∠ACE(角平分线的定义).∵∠DCE是ΔEBC的一个外角,∴∠DCE>∠CBE(三角形的一个外角大于任何一个和它不相邻的内角).∵BE是∠ABC的平分线(已知),∴∠ABE=∠CBE(角平分线的定义).∴∠ACE>∠ABE(等量代换).[解题策略] 在利用有关三角形外角的定理证明角的不等关系时,如果所要证明的两角没有直接联系,那么可发挥某些角(如本题中的∠DCE与∠CBE)的桥梁作用,从而将问题转化.【针对训练5】如图所示,试求∠A+∠B+∠C+∠D+∠E的度数.〔解析〕求多个角的度数和问题,可以联想到三角形的内角和等于180°和外角的性质,将所求角转化到一个或几个三角形中去,从而求得多个角的和.因为∠A,∠B,∠C,∠D,∠E每个角的度数都不确定,且较分散,所以必须把∠A+∠B+∠C+∠D+∠E看成一个整体求它的度数,故考虑将其转化到一个三角形中去.解:因为∠AGE是ΔCGE的外角,所以∠AGE=∠C+∠E.同理∠AFG=∠B+∠D.因为∠AGE+∠AFG+∠A=180°,所以∠A+∠B+∠C+∠D+∠E=180°.专题六构造思想【专题分析】在几何证明中,如果仅靠图中的线段难以说明问题时,那么可通过作辅助线构造某个基本图形,从而使问题的条件或结论发生转化.一大门的栏杆如图(1)所示,BA垂直地面AE于A,CD平行于地面AE,则∠ABC+∠BCD=.〔解析〕过点B作BG∥CD,易证得AB⊥BG,如图(2)所示.根据两直线平行,同旁内角互补,得∠BCD+∠CBG=180°.由题意得∠ABG=90°,所以∠ABC+∠BCD=180°+90°=270°.故填270°.【针对训练6】某校的校园平面图如图(1)所示,已知AB=470 m,BC=560 m.则这个校园的周长是多少米?(图中的每一个角都是直角)〔解析〕将GF沿GH方向平移到HP,ED沿EF方向平移到PQ,GH沿GF方向平移到RQ,EF沿ED方向平移到DR,如图(2)所示,则校园的周长就等于长方形ABCQ 的周长.解:将图(1)的部分线段经过平移,使图形变为如图(2)所示的长方形.由平移的特征知GF=HP,ED=PQ,GH=RQ,EF=RD,所以校园的周长为AB+BC+AH+GF+ED+GH+EF+CD=AB+BC+AH+HP+PQ+RQ+RD+CD=AB+BC+AQ+CQ=2(AB+BC)= 2×(470+560)=2060(m).。
北师大版八年级数学上册第七章平行线的证明章末复习导学案1、本章知识回顾1.命题:判断一件事情的语句.2.公理:公认的正确命题.(1)同位角相等,两直线平行;(2)两直线平行,同位角相等;(3)三边分别相等的两个三角形全等;(4)两边及其夹角分别相等的两个三角形全等;(5)两角及其夹边分别相等的两个三角形全等;(6)全等三角形对应边相等,对应角相等.3.定理:经过证明的真命题.(1)内错角相等,两直线平行;(2)同旁内角互补,两直线平行;(3)两直线平行,内错角相等;(4)两直线平行,同旁内角互补;(5)三角形三个内角的和等于180°;(6)三角形的一个外角等于和它不相邻的两个内角的和;(7)三角形的一个外角大于任何一个和它不相邻的内角;(8)三角形的外角和等于360°.4.证明:推理的过程.2、课堂精讲精练【例1】下列各命题是假命题的是(D)A.如果一个三角形的两个锐角互余,那么这个三角形是直角三角形B.每个角都等于60°的三角形是等边三角形C.如果a3=b3,那么a=bD.对应角相等的三角形是全等三角形【跟踪训练1】下列5个命题:①同旁内角互补;②等角的余角相等;③全等三角形的周长相等;④斜边和斜边上的中线对应相等的两个直角三角形全等;⑤对于函数y=-0.2x+11,y随x的增大而增大.其中是真命题的有②③(填序号).【例2】如图,已知四边形ABCD,AB∥CD,点E是BC延长线上一点,连接AC,AE,AE交CD于点F,∠1=∠2,∠3=∠4.求证:(1)∠BAE=∠DAC;(2)∠3=∠BAE;(3)AD∥BE.证明:(1)∵∠1=∠2,∴∠1+∠CAE=∠2+∠CAE,即∠BAE=∠DAC.(2)∵AB∥CD,∴∠4=∠BAE.∵∠3=∠4,∴∠3=∠BAE.(3)∵∠3=∠BAE,∠BAE=∠DAC,∴∠3=∠DAC.∴AD∥BE.【跟踪训练2】如图,∠ADE+∠BCF=180°,AF平分∠BAD,∠BAD=2∠F.(1)AD与BC平行吗?请说明理由;(2)AB与EF的位置关系如何?为什么?(3)若BE平分∠ABC.试说明:①∠ABC=2∠E;②∠E+∠F=90°.解:(1)AD∥BC.理由如下:∵∠ADE +∠BCF=180°,∠ADE +∠ADC =180°,∴∠BCF =∠ADC.∴AD ∥BC.(2)AB∥EF.理由如下:∵AF 平分∠BAD,∠BAD =2∠F,∴∠BAF =12∠BAD=∠F. ∴AB ∥EF.(3)①∵AB∥EF,∴∠ABE =∠E.∵BE 平分∠ABC,∴∠ABC =2∠ABE=2∠E.②∵AD ∥BC ,∴∠BAD +∠ABC=180°.∵∠BAD =2∠F,∠ABC =2∠E,∴2∠E +2∠F=180°.∴∠E +∠F=90°.【例3】 如图,在△ABC 中,三条内角平分线AD ,BE ,CF 相交于点O ,OG ⊥BC 于点G.(1)若∠ABC=40°,∠BAC =60°,求∠BOD 和∠COG 的度数;(2)若∠ABC=α,∠BAC =β,猜想∠BOD 和∠COG 的数量关系,并说明理由.解:(1)∵AD 平分∠BAC,BE 平分∠ABC,∴∠OAB =12∠BAC=30°,∠OBA =12∠ABC=20°. ∴∠BOD =∠OAB+∠OBA=50°.∵CF 平分∠ACB,∴∠OCG =12∠ACB=12(180°-∠ABC-∠BAC)=40°. ∴∠COG =90°-∠OCG=50°.(2)∠BOD 和∠COG 相等.理由如下:∠BOD =∠OAB+∠OBA=12∠BAC+12∠ABC=12(180°-∠ACB)=90°-12∠ACB=90°-∠OCG =∠COG.【跟踪训练3】 在△ABC 中,射线AG 平分∠BAC 交BC 于点G ,点D 在BC 边上运动(不与点G 重合),过点D 作DE∥AC 交AB 于点E.(1)如图1,点D 在线段CG 上运动时,DF 平分∠EDB.①若∠BAC=100°,∠C =30°,则∠AFD=115°;若∠B=40°,则∠AFD=110°;②试探究∠AFD 与∠B 之间的数量关系?请说明理由;(2)如图2,点D 在线段BG 上运动时,∠BDE 的角平分线所在直线与射线AG 交于点F ,试探究∠AFD 与∠B 之间的数量关系,并说明理由.解:(1)②∠AFD=90°+12∠B.理由如下: ∵DE ∥AC ,∴∠EDB =∠C.∵AG 平分∠BAC,DF 平分∠EDB,∴∠BAG =12∠BAC,∠FDG =12∠EDB=12∠C . ∵∠DGF =∠B+∠BAG,∴∠AFD =∠DGF+∠FDG=∠B+∠BAG+∠FDG=∠B+12(∠BAC+∠C) =∠B+12(180°-∠B) =90°+12∠B.(2)∠AFD=90°-12∠B.理由如下: ∵∠EDB =∠C,∠BAG =12∠BAC,∠BDH =12∠EDB=12∠C, 又∵∠AH F =∠B+∠BDH,∴∠AFD =180°-∠BAG-∠AHF=180°-12∠BAC-∠B-∠BDH =180°-12∠BAC-∠B-12∠C =180°-∠B-12(∠BAC+∠C) =180°-∠B-12(180°-∠B) =180°-∠B-90°+12∠B =90°-12∠B.。
第七章平行线的证明【学习目标】1、进一步了解定义、命题,定理、公理的含义,并会区分命题的条件和结论.2、掌握用综合法证明的格式.体会证明的过程要步步有依据.3、理解掌握平行线的性质定理和判定定理,并会灵活应用.4、进一步理解掌握三角形内角和定理及推论,并会灵活应用.【学习重点】1、平行线的性质定理和判定定理的应用.2、三角形内角和定理及其推论的应用.3、证明的步骤及书写格式.【学习过程】模块一回顾与思考独立思考下列问题,然后以小组为单位进行讨论,共同回顾本章的内容.1、什么是定义?什么是命题?命题由哪两部分组成?举例说明!2、平行线的性质定理与判定定理分别是什么?3、三角形内角和定理是什么?4、与三角形的外角相关有哪些性质?5、证明题的基本步骤是什么?【我的疑惑】模块二合作探究例1 (2013•抚顺)如图,直线l1、l2被直线l3、l4所截,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠3B.∠5=∠4C.∠5+∠3=180°D.∠4+∠2=180°例2 (2014•怀化模拟)如图,能确定l1∥l2的α为()A.140°B.150°C.130°D.120°例3 已知,如图6-82,AD⊥BC,EF⊥BC,∠4=∠C.求证:∠1=∠2.模块三小结评价一、本章知识结构:模块四形成提升1、(2014•汕尾)如图,能判定EB∥AC的条件是()A.∠C=∠AB EB.∠A=∠EBDC.∠C=∠ABCD.∠A=∠AB E2、下列语言是命题的是( )A.画两条相等的线段B.等于同一个角的两个角相等吗?C.延长线段AO到C,使OC=OAD.两直线平行,内错角相等.3、(2014•长春)如图,直线a与直线b交于点A,与直线c交于点B,∠1=120°,∠2=45°,若使直线b与直线c平行,则可将直线b绕点A逆时针旋转()A.15°B.30°C.45°D.60°4、已知:如图,在△ABC中,DE∥BC,F是AB上一点,FE的延长线交BC的延长线于点G,求证:∠EGH>∠ADE组长评价:你认为该成员这一节课的表现:(A)很棒 ( B)一般 (C) 没发挥出来 (D)还需努力.。
第七章平⾏线的证明导学案第七章平⾏线的证明导学案1、为什么要证明⼀、读⼀读学习⽬标:1、对由观察、归纳等过程所得的结论进⾏思考、质疑,认识证明的必要性,培养推理意识;2、体会检验数学结论的常⽤⽅法:实验验证、举出反例、推理等。
⼆、试⼀试⾃学指导:1、⼤胆猜想: 如教材P162提出的问题2、某学习⼩组发现,当n=0,1,2,3时,代数式n 2-n+11的值都是质数,于是得到结论:对于所有⾃然数n, n 2-n+11的值都是质数。
你认为呢?由此可知:要判断⼀个数学结论是否正确,仅靠经验、观察或实验是不够的,必须有根有据地进⾏推理。
三、练⼀练A1、请在教材上完成P163随堂练习1、2;P164数学理解1A2、当n 为正整数时,132++n n 的值⼀定是质数吗?n 0 1 2 3 4 5 6 7 8 9 10 11 …n 2-n+11是否是质数A3、⼋(1)班有39位同学,他们每⼈将⾃⼰的学号作为n 的取值(n=1,2,3,…39)代⼊式⼦412++n n ,结果发现式⼦412++n n 的值都是质数,于是他们猜想:“对于所有的⾃然数,式⼦412++n n 的值都是质数。
”你认为这个猜想正确吗?验证⼀下n=40的情形。
B1、给出教材P164数学理解3问题的结论,你能⽤理由肯定⾃⼰的结论吗?B2、阅读P163“读⼀读”班级⼩组姓名⼩组评价教师评价2 定义与命题(1)⼀、读⼀读学习⽬标:了解定义、命题的含义;会判断某些语句是不是命题。
⼆、试⼀试⾃学指导:1、研读教材P165-166完成下列问题:(1)什么是定义?定义:。
(2)如右图某地的⼀个灌溉系统如果B 处⽔流受到污染,那么处⽔流便受到污染;如果C 处⽔流受到污染,那么处⽔流便受到污染;如果D 处⽔流受到污染,那么处⽔流便受到污染;“如果……那么……”都是对事情进⾏判断的句⼦。
叫做命题。
2、下列语句为命题的是()A 、你吃过午饭了吗? B、过点A作直线MNC、同⾓的余⾓相等D、红扑扑的脸蛋三、练⼀练1、在教材上完成P166-167的随堂练习及习题2、下列语句中,是命题的是 ( )(A)直线AB和CD垂直吗(B)过线段AB的中点C画AB的垂线(C)同旁内⾓不互补,两直线不平⾏(D)连结A、B两点3、已知下列命题:①相等的⾓是对顶⾓;②互补的⾓就是平⾓;③互补的两个⾓⼀定是⼀个锐⾓,另⼀个为钝⾓;④平⾏于同⼀条直线的两直线平⾏;⑤邻补⾓的平分线互相垂直.其中,正确命题的个数为()A、0B、1个C、2个D、3个4、下列命题不正确的是( )(A)⼀组邻边相等的平⾏四边形是菱形(B)直⾓三⾓形斜边上的⾼等于斜边的⼀半(C)等腰梯形同⼀底上的两个⾓相等(D)有⼀个⾓为60°的等腰三⾓形是等边三⾓形四、课堂⼩结1、①定义的含义:对和的含义加以描述,作出明确的,就是它们的定义;②命题的含义:⼀件事情的句⼦,叫做命题,如果⼀个句⼦没有对某⼀件事情作出任何判断,那么它就不是命题.2、命题的判断只有两种形式,要么肯定,要么否定。
第七章平行线的证明
学科年级八年级授课班级
主备教师参与教师
课型新授课课题§7.1为什么要证明
备课组长审核签名教研组长审核签名
标学习目标:经历观察、归纳、验证等活动过程,在活动中体会到观察、实验、归纳所得到的结论未必可靠,初步感受证明的必要性,发展学生的推理意识。
辅助教学:多媒体
学习内容(学习过程)
一、自主预习(感知)
课前收集相关哥德巴赫猜测的相关资料,上课时与同伴交流
二、合作探究(理解)
1、某学习小组发现,当n=0,1,2,3时,代数式n2-n+11的值都是质数,于是得到结论:对
于所有自然数n,n2-n+11的值都是质数.你认为呢?与同伴交流.
提示:可列表归纳
n 0 1 2 3 4 5 6 7 8 9 10 11 …
n2-n+11
是否为
质数
2、如图,假设用一根比地球的赤道长1米的铁丝将地球赤道围起来,那么铁丝与地球赤道之
间的间隙能有多大(把地球看成球形)?能放进一个红枣吗?能放进一个拳头吗?
三、轻松尝试(使用)
1.如图中两条线段a与b的长度相等吗?请你先观察,再度量一下.
第1小题图第2小题图
2.如图中三条线段a、b、c,哪一条线段与线段d在同一直线上?请你先观察,再用三角尺验证
一下.
3.当n为正整数时,n2+3n+1的值一定是质数吗?。
第七章平行线的证明复习教案(教案)教学目标知识与技能:综合掌握平行线的判定定理和性质定理、三角形内角和定理及其推论.过程与方法:通过对知识的系统复习和整合,提升运用知识解决相关问题的能力.情感态度与价值观:培养学生养成良好的学习习惯,增强数学学习意识.教学重难点【重点】1.平行线的性质定理和判定定理的运用.2.三角形内角和定理的推论.【难点】三角形内角和定理和其推论的综合运用.知识总结—专题讲座专题一定义与命题一、定义对名称和术语的含义加以描述,作出明确的规定.如“两点之间线段的长度,叫做这两点之间的距离”是“两点之间的距离”的定义.二、命题判断一件事情的句子叫做命题.反之,如果一个句子没有对一件事情作出任何判断,那么它就不是命题.每个命题都是由条件和结论两部分组成的.条件是已知事项,结论是由已知事项推断出的事项.命题一般都可以写成“如果……那么……”的形式,“如果”引出的部分是条件,“那么”引出的部分是结论.三、真命题、假命题与反例真命题:正确的命题称为真命题.假命题:不正确的命题称为假命题.反例:要说明一个命题是假命题,常常可以举出一个例子,使它具备命题的条件,而不具有命题的结论,这种例子称为反例.四、公理、定理、证明公理:公认的真命题称为公理.定理:经过证明的真命题称为定理.证明:演绎推理的过程称为证明.【专题分析】本专题知识是学习证明问题的开始,对于今后的问题证明具有十分重要的基础地位.重点要领会证明的方法和证明过程的严谨性.将下列命题改成“如果……那么……”的形式,并指出条件和结论.(1)等角的余角相等;(2)一组对边平行且不相等的四边形是梯形.〔解析〕命题的改写要注意下列三点:①改写前后内容要保持一致;②改写后的命题要是一个完整的语句;③改写后的条件和结论要表达清楚,有时要补上原命题省略的部分.解:(1)改为:如果两个角相等,那么它们的余角相等.条件为“两个角相等”.结论为“它们的余角相等”.(2)如果一个四边形是一组对边平行且不相等的四边形,那么该四边形是梯形.条件为“一个四边形是一组对边平行且不相等的四边形”.结论为“该四边形是梯形”.[规律方法] 判断是不是命题,关键是看它能否说明一件事情有何结果.一般的陈述句(包括肯定句和否定句)都为命题,疑问句和感叹句及祈使句都不是命题.找命题的条件和结论,一般先把它化成“如果……那么……”的形式.【针对训练1】下列语句哪些是命题?哪些不是命题?如果是命题,请指出命题的条件和结论,并判断命题的真假.(1)画线段AB=5 cm;(2)你吃饭了吗?(3)相等的角是直角;(4)如果两个角不相等,那么这两个角不是对顶角.〔解析〕严格按照命题的定义判断.解:是命题的有(3)(4),不是命题的有(1)(2).命题(3):条件:两个角相等;结论:这两个角是直角,是假命题.命题(4):条件:两个角不相等;结论:这两个角不是对顶角,是真命题.专题二平行线的判定定理和性质定理的应用一、判定两条直线平行的方法(1)同位角相等,两直线平行.(2)同旁内角互补,两直线平行.(3)内错角相等,两直线平行.(4)平行于同一直线的两直线平行.(5)在同一平面内,垂直于同一直线的两直线平行.二、平行线的性质(1)两直线平行,同位角相等.(2)两直线平行,内错角相等.(3)两直线平行,同旁内角互补.【专题分析】平行线的判定和性质的应用,是研究三角形的角、四边形、多边形相似等知识的重要基础.如图所示,已知AB⊥BC于B,DG⊥AC于D,BE⊥AC于E,∠1=∠2,求证EF⊥AB.证明:∵DG⊥AC,BE⊥AC,∴DG∥BE(平面内,垂直于同一直线的两直线平行),∴∠2=∠EBC(两直线平行,同位角相等).∵∠1=∠2,∴∠EBC=∠1,∴EF∥BC(内错角相等,两直线平行),∴∠EFB+∠CBA=180°(两直线平行,同旁内角互补).∵AB⊥BC,∴∠CBA=90°(垂直的定义),∴∠EFB=90°,∴EF⊥AB(垂直的定义).[规律方法]平行线的性质和判定往往在同一个题目中交替使用,当题目中出现角相等或角之间有互补(互余)关系时,往往要用到判定方法;当题中出现平行时,往往利用性质得到角之间的关系.在今后我们学习多边形时,平行线的性质和判定将起到工具性的作用.【针对训练2】如图,已知AB∥CD,BE,DE分别平分∠ABC和∠ADC,若∠A=45°,∠C=55°,求∠BED的度数.〔解析〕由AB∥CD,可得∠A=∠CDA,∠C=∠ABC,从而求得∠ABE=∠ABC=∠C,∠CDE=∠CDA=∠A,然后过点E作AB的平行线,从而易得∠BED 的度数.解:过点E作E F∥AB.∵AB∥CD,∴AB∥CD∥EF,∴∠A=∠CDA,∠C=∠ABC,∠BEF=∠ABE,∠DEF=∠CDE.∴∠CDA=∠A=45°,∠ABC=∠C=55°.∵BE,DE分别平分∠ABC和∠ADC,∴∠CDE=∠A=×45°=22.5°,∠ABE=∠C=×55°=27.5°.∵∠BEF=∠ABE,∠DEF=∠CDE,∴∠BED=22.5°+27.5°=50°.专题三三角形内角和定理及有关三角形外角的两个推论1.三角形的内角和等于180°.2.三角形的一个外角等于和它不相邻的两个内角的和.3.三角形的一个外角大于任何一个和它不相邻的内角.【专题分析】本专题三角形角的相关知识是研究几何问题中角的相关知识的基础,它和平行线的知识一起构成了几何问题的两大基点.如图,已知BC⊥DE于O,∠A=27°,∠D=20°,求∠B与∠ACB.〔解析〕∠B在ΔBEO中,已知另外两个角即可,所以问题转化为求∠BEO,而∠BEO是ΔAED的外角,求∠ACB的方法有两种:一种是看做ΔBAC的内角,另外也可看做ΔDCO的外角.解:∵BC⊥DE(已知),∴∠B+∠BEO=90°.∵∠BEO=∠A+∠D=27°+20°=47°,∴∠B=90°-∠BEO=90°-47°=43°.∵在ΔBAC中,∠A+∠B+∠ACB=180°,∴∠ACB=180°-∠A-∠B=180-27°-43°=110°.[易错提示]1.借助三角形求角,一般是把所求的角看成是某一个三角形的内角,图上出现外角时,则要考虑用外角的性质.2.三角形的外角一般为图上条件,在已知条件下并不出现,我们称三角形外角为图上隐含条件,所以在审题时要确认图上已知条件,还要认真审阅图上隐含条件.【针对训练3】如图所示,AB∥CD,AD∥BC,∠B=50°,∠EDA=60°,求∠CDF的度数.〔解析〕本题要充分运用AB∥CD,AD∥BC这两个条件,利用平行线进行转化,转化为三角形的外角.解:因为AD∥BC(已知),所以∠F=∠EDA=60°(两直线平行,同位角相等).因为AB∥CD(已知),所以∠BCD+∠B=180°(两直线平行,同旁内角互补).所以∠BCD=180°-∠B=180°-50°=130°(等式的性质).又因为∠BCD=∠F+∠CDF(三角形的一个外角等于和它不相邻的两个内角的和),所以∠CDF=∠BCD-∠F=130°-60°=70°(等式的性质).专题四方程思想【专题分析】本章中,经常遇到利用三角形内角和定理求角度的问题,当题目中有关各角之间的数量关系比较复杂时,可灵活运用方程(组)求解.如图,在ΔABC中,AB=AC,D,E分别在AC,AB边上,且BC=BD,AD=DE=EB,求∠A的度数.〔解析〕根据同一个三角形中等边对等角的性质,设∠ABD=x,结合三角形外角的性质,则可用含x的代数式表示∠A,∠ABC,∠C,再在ΔABC中,运用三角形的内角和为180°,可求∠A的度数.解:∵DE=EB,∴设∠BDE=∠ABD=x,∴∠AED=∠BDE+∠ABD=2x.∵AD=DE,∴∠AED=∠A=2x,∴∠BDC=∠A+∠ABD=3x.∵BD=BC,∴∠C=∠BDC=3x.∵AB=AC,∴∠ABC=∠C=3x.在ΔABC中,3x+3x+2x=180°,解得x=22.5°.∴∠A=2x=22.5°×2=45°.[规律方法](1)几何计算题中,依据题设和相关的几何图形的性质列出方程(或方程组)求解的方法叫做方程思想;(2)求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件;(3)三角形的外角通常情况下是转化为内角来解决.【针对训练4】如图所示,在ΔABC中,P,Q是BC边上的两点,若∠PAB=∠B,∠QAC=∠C,∠BAC=130°,求∠PAQ的度数.〔解析〕由∠PAB=∠B,∠QAC=∠C与三角形内角和定理相结合,可列出关于∠PAQ的方程组,解方程组即可求得∠PAQ的度数.解:∵∠PAB=∠B,∠QAC=∠C,∴设∠PAB=∠B=x,∠QAC=∠C=y,∠PAQ=θ,则得方程组解方程组,得θ=80°,即∠PAQ=80°.[解题策略]本题中列出的方程组由两个方程组成,但未知数却有3个,显然用常规方法不能解得θ.观察方程组的特点,用①×2-②即可求得θ=80°.专题五转化思想【专题分析】在证明角的不等问题时,如果难以找到所证各角之间的关系,那么可设法把问题转化,从而使有关各角之间的关系由隐蔽化为明显,由复杂化为简单,由抽象化为直观.如图所示,CE是ΔABC的外角(∠ACD)平分线,BF是∠ABC的平分线,CE交BF的延长线于点E,请你判断∠ACE与∠ABE的大小关系,并证明.〔解析〕由题意可知∠ACE=∠DCE,∠ABE=∠CBE,则问题转化为判断∠DCE 与∠CBE的大小关系.解:∠ACE>∠ABE.证明如下:∵CE是ΔABC的外角(∠ACD)平分线(已知),∴∠DCE=∠ACE(角平分线的定义).∵∠DCE是ΔEBC的一个外角,∴∠DCE>∠CBE(三角形的一个外角大于任何一个和它不相邻的内角).∵BE是∠ABC的平分线(已知),∴∠ABE=∠CBE(角平分线的定义).∴∠ACE>∠ABE(等量代换).[解题策略] 在利用有关三角形外角的定理证明角的不等关系时,如果所要证明的两角没有直接联系,那么可发挥某些角(如本题中的∠DCE与∠CBE)的桥梁作用,从而将问题转化.【针对训练5】如图所示,试求∠A+∠B+∠C+∠D+∠E的度数.〔解析〕求多个角的度数和问题,可以联想到三角形的内角和等于180°和外角的性质,将所求角转化到一个或几个三角形中去,从而求得多个角的和.因为∠A,∠B,∠C,∠D,∠E每个角的度数都不确定,且较分散,所以必须把∠A+∠B+∠C+∠D+∠E看成一个整体求它的度数,故考虑将其转化到一个三角形中去.解:因为∠AGE是ΔCGE的外角,所以∠AGE=∠C+∠E.同理∠AFG=∠B+∠D.因为∠AGE+∠AFG+∠A=180°,所以∠A+∠B+∠C+∠D+∠E=180°.专题六构造思想【专题分析】在几何证明中,如果仅靠图中的线段难以说明问题时,那么可通过作辅助线构造某个基本图形,从而使问题的条件或结论发生转化.一大门的栏杆如图(1)所示,BA垂直地面AE于A,CD平行于地面AE,则∠ABC+∠BCD=.〔解析〕过点B作BG∥CD,易证得AB⊥BG,如图(2)所示.根据两直线平行,同旁内角互补,得∠BCD+∠CBG=180°.由题意得∠ABG=90°,所以∠ABC+∠BCD=180°+90°=270°.故填270°.【针对训练6】某校的校园平面图如图(1)所示,已知AB=470 m,BC=560 m.则这个校园的周长是多少米?(图中的每一个角都是直角)〔解析〕将GF沿GH方向平移到HP,ED沿EF方向平移到PQ,GH沿GF方向平移到RQ,EF沿ED方向平移到DR,如图(2)所示,则校园的周长就等于长方形ABCQ 的周长.解:将图(1)的部分线段经过平移,使图形变为如图(2)所示的长方形.由平移的特征知GF=HP,ED=PQ,GH=RQ,EF=RD,所以校园的周长为AB+BC+AH+GF+ED+GH+EF+CD=AB+BC+AH+HP+PQ+RQ+RD+CD=AB+BC+AQ+CQ=2(AB+BC)= 2×(470+560)=2060(m).。
7.1 为什么要证明【学习目标】1.初步体会观察、猜测得到的结论不一定正确.2.通过探索,初步了解数字中推理的重要性.3.初步了解要判定一个数学结论正确与否,需要进行有根有据的推理.【学习重点】判断一个结论正确与否需要进行推理.【学习难点】理解数学推理的重要性.学习行为提示:创景设疑,帮助学生知道本节课学什么.学习行为提示:教会学生看书,独学时对于书中的问题一定要认真探究,书写答案.教会学生落实重点.学习行为提示:教会学生怎么交流.先对学,再群学.充分在小组内展示自己,分析答案,提出疑惑,共同解决(可按结对子学—帮扶学—组内群学来开展).在群学后期教师可有意安排每组展示问题,并给学生板书题目和组内演练的时间.情景导入生成问题在现实生活中,我们常采用观察的方法来了解世界.在数学学习中,我们通过观察、度量、猜测来得到一些结论.那这样得到的结论都是正确的吗?如果是正确的,那么用什么方法说明它的正确性呢?解:不一定都是正确的,如果正确,需要用推理证明的方法来说明它的正确性.自学互研生成能力知识模块一观察、实验、归纳得到的结论一定正确吗先阅读教材第162页“做一做”之前的内容,然后完成书中设置的两个问题,最后与同伴进行交流.【说明】让学生通过观察、实验、归纳等方法初步体会得到的结论不一定正确.知识模块二启发学生有理有据地推理师生合作共同完成教材第162页“做一做”的学习与探究.【说明】(1)中让学生体会数学教学中从特殊到一般的思想方法;(2)中利用先猜想再验证的方法,培养学生从不同的角度来用不同的数学方法解决实际问题的能力.【归纳结论】实验、观察、归纳得到的结论可能正确,也可能不正确.因此,要判断一个数学结论是否正确,仅仅依靠实验、观察、归纳是不够的,必须进行有根有据的证明.交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一观察、实验、归纳得到的结论一定正确吗知识模块二启发学生有理有据地推理检测反馈达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思查漏补缺1.收获:________________________________________________________________________ 2.存在困惑:________________________________________________________________________7.2 定义与命题第1课时定义与命题【学习目标】1.理解定义与命题的概念.2.掌握命题的结构、形式及种类.3.能从具体实例中,了解命题的概念,并会区分真假命题.【学习重点】命题的相关概念.【学习难点】对于命题的条件和结论不十分明显,改写成“如果……那么……”的形式.学习行为提示:让学生通过阅读教材后,独立完成“自学互研”的所有内容,并要求做完了的小组长督促组员迅速完成.学习行为提示:教会学生看书,独学时对于书中的问题一定要认真探究,书写答案.教会学生落实重点.情景导入生成问题人与人之间的交流必须在对某些名称和术语有共同认识的情况下才能进行.为此,我们需要给出它们的定义.这节课我们就一起研究定义与命题.自学互研生成能力知识模块一定义先阅读教材第165页“议一议”上面的内容,弄清“定义”的概念.【说明】通过思考、归纳得出定义的概念,并利用举例的形式加深对概念的理解与掌握.【归纳结论】证明时,为了交流的方便,必须对某些名称和术语形成共同的认识.为此,就要对名称和术语的含义加以描述,作出明确的规定,也就是给出它们的定义.知识模块二命题阅读教材第165页“议一议”的内容,弄清命题的概念,并与同伴进行交流.【说明】通过讨论、交流让学生对命题形成初步认识,安排不是命题的问题参加,让学生逐步体会一个句子是不是命题的关键是对一件事情是否作出判断.【归纳结论】判断一件事情的句子叫做命题.如果一个句子没有对某件事情作出任何判断,那么它就不是命题.知识模块三命题的组成阅读教材第166页“想一想”部分的内容.弄清一个命题的组成,并与同伴进行交流.【说明】学生通过观察、思考得出命题是由两部分组成的,并掌握它们各自的概念,进一步加深对命题的理解.【归纳结论】一般地,每个命题都由条件和结论两部分组成.条件是已知的事项,结论是由已知事项推出的事项.命题通常可以写成“如果……那么……”的形式,其中“如果”引出的部分是条件,“那么”引出的部分是结论.知识模块四命题的分类仿例:下列命题是真命题的是( D)A.若a2=b2,则a=bB.若a2>b2,则a>bC.若|a|>|b|,则a>bD.若a3=b3,则a=b学习行为提示:教会学生怎么交流.先对学,再群学.充分在小组内展示自己,分析答案,提出疑惑,共同解决(可按结对子学—帮扶学—组内群学来开展).在群学后期教师可有意安排每组展示问题,并给学生板书题目和组内演练的时间.阅读教材第166页“做一做”的内容,然后与同伴进行交流.【说明】进一步加深对命题组成的理解,同时学会利用自学的知识对命题作出正确的判断.【归纳结论】正确的命题称为真命题,不正确的命题称为假命题.要说明一个命题是假命题,常常可以举出一个例子,使它具备命题的条件,而不具有命题的结论,这种例子称为反例.交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一定义知识模块二命题知识模块三命题的组成知识模块四命题的分类检测反馈达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思查漏补缺1.收获:________________________________________________________________________ 2.存在困惑:________________________________________________________________________第2课时命题的证明【学习目标】1.理解公理和定理的意义,并能对公理与定理加以区别.2.理解证明命题的思路、书写的格式,能对推理论证有初步的认识.【学习重点】命题证明的一般步骤.【学习难点】探索命题证明的思路及思维方向.学习行为提示:让学生通过阅读教材后,独立完成“自学互研”的所有内容,并要求做完了的小组长督促组员迅速完成.情景导入生成问题我们知道,举一个反例就可以证明一个命题是假命题,那么如何证实一个命题是真命题呢?用以前学过的观察、实验、验证特例等方法来证明可靠吗?能不能根据已经知道的真命题证实呢?那已经知道的真命题又是如何证实的?【说明】提出一系列的问题启发思考,体会证明的必要性,让学生明白采用什么样的方式作为证实其他命题的出发点和依据.学习行为提示:教会学生看书,独学时对于书中的问题一定要认真探究,书写答案.教会学生落实重点.学习行为提示:教会学生怎么交流.先对学,再群学.充分在小组内展示自己,分析答案,提出疑惑,共同解决(可按结对子学—帮扶学—组内群学来开展).在群学后期教师可有意安排每组展示问题,并给学生板书题目和组内演练的时间.自学互研生成能力知识模块一公理、定理的概念阅读教材第168页和第169页例题前面部分的内容,然后解答下列问题:问题1什么是公理?什么是定理?问题2我们已经学习了哪几条基本事实作为证明的出发点和依据?【说明】给出概念,直入主题.回顾所学知识,加深对概念的理解,同时也让学生明白如何区分公理和定理.【归纳结论】除了上面几条可以作为证明的依据外,数与式的运算律和运算法则、等式的有关性质以及反映大小关系的有关性质都可以作为证明的依据.知识模块二定理的证明师生合作完成下面问题的学习与探究.问题3什么叫证明?如何来证明一个命题或定理的正确性?【说明】让学生明白证明的概念,并且为后面书写过程有个心理准备.例:已知:如图,直线AB与直线CD相交于点O,∠AOC与∠BOD是对顶角.求证:∠AOC=∠BOD.由于证明过程是学生刚刚接触的,比较陌生,教师可以引导学生帮助分析,展示如下:证明:∵直线AB与直线CD相交于点O,∴∠AOB和∠COD都是平角(平角的定义).∴∠AOC和∠BOD都是∠AOD的补角(补角的定义).∴∠AOC=∠BOD(同角的补角相等).定理:对顶角相等.注:对于符号“∵”“∴”表示的意思教师要作出解释;由于刚学证明,力求注明理由,证明过程要符合逻辑思维,不能因果不相匹配.仿例:如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足是D,求证:∠1=∠A,∠2=∠B.证明:∵CD⊥AB,∴∠ADC=∠BDC=90°,∵∠ACB=90°,∴∠1+∠2=90°,又∵∠1+∠B=90°,∴∠2=∠B,同理可证:∠1=∠A.交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一公理、定理的概念知识模块二定理的证明检测反馈达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思查漏补缺1.收获:________________________________________________________________________ 2.存在困惑:________________________________________________________________________7.3 平行线的判定【学习目标】1.会用“同位角相等,两直线平行”证明“内错角相等,两直线平行”及“同旁内角互补,两直线平行”的正确性.2.会用平行线的三个判定定理解决问题.【学习重点】平行线的三个判定定理.【学习难点】灵活应用平行线的三个判定定理解决问题.学习行为提示:让学生通过阅读教材后,独立完成“自学互研”的所有内容,并要求做完了的小组长督促组员迅速完成.学习行为提示:教会学生看书,独学时对于书中的问题一定要认真探究,书写答案.教会学生落实重点.情景导入生成问题前面我们探索过两直线平行的哪些判别条件?利用“同位角相等,两直线平行”这个基本事实,你能证明它们吗?试试看.【说明】通过复习旧知识,为本节课进一步学习直线平行的条件做准备.两条直线被第三条直线所截,形成的角中,有同位角、内错角和同旁内角.同位角相等,两直线平行,那么利用内错角、同旁内角的关系,能否判定两直线平行?【说明】这个问题的提出,直截了当地切入本节课的中心内容,通过学生的猜想、讨论,引起学生的探究欲望.自学互研生成能力知识模块一内错角相等,两直线平行先阅读教材第172页定理1的内容及其证明过程,然后完成下面的问题.问题1如右图,∠1与∠2是什么位置关系?问题2当∠1=∠2时,直线a、b有什么关系?为什么?【说明】通过观察、思考、讨论培养学生分析图形的能力,感受转化的思想.由未知转化为已知,把已知条件转化为以前学过的旧知识,从而达到解决问题的目的.为了给学生一个清晰的证明过程,教师展示如下:证明:∵∠1=∠2(已知),∠1=∠3(对顶角相等).∴∠3=∠2(等量代换).∴a∥b(同位角相等,两直线平行).知识模块二同旁内角互补,两直线平行先阅读教材第172页定理2的内容及证明过程,然后完成下面的问题.问题3如下图,∠2与∠3是什么位置关系?学习行为提示:教会学生怎么交流.先对学,再群学.充分在小组内展示自己,分析答案,提出疑惑,共同解决(可按结对子学—帮扶学—组内群学来开展).在群学后期教师可有意安排每组展示问题,并给学生板书题目和组内演练的时间.问题4当∠2+∠3=180°时,直线a、b有什么关系?为什么?【说明】让学生自己口述,培养学生的口语表达能力和推理论证的能力.在思考探究的过程中,体会判断两条直线平行的条件.这个证明的过程,老师可以引导学生自己书写.【归纳结论】已给的基本事实、定义和已经证明的定理以后都可以作为依据,用来证明新的结论.仿例:如图所示,一个合格的弯形管道经两次拐弯后,如果∠C=68°,∠B=112°,则AB与CD的位置关系是__平行__,理由是__同旁内角互补,两直线平行__.交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一内错角相等,两直线平行知识模块二同旁内角互补,两直线平行检测反馈达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思查漏补缺1.收获:________________________________________________________________________ 2.存在困惑:________________________________________________________________________7.4 平行线的性质【学习目标】1.初步掌握平行线的性质,并能用性质进行简单的推理和证明.2.进一步理解和总结证明的步骤、格式、方法.【学习重点】平行线的性质的探索及性质的应用.【学习难点】运用平行线的性质和判定去解决问题.学习行为提示:让学生通过阅读教材后,独立完成“自学互研”的所有内容,并要求做完了的小组长督促组员迅速完成.情景导入生成问题现在同学们已经掌握了利用同位角相等,或者内错角相等,或者同旁内角互补,判定两条直线平行的三种方法.在这一节课里:大家把思维的指向反过来:如果两条直线平行,那么同位角、内错角、同旁内角的数量关系又该如何表达?【说明】了解学生的认知基础,让全体学生对前一节的内容进行回顾,并为新课程的学习做准备.学习行为提示:教会学生看书,独学时对于书中的问题一定要认真探究,书写答案.教会学生落实重点.学习行为提示:教会学生怎么交流.先对学,再群学.充分在小组内展示自己,分析答案,提出疑惑,共同解决(可按结对子学—帮扶学—组内群学来开展).在群学后期教师可有意安排每组展示问题,并给学生板书题目和组内演练的时间.自学互研生成能力知识模块一两直线平行,同位角相等师生合作共同完成教材第175页性质定理1的证明及探究过程.【说明】给学生留有充分的探索和交流的空间,鼓励学生利用多种方法探索,这对于发展学生的空间观念,理解平行线的性质是十分重要的.此题的证明可以让学生感受反证法.知识模块二两直线平行,内错角相等和两直线平行,同旁内角互补阅读教材第176页平行线性质定理2和性质定理3的内容及证明过程,然后自己完成定理的证明.【说明】培养学生逻辑思维能力以及严谨的治学态度,逐步锻炼学生的推理能力,并进一步巩固对定理的理解及语言的规范,感受成功的喜悦,树立学习数学的信心.知识模块三平行于同一条直线的两条直线平行先阅读教材第176页例题及证明过程,然后完成下面的问题.例:已知:如图,b∥a,c∥a,∠1,∠2,∠3是直线a、b、c被直线d截出的同位角.求证:b∥c.【说明】利用平行线的性质进行有关的证明,逐步培养学生的推理论证能力.发展他们的数学思维和空间观念.【归纳结论】平行于同一条直线的两条直线平行.讨论:完成一个命题的证明,需要哪些主要环节?与同学们交流.【说明】通过与学生交流、讨论,帮助他们形成知识体系,为以后的证明提供了很好的方法.交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一两直线平行,同位角相等知识模块二两直线平行,内错角相等和两直线平行,同旁内角互补知识模块三平行于同一条直线的两条直线平行检测反馈达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思查漏补缺1.收获:________________________________________________________________________2.存在困惑:________________________________________________________________________7.5 三角形内角和定理第1课时三角形内角和定理【学习目标】1.会证明三角形的内角和定理,并能运用三角形内角和定理解题.2.初步学会利用辅助线证题.【学习重点】三角形内角和定理的证明和应用.【学习难点】用不同方法证明三角形内角和定理.学习行为提示:让学生通过阅读教材后,独立完成“自学互研”的所有内容,并要求做完了的小组长督促组员迅速完成.学习行为提示:教会学生看书,独学时对于书中的问题一定要认真探究,书写答案.教会学生落实重点.情景导入生成问题我们知道,任意一个三角形的内角和等于180°,怎样证明这个结论的正确性呢?小学中我们通过测量的方法进行过验证,但我们不可能对所有的三角形进行验证,有没有一种能证明任意三角形的内角和等于180°的方法呢?【说明】通过问题引入,激发学生的学习兴趣,同时使学生认识到,测量的方法只能进行有限次的验证,并不能对所有三角形进行验证,所以必须寻找一种能说明所有三角形的内角和是180°的方法,为后面的证明做准备.自学互研生成能力知识模块一三角形内角和定理的证明先阅读教材第178页的内容,再完成下面的思考.思考:(1)如图,如果我们只把∠A移到∠1的位置,你能证明这个结论吗?如果不移动∠A,那么你还有什么方法可以达到同样的效果?(2)根据前面给出的基本事实和定理,你能用自己的语言说说这一结论的证明思路吗?你能用比较简洁的语言写出这一证明过程吗?与同学们交流.【说明】使学生从对三角形内角和的感性认识上升到理性认识,由于学生刚刚接触证明,并且还需添加辅助线,所以教师必须要有规范的示范,通过讲练结合,使学生逐步掌握推理的方法步骤.【归纳结论】三角形的内角和等于180°.思考:(1)你还能用其他方法证明三角形内角和定理吗?(2)如果把三角形三个角“凑”到A处,过点A作直线PQ∥BC(如图),这样的想法可行吗?如果可行,你能写出证明过程吗?与同学们交流.【说明】让学生尝试模仿用另外的方法证明三角形内角和是180°,从而培养学生多角度分析问题和解决问题的能力,学生的推理和证明方法再次得到深化.知识模块二三角形内角和定理的应用先独立完成下面问题的解答,然后再对照教材第179页例1的规范格式自评自纠.例:如图,在△ABC中,∠B=38°,∠C=62°,AD是△ABC的角平分线,求∠ADB的度数.学习行为提示:教会学生怎么交流.先对学,再群学.充分在小组内展示自己,分析答案,提出疑惑,共同解决(可按结对子学—帮扶学—组内群学来开展).在群学后期教师可有意安排每组展示问题,并给学生板书题目和组内演练的时间.【说明】通过例题,要让学生体会三角形内角和定理在角的求值问题中的应用.注意向学生分析解决问题的思路和方法.交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一三角形内角和定理的证明知识模块二三角形内角和定理的应用检测反馈达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思查漏补缺1.收获:________________________________________________________________________ 2.存在困惑:________________________________________________________________________第2课时三角形外角的定理【学习目标】1.了解三角形的外角定义,掌握三角形外角的两个定理.2.能综合运用三角形内角和定理及外角的两个定理进行几何证明与计算.【学习重点】三角形外角的性质定理.【学习难点】运用三角形外角性质定理进行有关计算时能准确地推理.学习行为提示:每组抽一位学生上黑板做,其余学生在座位上完成,组长检查每组完成情况,最后老师给每组评分.学习行为提示:教会学生看书,独学时对于书中的问题一定要认真探究,书写答案.教会学生落实重点.情景导入生成问题旧知回顾:1在△ABC中,若∠A+∠B=∠C,则△ABC的形状是直角三角形.2.一个三角形的三个内角中,至少有( B)A.一个锐角B.两个锐角C.一个钝角D.一个直角3.如图,直线l1∥l2,∠1=55°,∠2=65°,则∠3为( C)A.50°B.55°C.60°D.65°自学互研生成能力知识模块一三角形外角的定理先阅读教材第181页例2上面的内容,然后完成下面的问题:△ABC内角的一条边与另一条边的反向延长线组成的角,称为△ABC的外角.如图,∠1是△ABC的外角.学习行为提示:教师结合各组反馈的疑难问题分配展示任务,各组展示过程中,教师引导其他组进行补充、纠错,最后进行总结评分.展示目标:通过知识模块一的展示掌握证明三角形外角定理的方法;通过对知识模块二的展示,总结运用三角形外角的定理进行几何证明和计算的一般方法和步骤.问题1你能在图中画出△ABC的其他外角吗?∠1与其他角有什么关系?能证明你的结论吗?【说明】结合图形,学生通过观察、思考、讨论等一系列活动,既巩固了对概念的理解,又让学生进行证明,培养了学生的推理论证能力.【归纳结论】三角形内角和定理的推论:①三角形的一个外角等于与它不相邻的两个内角的和;②三角形的一个外角大于任何一个与它不相邻的内角.知识模块二运用三角形外角的定理进行证明你能运用所学的知识解决下面的问题吗?问题2(1)已知:在△ABC中,∠B=∠C,AD平分外角∠EAC.求证:AD∥BC.第(1)题图第(2)题图(2)已知如图,P是△ABC内一点,连接PB、PC.求证:∠BPC>∠A.你们的证明方法一样吗?与大家共同交流.【说明】学生的讨论、交流、解决问题的过程,也是一个培养学生发散思维与创新能力的过程,它不受教师点拨的思维定式的影响,可以提高学生的思维灵活性.仿例:如图D是△ABC中∠ACB的外角的平分线与BA的延长线的交点.求证:∠BAC>∠B+∠D.证明:∵CD平分∠ACE,∴∠ACD=∠ECD,∵∠ECD=∠B+∠D,∴∠ACD=∠B+∠D,∵∠BAC>∠ACD,∴∠BAC>∠B+∠D.交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一三角形外角的定理知识模块二运用三角形外角的定理进行证明检测反馈达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思查漏补缺1.收获:________________________________________________________________________ 2.存在困惑:________________________________________________________________________。
第七章 平行线的证明复习导学案
主备人:赵晓芬 授课时间______ 总课时_______
一、学习目标﹕(1分钟,学生朗读并熟悉)
(1)了解命题的概念与命题的构成;
(2)会用平行线的性质定理与判定定理,三角形内角和定理及三角形的外角的性质等解题;
二、导学思考题
第一环节 知识回顾 (7分钟,小组讨论后,交流汇报)
1.什么是定义?什么是命题?命题由哪两部分组成?举例说明!
2.平行线的性质定理与判定定理分别是什么?
3.三角形内角和定理是什么?
4.与三角形的外角相关有哪些性质?
5.证明题的基本步骤是什么?
第二环节 典例精析(8分钟,师生共同探究解决)
例1、如图,AD=CD ,AC 平分∠DAB ,求证DC ∥AB .
例2、如图,已知∠1=20°,∠2=25°,∠A =55°,求∠BDC
的度数.
例3、如图,BE ,CD 相交于点A ,∠DEA 、∠BCA 的平分线相交于F . 探求:∠F 与∠B 、∠D 有何等量关系?
C
A B D 1 2
例4、如图,已知点A 在直线l 外,点B 、C 在直线l 上.
点P 是△ABC 内一点,求证:∠P >∠A ;
三、巩固练习(12分钟,学生独立完成,教师反馈)
书中196页19、20、21、35、37题
四、课堂小结(3分钟,学生谈收获)
1、通过本节课的学习我收获了什么?
2、我还有哪些没有解决的困惑?
五、达标测评(8分钟,学生独立完成后教师反馈)
1、下列语句是命题的是 【 】
(A)延长线段AB (B)你吃过午饭了吗? (C)直角都相等 (D)连接A ,B 两点
2、如图,已知∠1+∠2=180º,∠3=75º,
那么∠4的度数是 【 】
(A)75º (B)45º (C)105º (D)135º
3、 以下四个例子中,不能作为反例说明“一个角的余角大于这个角”
是假命题是 【 】
(A)设这个角是30º,它的余角是60°,但30°<60°
(B)设这个角是45°,它的余角是45°,但45°=45°
(C)设这个角是60°,它的余角是30°,但30°<60°
(D)设这个角是50°,它的余角是40°,但40°<50°
4、若三角形的一个内角等于另外两个内角之差,则这个三角形是 【 】
(A)锐角三角形 (B)直角三角形 (C)钝角三角形 (D)不能确定
5、如图,△ABC 中,∠B =55°,∠C =63°,DE ∥AB ,
则∠DEC 等于【 】
(A )63° (B) 118°
(C) 55° (D )62° 6、三角形的一个外角是锐角,则此三角形的形状是 【 】
(A )锐角三角形 (B)钝角三角形 (C)直角三角形
(D )无法确定 六、布置作业(1分钟)
1、教材196页19、20题
2、教材199页35题
D 第10题。