高中物理气体压强
- 格式:wps
- 大小:115.10 KB
- 文档页数:6
高中物理气体的性质公式总结高中物理气体的性质公式1.气体的状态参量:温度:宏观上,物体的冷热程度;微观上,物体内部分子无规则运动的剧烈程度的标志热力学温度与摄氏温度关系:T=t+273 {T:热力学温度(K),t:摄氏温度(℃)}体积V:气体分子所能占据的空间,单位换算:1m3=103L=106mL压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压:1atm=1.013×105Pa=1900pxHg(1Pa=1N/m2)2.气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大3.理想气体的状态方程:p1V1/T1=p2V2/T2 {PV/T=恒量,T为热力学温度(K)}注:(1)理想气体的内能与理想气体的体积无关,与温度和物质的量有关;(2)公式3成立条件均为一定质量的理想气体,使用公式时要注意温度的单位,t为摄氏温度(℃),而T为热力学温度(K)。
高中物理气体的性质1.气体的状态参量:温度:宏观上,物体的冷热程度;微观上,物体内部分子无规则运动的剧烈程度的标志,热力学温度与摄氏温度关系:T=t+273 {T:热力学温度(K),t:摄氏温度(℃)}体积V:气体分子所能占据的空间,单位换算:1m3=103L=106mL压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压:1atm=1.013×105Pa=76cmHg(1Pa=1N/m2)2.气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大3.理想气体的状态方程:p1V1/T1=p2V2/T2 {PV/T=恒量,T为热力学温度(K)}注:(1)理想气体的内能与理想气体的体积无关,与温度和物质的量有关;(2)公式3成立条件均为一定质量的理想气体,使用公式时要注意温度的单位,t为摄氏温度(℃),而T为热力学温度(K)。
高中物理气体知识点总结一、气体的性质1. 气体的无定形:气体没有固定的形状和体积,能够自由流动。
2. 气体的可压缩性:由于气体分子之间的间距较大,气体易受到外界压力的影响而发生压缩或膨胀。
3. 气体的弹性:气体分子之间存在相互作用力,当气体受到外力作用时,能够产生弹性形变。
二、气体的状态方程1. 理想气体状态方程:PV = nRT,其中P为气体的压强,V为气体的体积,n为气体的物质的量,R为气体常数,T为气体的绝对温度。
2. 理想气体状态方程的应用:可以用于计算气体的压强、体积、物质的量和温度之间的关系,也适用于气体的混合、稀释等情况。
三、气体的压强1. 气体的压强定义:单位面积上气体分子对容器壁的撞击力。
2. 压强的计算公式:P = F/A,其中P为压强,F为气体分子对容器壁的撞击力,A为单位面积。
3. 压强的单位:国际单位制中,压强的单位为帕斯卡(Pa)。
4. 大气压:大气对地面单位面积上的压强,标准大气压为101325Pa。
四、气体的温度1. 气体的温度定义:气体分子的平均动能的度量。
2. 温度的单位:国际单位制中,温度的单位为开尔文(K)。
3. 摄氏度和开尔文度的转换:T(K) = t(℃) + 273.15。
五、气体的分子速率与平均动能1. 气体分子速率的分布:气体分子的速率服从麦克斯韦速率分布定律,速率越高的分子数目越少。
2. 平均动能与温度的关系:气体的平均动能与温度成正比,温度越高,气体分子的平均动能越大。
六、理想气体的压强与温度的关系1. Gay-Lussac定律:在等体积条件下,理想气体的压强与温度成正比,P1/T1 = P2/T2。
2. Charles定律:在等压条件下,理想气体的体积与温度成正比,V1/T1 = V2/T2。
3. 综合气体状态方程和Gay-Lussac定律、Charles定律,可以得到压强、体积和温度之间的关系。
七、气体的扩散和扩散速率1. 气体的扩散:气体分子由高浓度区域向低浓度区域的自由运动过程。
(℃)0 气体的等容变化和等压变化在物理学中,当需要研究三个物理量之间的关系时,往往采用“控制变量法〞——保持一个量不变,研究其它两个量之间的关系,然后综合起来得出所要研究的几个量之间的关系。
一、气体的等容变化:1、等容变化:当体积(V )保持不变时, 压强(p )和温度(T )之间的关系。
2、查理定律:一定质量的气体,在体积不变的情况下,温度每升高〔或降低〕1℃,增加〔或减少〕的压强等于它0℃时压强的1/273.或一定质量的某种气体,在体积保持不变的情况下, 压强p 与热力学温度T 成正比.3、公式:常量==1122T p T p4、查理定律的微观解释:一定质量〔m 〕的气体的总分子数〔N 〕是一定的,体积〔V 〕保持不变时,其单位体积内的分子数〔n 〕也保持不变,当温度〔T 〕升高时,其分子运动的平均速率〔v 〕也增大,那么气体压强〔p 〕也增大;反之当温度〔T 〕降低时,气体压强〔p 〕也减小。
这与查理定律的结论一致。
二、气体的等压变化:1、等压变化:当压强(p ) 保持不变时,体积(V )和温度(T )之间的关系.2、盖·吕萨克定律:一定质量的气体,在压强不变的情况下,温度每升高〔或降低〕1℃,增加〔或减少〕的体积等于它0℃时体积的1/273.或一定质量的某种气体,在压强p 保持不变的情况下, 体积V 与热力学温度T 成正比.3、公式:常量==1122T V T V 4、盖·吕萨克定律的微观解释:一定质量〔m 〕的理想气体的总分子数〔N 〕是一定的,要保持压强〔p 〕不变,当温度〔T 〕升高时,全体分子运动的平均速率v 会增加,那么单位体积内的分子数〔n 〕一定要减小〔否那么压强不可能不变〕,因此气体体积〔V 〕一定增大;反之当温度降低时,同理可推出气体体积一定减小三、气态方程一定质量的理想气体的压强、体积的乘积与热力学温度的比值是一个常数。
n 为气体的摩尔数,R 为普适气体恒量063.南汇区年第二次模拟考试1A .由查理定律可知,一定质量的理想气体在体积不变时,它的压强随温度变化关系如图中实线表示。
高中物理实验测量理想气体的压强与温度的关系实验目的:本实验旨在通过测量理想气体的压强和温度,研究它们之间的关系,并验证理想气体状态方程。
实验器材:1. 气缸2. 活塞3. 温度计4. 压力计5. 气体源6. 热水浴实验原理:根据理想气体状态方程 PV = nRT(其中P为气体压强,V为气体体积,n为气体物质的量,R为气体常数,T为气体的绝对温度),我们可以推导出理想气体的压强与温度之间的关系为 P ∝ T。
实验步骤:1. 将气缸浸入热水浴中,保持一定的温度。
2. 将活塞推入气缸,使气体压缩到一定体积。
3. 使用压力计测量气缸内的气体压强。
4. 根据温度计测量气缸和气体的温度。
5. 重复步骤2-4,改变气体的体积和温度,记录相应的压强和温度数据。
实验数据记录:通过实验测量得到的压强和温度数据如下:温度(摄氏度)压强(Pa)25 10132550 20265075 303975100 405300125 506625150 607950实验数据处理:根据实验数据,我们绘制出温度与压强的散点图,并进行数据拟合。
通过拟合直线的斜率和截距,可以得到理想气体状态方程中的比例常数比R。
实验结果分析:根据拟合直线的斜率,我们可以得到比例常数R的估计值。
比较该值与理论值,可以判断实验结果的准确性和误差大小。
实验结论:通过本实验测量和分析,我们验证了理想气体的压强与温度之间呈线性关系,即P ∝ T。
实验结果还可以用来估计理想气体状态方程中的比例常数R。
实验改进:1. 增加数据点的数量,以提高数据的拟合精度。
2. 提高温度和压力的测量精度,以减小实验结果的误差。
总结:本实验通过测量理想气体的压强和温度,研究了它们之间的关系,并验证了理想气体状态方程。
实验结果将有助于进一步理解和应用理想气体的性质与行为。
(℃)在物理学中,当需要研究三个物理量之间的关系时,往往采用“控制变量法”——保持一个量不变,研究其它两个量之间的关系,然后综合起来得出所要研究的几个量之间的关系。
一、气体的等容变化:1、等容变化:当体积(V )保持不变时, 压强(p )和温度(T )之间的关系。
2、查理定律:一定质量的气体,在体积不变的情况下,温度每升高(或降低) 1℃,增加(或减少)的压强等于它0℃时压强的1/273.或一定质量的某种气体,在体积保持不变的情况下, 压强p 与热力学温度T 成正比. 3、公式:常量==1122T pT p4、查理定律的微观解释:一定质量(m )的气体的总分子数(N )是一定的,体积(V )保持不变时,其单位体积内的分子数(n )也保持不变,当温度(T )升高时,其分子运动的平均速率(v )也增大,则气体压强(p )也增大;反之当温度(T )降低时,气体压强(p )也减小。
这与查理定律的结论一致。
二、气体的等压变化:1、等压变化:当压强(p ) 保持不变时,体积(V )和温度(T )之间的关系.2、盖·吕萨克定律:一定质量的气体,在压强不变的情况下,温度每升高(或降低) 1℃,增加(或减少)的体积等于它0℃时体积的1/273.或一定质量的某种气体,在压强p 保持不变的情况下, 体积V 与热力学温度T 成正比. 3、公式:常量==1122T V T V 4、盖·吕萨克定律的微观解释:一定质量(m )的理想气体的总分子数(N )是一定的,要保持压强(p )不变,当温度(T )升高时,全体分子运动的平均速率v 会增加,那么单位体积内的分子数(n )一定要减小(否则压强不可能不变),因此气体体积(V )一定增大;反之当温度降低时,同理可推出气体体积一定减小三、气态方程一定质量的理想气体的压强、体积的乘积与热力学温度的比值是一个常数。
nR T V p T V p ==111222 n 为气体的摩尔数,R 为普适气体恒量063.上海市南汇区2008年第二次模拟考试1A .由查理定律可知,一定质量的理想气体在体积不变时,它的压强随温度变化关系如图中实线表示。
《气体的压强》教学难最分析与突破摘要:气体的压强在高中物理热学中是一个重要的概念。
也是一个难点,正确理解压强的物理意义,熟练掌握计算封闭气体压强的方法是进一步学习气体实验定律和理想气体状态方程的基础,教学中有效地突破这一难点,就能为学生以后的学习奠定基础。
关键词:气体的压强;难点;突破高中物理气体压强是个难点,要正确理解气体压强的概念,必须用分子动理论对气体压强产生进行微观上的解释,这就需要学生在物理观念上有所更新,学会建构力学模型,选取合适的研究对象进行受力分析,列方程求解。
突破方法如下:一、引入新课,作好铺垫引入新课是课堂教学的首要环节。
通过引入新课,丰富学生的感性认识,可以引起学生的学习兴趣,明确学习目标,活跃学生的思维。
为此,先复习初中学习过的压强知识,设计一些思考题让学生思考:(1)气体的压强产生的原因是什么?(2)是否也像液体一样是因重力产生的呢?(3)一只打足了气的气球内,气体的压强可以大于大气压,为什么这么一点儿气体能产生这么大的压强呢?(4)玻璃管内封闭了一段空气,封闭气体的压强如何计算呢?这样学生明确了课堂需要解决的问题,也有了调整原有知识结构,建构新知识的愿望。
二、启发引导,形成概念学习过程是学生主动地建构知识的过程。
教学过程中要充分发挥学生的主体作用,通过教师的启发引导,积极主动地发现问题,进行合理的推理,形成概念。
因此,在本节课教学中通过新课引入中提出的问题,教师引导学生阅读教材,寻找解决问题的方法,得出问题的答案。
课文中明确指出了用分子动理论的观点解释气体压强的产生是大量分子的频繁碰撞。
然后提出问题:为什么大量分子对器壁的频繁碰撞会产生持续的压力呢?通过雨滴撞击伞面的例子让学生类比联想,可这样启发学生:(1)假如雨滴撞击伞面是一滴一滴的,那么伞受到的力是断断续续的,而不是持续的。
(2)大量的雨滴不停地打在伞上,产生的压力是持续的。
强调“大量”和“频繁”两词,进而由压强的定义引导学生理解气体压强的大小等于器壁单位面积上受到的压力,而气体重力对压强的影响很小,故气体对各个方向的压强大小相等。
专题:密闭气体压强的计算一、平衡态下液体封闭气体压强的计算1. 理论依据①液体压强的计算公式p = rgh。
②液面与外界大气相接触。
则液面下h处的压强为p = p0 + rgh③帕斯卡定律:加在密闭静止液体(或气体)上的压强能够大小不变地由液体(或气体)向各个方向传递(注意:适用于密闭静止的液体或气体)④连通器原理:在连通器中,同一种液体(中间液体不间断)的同一水平面上的压强是相等的。
2、计算的方法步骤(液体密封气体)①选取假想的一个液体薄片(其自重不计)为研究对象②分析液体两侧受力情况,建立力的平衡方程,消去横截面积,得到液片两面侧的压强平衡方程③解方程,求得气体压强例1:试计算下述几种情况下各封闭气体的压强,已知大气压P0,水银的密度为ρ,管中水银柱的长度均为L。
均处于静止状态8练1:计算图一中各种情况下,被封闭气体的压强。
(标准大气压强p0=76cmHg,图中液体为水银图一练2、如图二所示,在一端封闭的U形管内,三段水银柱将空气柱A、B、C封在管中,在竖直放置时,AB两气柱的下表面在同一水平面上,另两端的水银柱长度分别是h1和h2,外界大气的压强为p0,则A、B、C三段气体的压强分别是多少?、练3、如图三所示,粗细均匀的竖直倒置的U型管右端封闭,左端开口插入水银槽中,封闭着两段空气柱1和2。
已知h1=15cm,h2=12cm,外界大气压强p0=76cmHg,求空气柱1和2的压强。
θθ二、平衡态下活塞、气缸密闭气体压强的计算1. 解题的基本思路(1)对活塞(或气缸)进行受力分析,画出受力示意图;(2)列出活塞(或气缸)的平衡方程,求出未知量。
注意:不要忘记气缸底部和活塞外面的大气压。
例2 如图四所示,一个横截面积为S 的圆筒形容器竖直放置,金属圆板A 的上表面是水平的,下表面是倾斜的,下表面与水平面的夹角为θ,圆板的质量为M 。
不计圆板与容器内壁之间的摩擦。
若大气压强为P 0,则被圆板封闭在容器中的气体压强P 等于( ) A. P Mg S 0+cos θ B. P Mg S 0cos cos θθ+ C.P Mg S 02+cos θ D.P Mg S 0+ 图四练习4:三个长方体容器中被光滑的活塞封闭一定质量的气体。
难点突破:用气体实验定律解题的思路1.根本解题思路(1)选取研究对象:它可以是由两个或多个物体组成的系统,也可以是全部气体和*一局部气体(状态变化时质量必须一定).(2)确定状态参量:找出状态变化前后的p、V、T数值或表达式.(3)认识变化过程:除题设条件已指明外,常需通过研究对象跟周围环境的相互关系来确定.(4)列出相关方程.封闭气体压强的计算1.系统处于平衡状态的气体压强的计算方法(1)液体封闭的气体压强确实定①平衡法:选与气体接触的液柱为研究对象进展受力分析,利用它的受力平衡,求出气体的压强.②取等压面法:根据同种液体在同一水平液面处压强相等,在连通器内灵活选取等压面,由两侧压强相等建立方程求出压强.液体内部深度为h处的总压强p=p0+ρgh,例如,图中同一水平液面C、D处压强相等,则p A=p0+ρgh.(2)固体(活塞或汽缸)封闭的气体压强确实定:由于该固体必定受到被封闭气体的压力,可通过对该固体进展受力分析,由平衡条件建立方程来找出气体压强与其他各力的关系.2.加速运动系统中封闭气体压强的计算方法一般选与气体接触的液柱或活塞、汽缸为研究对象,进展受力分析,利用牛顿第二定律列方程求出封闭气体的压强.如下图,当竖直放置的玻璃管向上加速时,对液柱受力分析有:pS-p0S-mg =ma,S为玻璃管横截面积,得p=p0+.3.分析压强时的注意点(1)气体压强与大气压强不同,大气压强由于重力而产生,随高度增大而减小,气体压强是由大量气体分子频繁碰撞器壁而产生的,大小不随高度而变化;封闭气体对器壁的压强处处相等.(2)求解液体内部深度为h处的总压强时,不要忘记液面上方气体的压强.用气体实验定律解题的思路1.根本解题思路(1)选取研究对象:它可以是由两个或多个物体组成的系统,也可以是全部气体和*一局部气体(状态变化时质量必须一定).(2)确定状态参量:找出状态变化前后的p、V、T数值或表达式.(3)认识变化过程:除题设条件已指明外,常需通过研究对象跟周围环境的相互关系来确定.(4)列出相关方程.2.对两局部气体的状态变化问题总结多个系统相互联系的定质量气体问题,往往以压强建立起系统间的关系,各系统独立进展状态分析,要确定每个研究对象的变化性质,分别应用相应的实验定律,并充分应用各研究对象之间的压强、体积、温度等量的有效关联.假设活塞可自由移动,一般要根据活塞平衡确定两局部气体的压强关系.变质量气体问题的分析方法这类问题的关键是巧妙地选择研究对象,把变质量转化为定质量问题.常见变质量气体问题有:(1)打气问题:选择原有气体和即将充入的气体作为研究对象,就可把充气过程中的气体质量变化问题转化为定质量气体的状态变化问题.(2)抽气问题:将每次抽气过程中抽出的气体和剩余气体作为研究对象,质量不变,故抽气过程可以看成是等温膨胀过程.(3)灌气问题:把大容器中的剩余气体和多个小容器中的气体整体作为研究对象,可将变质量问题转化为定质量问题.(4)漏气问题:选容器内剩余气体和漏出气体整体作为研究对象,便可使问题变成一定质量气体的状态变化,可用理想气体的状态方程求解.液柱(活塞)的移动问题的分析方法此类问题的特点是气体的状态参量p、V、T都发生了变化,直接判断液柱或活塞的移动方向比拟困难,通常先进展气体状态的假设,然后应用查理定律可以简单地求解.其一般思路为:(1)先假设液柱或活塞不发生移动,两局部气体均做等容变化.(2)对两局部气体分别应用查理定律,求出每局部气体压强的变化量Δp=p,并加以比拟.①如果液柱或活塞两端的横截面积相等,则假设Δp均大于零,意味着两局部气体的压强均增大,则液柱或活塞向Δp值较小的一方移动;假设Δp均小于零,意味着两局部气体的压强均减小,则液柱或活塞向压强减小量较大的一方(即|Δp|较大的一方)移动;假设Δp相等,则液柱或活塞不移动.②如果液柱或活塞两端的横截面积不相等,则应考虑液柱或活塞两端的受力变化(ΔpS),假设Δp均大于零,则液柱或活塞向ΔpS较小的一方移动;假设Δp 均小于零,则液柱或活塞向|ΔpS|较大的一方移动;假设ΔpS相等,则液柱或活塞不移动.气体图象问题的分析要点对气体状态变化图象的理解应注意两点:(1)图象上的一个点表示一定质量气体的一个平衡状态,它对应着三个状态参量;图象上的*一条直线或曲线表示一定质量气体状态变化的一个过程.(2)熟练掌握同一过程的p—V、V—T、p—T图象之间的转化,必要时能作出辅助的状态变化图线.如在V—T或p—T图象中,比拟两个状态的压强或体积大小,可以用这两个状态到原点连线的斜率大小来判断.斜率越大,压强或体积越小;斜率越小,压强或体积越大.计算气体压强的常用方法气体压强的计算问题,可以转化为力学问题进展处理。
气体的压强、体积、温度间的关系一、教学目标1.知道气体的压强、体积、温度间的关系。
2.知道气体的压强、体积、温度间的关系的研究方法。
二、教学重点、难点1.抓住以下两点说明气体的压强、体积、温度间的关系:〔1〕温度是分子平均动能的标志。
〔2〕气体压强的大小跟两个因素有关:一是气体分子的平均动能,二是分子的密集程度。
2.说明研究气体的压强、体积、温度间的关系的研究方法——控制变量法。
三、教学方法:实验演示四、教具:气压计,一段封闭的玻璃管,冷水,热水,玻璃杯,铁架台,固定夹,温度计。
五、教学过程:〔一〕引入新课这节课我们用控制变量法研究气体的压强、体积、温度间的关系。
〔二〕进行新课1.一定质量气体的压强、体积的关系〔温度不变〕[实验1]用手向上提或向下压玻璃管里的活塞,改变气体的体积,同时观察对应于不同体积时气体的压强的大小。
实验结论:一定质量的气体,在温度不变的情况下,压强增大,体积减小;体积增大,压强减小。
2.一定质量气体的压强、温度的关系〔体积不变〕[实验2]保持气体体积不变,改变气体的温度,同时观察对应于不同温度时气体的压强的大小。
实验结论:一定质量的气体,在体积不变的情况下,温度升高,压强增大;温度降低,压强减小。
3.一定质量气体的体积、温度的关系〔压强不变〕[实验3]保持气体的压强不变,改变气体的体积,同时观察对应于不同体积时气体的温度。
实验结论:一定质量的气体,在压强不变的情况下,温度升高,体积增大;温度降低;体积减小。
[课堂讨论]用分子动理论解释以上三个实验结论〔三〕布置作业:完成课本练习八〔P113〕〔1〕、〔2〕;习题〔P114〕〔5〕。
高中物理选修3-3气体压强专项练习题(附答案)选修3-3 气体压强计算专项练1.一定质量的理想气体从状态A变化到状态B再变化到状态C,其状态变化过程的p-V图象如图所示。
已知该气体在状态A时的温度为27℃。
求:①该气体在状态B和C时的温度分别为多少℃?②该气体从状态A经B再到C的全过程中是吸热还是放热?传递的热量是多少?2.一定质量理想气体经历如图所示的A→B、B→C、C→A三个变化过程,TA=300K,气体从C→A的过程中做功为100J,同时吸热250J,已知气体的内能与温度成正比。
求:i)气体处于C状态时的温度TC;ii)气体处于C状态时内能UC。
3.如图所示,一个内壁光滑的导热气缸竖直放置,内部封闭一定质量的理想气体,环境温度为27℃。
现将一个质量为m=2kg的活塞缓慢放置在气缸口,活塞与气缸紧密接触且不漏气。
已知活塞的横截面积为S=4.0×10^-4m^2,大气压强为P=1.0×10^5Pa,重力加速度g取10m/s,气缸高为h=0.3m,忽略活塞及气缸壁的厚度。
i)求活塞静止时气缸内封闭气体的体积。
ii)现在活塞上放置一个2kg的砝码,再让周围环境温度缓慢升高,要使活塞再次回到气缸顶端,则环境温度应升高到多少摄氏度?4.如图所示,一汽缸固定在水平地面上,通过活塞封闭有一定质量的理想气体,活塞与缸壁的摩擦可忽略不计,活塞的截面积S=100cm^2.活塞与水平平台上的物块A用水平轻杆连接,在平台上有另一物块B,A、B的质量均为m=62.5kg,物块与平台间的动摩擦因数μ=0.8.两物块间距为d=10cm。
开始时活塞距缸底L1=10cm,缸内气体压强p1等于外界大气压强p=1×10^5Pa,温度t1=27℃。
现对汽缸内的气体缓慢加热,g=10m/s。
求:①物块A开始移动时,汽缸内的温度;②物块B开始移动时,汽缸内的温度。
5.如图所示,一导热性能良好、内壁光滑的气缸水平放置,横截面积为S=2×10^-3m^2,质量为m=4kg厚度不计的活塞与气缸底部之间封闭了一部分气体,此时活塞与气缸底部之间的距离为24cm,在活塞的右侧12cm处有一对与气缸固定连接的卡环,气体的温度为300K,大气压强P=1.0×10^5Pa。