遥感原理与应用-第3章
- 格式:ppt
- 大小:1.72 MB
- 文档页数:54
第一章电磁波及遥感物理基础名词解释:1、电磁波(变化的电场能够在其周围引起变化的磁场,这一变化的磁场又在较远的区域内引起新的变化电场,并在更远的区域内引起新的变化磁场。
)变化电场和磁场的交替产生,以有限的速度由近及远在空间内传播的过程称为电磁波。
2、电磁波谱电磁波在真空中传播的波长或频率递增或递减顺序排列,就能得到电磁波谱。
3、绝对黑体对于任何波长的电磁辐射都全部吸收的物体称为绝对黑体。
4、辐射温度如果实际物体的总辐射出射度(包括全部波长)与某一温度绝对黑体的总辐射出射度相等,则黑体的温度称为该物体的辐射温度。
5、大气窗口电磁波通过大气层时较少被反射、吸收和散射的,透过率较高的电磁辐射波段。
6、发射率实际物体与同温下的在相同条件下的辐射能量之比。
7、热惯量由于系统本身有一定的热容量,系统传热介质具有一定的导热能力,所以当系统被加热或冷却时,系统温度上升或下降往往需要经过一定的时间,这种性质称为系统的热惯量。
(地表温度振幅与热惯量P成反比,P越大的物体,其温度振幅越小;反之,其温度振幅越大。
)8、光谱反射率ρλ=Eρλ/ Eλ(物体的反射辐射通量与入射辐射通量之比。
)9、光谱反射特性曲线按照某物体的反射率随波长变化的规律,以波长为横坐标,反射率为纵坐标所得的曲线。
填空题:1、电磁波谱按频率由高到低排列主要由、、紫外线、可见光、红外线、微波、无线电波等组成。
2、绝对黑体辐射通量密度是温度T和波长λ的函数。
3、一般物体的总辐射通量密度与绝对温度和发射率成正比关系。
4、维恩位移定律表明绝对黑体的最强辐射波长λ乘绝对温度T 是常数2897.8。
当绝对黑体的温度增高时,它的辐射峰值波长向短波方向移动。
5、大气层顶上太阳的辐射峰值波长为 0.47 μm选择题:(单项或多项选择)1、绝对黑体的(②③)①反射率等于1 ②反射率等于0 ③发射率等于1 ④发射率等于0。
2、物体的总辐射功率与以下那几项成正比关系(②⑥)①反射率②发射率③物体温度一次方④物体温度二次方⑤物体温度三次方⑥物体温度四次方。
遥感原理与应用作业18地6118078607宋雨龙第一章绪论 (1)第二章电磁辐射与地物光谱特征 (3)第三章遥感成像原理与图像特征 (4)第四章卫星遥感平台 (5)第五章遥感数字图像处理基础 (6)第六章遥感数字图像处理 (7)第七章多源遥感信息融合 (9)第八章遥感图像分类 (9)第九章遥感技术应用 (10)第一章绪论1.阐述遥感的基本概念。
答:遥感(RS),即遥远的感知。
是指应用探测仪器,不与被测目标直接接触,在高空或远距离处,接收目标辐射或反射的电磁波信息,并对这些信息进行加工处理与分析,揭示出目标的特征性质及其运动状态的综合性探测技术。
2.遥感的主要特点表现在哪几方面?举例说明。
答:①感测范围大,具有综合、宏观的特点:遥感从飞机上或人造地球卫星上获取的航空或卫星影像,比在地面上观察视域范围大得多。
例如:一幅陆地卫星TM影像可反映出185km×185km的景观实况,我国全境仅需500余张这种影像就可拼接成全国卫星影像图。
②信息量大,具有手段多、技术先进的特点:根据不同的任务,遥感技术可选用不同波段和传感器来获取信息。
③获取信息快,更新周期短,具有动态监测的特点:卫星围绕地球运转,能及时获取所经地区的最新资料,例如:Landsat-5/7陆地卫星每16天即可对全球陆地表面成像一次。
④具有获取信息受条件限制少的特点:自然条件恶劣,人类难以到达的地方,如沙漠、沼泽、高山峻岭等都可以使用遥感进行观测。
⑤应用领域广,具有用途大、效益高的特点:遥感已广泛应用于环境监测、资源勘测、农林水利、地质勘探、环境保护、气象、地理、测绘、海洋研究和军事侦察等领域,且应用领域在不断扩展。
遥感在众多领域的广泛应用产生了十分可观的经济效应和卓有成效的社会效应。
3.遥感有哪几种主要分类?其分类依据是什么?4.当前遥感发展的现状和特点如何?答:当今,遥感技术已经发生了根本的变化,主要表现在遥感平台、传感器、遥感的基础研究和应用领域等方面。
南京信息工程大学硕士研究生招生入学考试《814遥感原理与应用》考试大纲第一部分课程目标与基本要求一、课程目标《遥感原理与应用》课程内容包括遥感的物理基础与成像机理、遥感图像处理与分析和遥感应用三大部分。
通过学习,学生应能掌握遥感技术的基本理论,掌握遥感图像处理的基本原理和方法,掌握遥感图像的地物影像特征、遥感图像解译及遥感制图的基本技能,了解遥感研究现状、遥感技术发展趋势与应用领域,并具备灵活应用各部分知识综合分析问题和解决问题的能力。
二、基本要求要求学生能够掌握电磁辐射的基本理论和地物的光谱特征,掌握遥感信息的来源与特征,理解遥感图像的成像原理,掌握遥感图像处理与解译的基本原理和方法,了解遥感主要应用领域及发展趋势。
第二部分课程内容与考核目标第一章遥感的基本概念1.理解并掌握遥感的基本概念、类型、特点及优势。
2.理解遥感系统的构成。
3.了解遥感发展简史及发展趋势。
第二章电磁辐射与地物光谱特征1.理解和掌握电磁波谱,辐照度,辐射出射度,辐射亮度,朗伯源,绝对黑体,太阳常数,大气窗口、反射率及反射波谱等基本概念。
2.熟悉遥感常用的电磁波段,理解和掌握普朗克定律,斯蒂芬-波尔兹曼定律,维恩位移定律,基尔霍夫定律。
3.了解大气的成份和结构。
理解大气对太阳辐射的影响,掌握大气散射的类型及其特点,大气窗口的光谱段。
4.了解太阳辐射与地球辐射的特点,了解地球辐射的分段特征。
5.熟悉并掌握植被、水体、岩石和土壤反射波谱的特征。
理解环境对地物光谱特性的影响。
6.理解地物波谱的概念及其对遥感发展的重要意义。
第三章遥感成像原理与遥感图像特征1.了解世界范围内主要的陆地卫星、气象卫星、对地观测系统(EOS)卫星和海洋遥感卫星平台的特点。
2.掌握目前常用的国外遥感资料(AVHRR、TM、ETM+、SPOT、IKONOS、QUICKBIRD、MODIS等)和我国主要卫星遥感资料的基本技术参数(波谱段范围、分辨率等)。
了解高光谱分辨率、高空间分辨率传感器的最新进展。
遥感原理与应用的课后答案第一章:遥感基础知识1.1 遥感概述•遥感是利用空间传感器获取地球表面信息的科学与技术。
•遥感技术的特点包括遥感性质、遥感对象、遥感方法等。
1.2 遥感的分类•根据遥感方式,可将遥感分为主动遥感和被动遥感两种。
•主动遥感指人工发射电磁波,通过接收返回信号得到目标的信息。
•被动遥感则是通过接收自然环境中辐射的信息。
1.3 遥感系统的组成•遥感系统由人工卫星、航空平台、地面站三个部分组成。
•人工卫星是指搭载遥感装置的卫星,用于对地观测。
•航空平台一般指飞机或无人机等载人或无人飞行器。
•地面站则用于接收、处理和存储遥感数据。
第二章:遥感图像的获取与处理2.1 遥感图像获取•遥感图像的获取方式包括主动遥感和被动遥感。
•被动遥感图像的获取主要依赖于地球表面辐射的能量。
•主动遥感图像则是通过人工发射的电磁波测量返回信号得到。
2.2 遥感图像处理步骤•遥感图像处理步骤包括预处理、增强、分类和解译等。
•预处理主要针对图像的去噪、几何校正等。
•增强则是对图像的对比度、亮度等进行调整。
•分类是指将图像中的不同特征划分为不同类别。
•解译则是对分类结果进行分析和理解。
2.3 遥感图像的分类•遥感图像的分类主要有无监督分类和有监督分类两种方法。
•无监督分类是指根据图像中像素的相似性进行自动分类。
•有监督分类则需要根据预先标记好的样本进行分类。
第三章:遥感在环境监测中的应用3.1 遥感在气象监测中的应用•遥感可以用于获取气象元素,如温度、湿度、风速等。
•通过遥感技术可以实现大范围、高分辨率的气象监测。
3.2 遥感在水资源监测中的应用•遥感可以用于获取地表水体的面积、水质等信息。
•借助遥感技术可以实现对广大水域的高效监测。
3.3 遥感在土地利用监测中的应用•利用遥感图像可以获取土地利用类型、变化等信息。
•遥感技术可以为土地规划和管理提供重要支持。
3.4 遥感在灾害监测中的应用•遥感图像可以用于监测地震、洪水、火灾等灾害。
遥感技术的原理与应用遥感,也叫遥测遥感技术,是指利用传感器和卫星等远距离探测技术获取地球表面信息的技术。
遥感技术可以获取地球大范围、连续的、实时的、快速的不同层次、不同时间尺度的图像和数据,为自然资源调查、环境监测、水文水资源调查、灾害预警、城市规划、农业生产、林业经营、海洋调查等领域提供了广阔的应用前景。
遥感技术的原理遥感技术的基本原理是利用物体对电磁波的反射、辐射或传输特性来提取有关于物体的信息。
电磁波包括可见光、近红外线、红外线、微波等,在地球大气不同层次的介质中传播,与地球上不同的物体交互作用并被散射、反射、透过、辐射等,再由探测器返回地面。
遥感技术的应用1.自然资源调查利用遥感技术可以进行大规模的土地资源调查,对土地利用状态和方式进行监测、评估、预测和分析,为农业生产、生态环境保护、城市规划等提供数据支持。
2.环境监测遥感技术可以快速、广泛、动态地监测环境污染源、污染程度和污染物在大气、水源等介质中的扩散和运移过程,为环境保护和生态环境治理提供数据支持。
3.水文水资源调查利用遥感技术可以获取地表水资源、地下水资源、水土流失等水文水资源信息,辅助决策和规划。
4.灾害预警遥感技术可以对自然灾害的形成、演变、影响范围等进行及时监测和预警,提供预防自然灾害的预警和指导信息。
5.城市规划遥感技术可以获取城市空间结构、土地利用变化、建筑物高度、道路交通情况等信息,为城市规划和土地利用管理提供数据支持。
6.农业生产利用遥感技术可以进行农业作物遥感监测,提高农业生产效益,为农业决策和精准农业提供技术支持。
7.林业经营遥感技术可以实现森林资源动态监测、调查、统计和土地分类以及森林病虫害的应对等一系列生态和经济管理活动的支持,为林业经营管理提供数据支持。
8.海洋调查遥感技术可以获取海水中的浮游动植物、河口等区域的悬浮物、沉积物、水温、水深等信息,为海洋调查和海洋经济活动提供数据支持。
结语总之,遥感技术是现代地球科学和信息技术的重要组成部分,其应用范围广泛,可以为各个领域的决策者和研究者提供准确和全面的地球信息。
遥感原理与应用习题第一章遥感物理基础一、名词解释1 遥感:在不接触的情况下,对目标或自然现象远距离感知的一门探测技术。
2遥感技术:遥感技术是从人造卫星、飞机或其他飞行器上收集地物目标的电磁辐射信息,判认地球环境和资源的技术。
3电磁波:电磁波(又称电磁辐射)是由同相振荡且互相垂直的电场与磁场在空间中以波的形式移动,其传播方向垂直于电场与磁场构成的平面,有效的传递能量和动量。
电磁辐射可以按照频率分类,从低频率到高频率,包括有无线电波、微波、红外线、可见光、紫外光、4电磁波谱:把各种电磁波按照波长或频率的大小依次排列,就形成了电磁波谱5绝对黑体:能够完全吸收任何波长入射能量的物体6灰体:在各种波长处的发射率相等的实际物体。
7绝对温度:热力学温度,又叫热力学温标,符号T,单位K(开尔文,简称开)8色温:在实际测定物体的光谱辐射通量密度曲线时,常常用一个最接近灰体辐射曲线的黑体辐射曲线作为参照这时的黑体辐射温度就叫色温。
9大气窗口:电磁波通过大气层时较少被反射、吸收和散射的,透过率较高的波段称。
10发射率:实际物体与同温度的黑体在相同条件下的辐射功率之比。
11光谱反射率:物体的反射辐射通量与入射辐射通量之比。
12波粒二象性:电磁波具有波动性和粒子性。
13光谱反射特性曲线:反射波谱曲线是物体的反射率随波长变化的规律,以波长为横轴,反射率为纵轴的曲线。
问答题1黑体辐射遵循哪些规律?(1 由普朗克定理知与黑体辐射曲线下的面积成正比的总辐射通量密度W随温度T的增加而迅速增加。
(2 绝对黑体表面上,单位面积发射的总辐射能与绝对温度的四次方成正比。
(3 黑体的绝对温度升高时,它的辐射峰值向短波方向移动。
(4 好的辐射体一定是好的吸收体。
(5 在微波段黑体的微波辐射亮度与温度的一次方成正比。
2电磁波谱由哪些不同特性的电磁波段组成?遥感中所用的电磁波段主要有哪些?a. 包括无线电波、微波、红外波、可见光、紫外线、x射线、伽玛射线等b. 微波、红外波、可见光3 物体的辐射通量密度与哪些因素有关?常温下黑体的辐射峰值波长是多少?(1 与光谱反射率,太阳入射在地面上的光谱照度,大气光谱透射率,光度计视场角,光度计有效接受面积。
遥感原理与应用课程设计一、课程目标知识目标:1. 学生能够理解遥感的定义、原理及其在地理信息科学中的应用。
2. 学生能够掌握遥感影像的分类、分辨率等基本概念。
3. 学生能够了解遥感技术在农业、环境监测、城市规划等领域的应用实例。
技能目标:1. 学生能够运用遥感影像进行地物识别和简单分析。
2. 学生能够操作遥感数据处理软件,进行影像的预处理和简单解读。
3. 学生能够设计简单的遥感应用项目,解决实际问题。
情感态度价值观目标:1. 学生能够认识到遥感技术在我国社会经济发展和国家安全中的重要作用。
2. 学生能够关注遥感技术的发展趋势,培养对地理信息科学的兴趣。
3. 学生能够树立环保意识,认识到遥感技术在环境保护和资源管理中的价值。
课程性质分析:本课程为高中地理选修课程,以遥感原理与应用为核心,结合实际案例,培养学生对遥感技术的认识和应用能力。
学生特点分析:高中学生具有一定的地理知识基础,对新技术和新方法充满好奇心,具备一定的自主学习能力和团队协作精神。
教学要求:1. 结合实际案例,引导学生掌握遥感基本概念和原理。
2. 注重实践操作,培养学生的实际操作能力和问题解决能力。
3. 关注遥感技术在现实生活中的应用,提高学生的社会责任感和使命感。
二、教学内容1. 遥感基本概念- 遥感的定义与原理- 遥感影像的分类与分辨率2. 遥感技术原理- 传感器与平台- 遥感数据获取与处理- 遥感影像解译与分析3. 遥感应用领域- 农业遥感- 环境监测遥感- 城市规划与土地管理遥感4. 遥感实践操作- 遥感数据处理软件介绍与操作- 遥感影像地物识别与分析- 遥感应用项目设计与实施教学大纲安排:第一周:遥感基本概念- 介绍遥感的定义、原理- 遥感影像的分类与分辨率第二周:遥感技术原理- 传感器与平台- 遥感数据获取与处理第三周:遥感应用领域- 农业遥感- 环境监测遥感第四周:遥感实践操作- 遥感数据处理软件介绍与操作- 遥感影像地物识别与分析第五周:遥感实践操作与项目设计- 遥感应用项目设计与实施- 学生展示与交流教学内容关联教材:《高中地理选修:遥感技术与应用》第一章:遥感基本概念第二章:遥感技术原理第三章:遥感应用领域第四章:遥感实践操作与项目设计教学内容确保科学性和系统性,注重理论与实践相结合,提高学生对遥感技术的认识和应用能力。
第三章遥感传感器一、名词解释遥感传感器、探测器、推扫式成像仪、成像光谱仪、瞬时视场、MSS TM 、HRV 、SAR 、INSAR、CCD 、真实孔径侧视雷达、全景畸变、合成孔径侧视雷达、距离分辨率、方位分辨率、多中心投影、斜距投影1、遥感传感器:是测量和记录被探测物体的电磁波特性的工具,是遥感技术系统的重要组成部分。
获取遥感数据的关键设备。
(收集器,探测器,处理器,输出器)。
2、探测器:将收集的辐射能转化为化学能或者电能的设备。
具体的元器件如感光胶片、光电管等。
3、推扫式成像仪:瞬间在像面上先形成一条线图像,甚至是一幅二维影像,然后对影像进行扫描成像的成像仪。
4、成像光谱仪:以多路、连续并具有高光谱分辨率方式获取图像信息的仪器,通过将传统的空间成像技术与地物光谱技术有机的结合在一起,可以实现对同一地区同时获取几十个到几百个波段的地物反射光谱图像。
5、瞬时视场:传感器成像瞬间形成的单个像元的视场,决定地面分辨率。
6、MSS:Multispectral Scanner多光谱扫描仪。
成像板上排列有24+2各玻璃纤维单元,每列有6个纤维单元,每个探测器的视场为86urad,每个像元的地面分辨率为79x79m,扫描一次每个弊端获得6条扫描线图像,其地面范围为474x185KM。
7、TM:是相对MSS的改进,其中增加了一个扫描改正器,是扫描行垂直于飞行轨道,并使往返双向都对地面扫描。
一个高级的所波段扫描仪共有探测器100个,分7个波段,一次扫描成像为地面的480x185km。
8、HRV:是一种线阵列推扫式扫描仪。
仪器中有一个平面反射镜,将地面辐射来的电磁波反射到反射镜组,然后聚焦在CCD线阵列元件上,CCD的输出端以一路时序视频信号输出。
由于使用线阵列的CCD元件作探测器,在瞬间能同时得到垂直航线的一条图像线,不需要用摆动的扫描镜,以“推扫”方式获取沿轨道的连续图像条带。
9、SAR:合成孔径雷达,是利用雷达与目标的相对运动把尺寸较小的真实天线孔径用数据的方法合成一较大的等效天线孔径的雷达。
可见光与热红外遥感原理与应用第一章遥感基本原理1.1电磁波及电磁波谱电磁波根据麦克斯韦电磁场理论,变化的电场能够在它周围引起变化的磁场,这一变化的磁场又在较远的区域内引起新的变化电场,并在更远的地方引起新的变化磁场。
这种变化的电场和磁场交替产生,以有限的速度由近及远在空间传播的过程称为电磁波。
电磁波的传播过程也就是能量的传递过程。
电磁波遥感:一切物体,由于种类、特征和环境条件不同,而具有完全不同的电磁波的反射或者发射特征。
遥感技术是建立在物体反射或发射电磁波的原理上。
电磁波的存在是获取遥感图像的物理前提。
电磁波在真空中传播的波长或者频率,按照递增或递减顺序排列成谱,就得到了电磁波谱。
电磁波谱的范围表示方法:波长/频率电磁波谱黑体辐射黑体(基尔霍夫1806年)是指在任何温度下,对所有波长的电磁辐射都能够完全吸收,同时能够在热力学定律所允许的范围内最大限度地把热能变成辐射能的理想辐射体。
它是作为研究物体发射的计量标准。
(黑色烟煤)电磁辐射的度量电磁辐射是具有能量的。
辐射能量(Q)的单位是焦耳(J)辐射通量:在单位时间内通过的辐射能量,单位是瓦特=焦耳/秒(W=J/S)辐射出射度(辐射通量密度): 单位面积上的辐射通量,单位是瓦/米²(W/m²)物理定律电磁波发射遵循三个物理定律:普朗克定律、斯特潘-波尔曼定律、维恩位移定律。
普朗克辐射(plank)定律对于黑体辐射源,普朗克成功给出了辐射通量密度Wλ与温度T、波长λ的关系:式中:W λ为辐射出射度(辐射通量密度),λ是以m为单位的波长,T绝对温度(K),h为普朗克常数,k为波尔兹曼常数,c是光速。
✓在给定温度下,黑体的光谱辐射能力随波长而变化。
✓温度愈高,Wλ愈大,即光谱辐射能力越强。
斯特潘-玻尔曼(Stefan-boltzmann)定律将普朗克公式从零到无穷大的波长范围内积分,得到从单位面积的黑体上辐射到半球空间里的总辐射出射度w。
遥感原理与应用孙家炳《遥感原理与应用》课件_图文导读:就爱阅读网友为您分享以下“孙家炳《遥感原理与应用》课件_图文”的资讯,希望对您有所帮助,感谢您对的支持!A和B为常数,A和B可以根据需要来确定:(6-27)(6-28)式中:—增强后图像的最大灰度值和最小灰度值;—为原始图像中最大和最小灰度值。
将A和B代入(6-26)式,有(6-29)线性变换过程可用图6-8来表示。
图6-8灰度变换的三种情况在实际计算时,一般先建立一个查找表,即建立原始图像灰度和变换后图像灰度之间对应值,在变换时只需使用查找表进行变换即可(如表6-1),这样计算速度将极大提高。
图像灰度变换查找表表6-1由于遥感图像的复杂性,线性变换往往难以满足要求,因此在实际应用中更多地采用分段线性变换(图6-8b),可以拉伸感兴趣目标与其他目标之间的反差。
6.2.3直方图均衡直方图均衡是将随机分布的图像直方图修改成均匀分布的直方图(图6-9),其实质是对图像进行非线性拉伸,重新分配图像像元值,使一定灰度范围内的像元的数量大致相等。
图6-9直方图均衡图中(a)为原始图像直方图,可用一维数组P(A)表示,有:图中b为均衡后的图像直方图,也用数组表示,有:其中:m为均衡后的直方图灰度级。
因此直方图均衡需知道图像均衡后的灰度级m。
由直方图可知:(6-30)为了达到均衡直方图的目的,可用累加的方法来实现,即:当时,原图像上的灰度为d0, d1 ,d2,?dk的像元都合并成均衡后的灰度dˊ0,同理:当时dk,+1 , dk+2,?dL合并为dˊ1,依次类推直到时dR,dR+1 ,?dn-1合并为dˊm-1。
可以用累积值直方图来图解解求,均衡直方图在原灰度轴上的区间,如图6-10所示,在P轴上等分m份,通过累积值曲线,投影到G轴上,则G轴上交出的各点就为均衡所取的原直方图灰度轴上的区间值。
一般先求出区间阈值,列成查找表,然后对整幅图像每个像元查找它们变换后的灰度值。