分光器类型对比
- 格式:doc
- 大小:213.50 KB
- 文档页数:3
分光器设备简介1.按照工艺分类分光器按照制造工艺的不同,分光器主要分为两大类:FBT型(熔融拉锥式分光器)和PLC型(平面光波导功率分光器)。
熔融拉锥技术是将两根或多根光纤捆在一起,然后在拉锥机上熔融拉伸,拉伸过程中监控各路光纤耦合分光比,分光比达到要求后结束熔融拉伸,其中一端保留一根光纤(其余剪掉)作为输入端,另一端则作为多路输出端。
FBT型分光器工艺原理如图1-1所示。
图 1-1 :FBT型分光器工艺原理平面光波导技术是基于光学集成技术的,利用半导体工艺制作光波导分支器件,分路的功能在芯片上完成。
PLC型分光器工艺原理如图 1-2图。
图 1-2 :PLC型分光器工艺原理(详细内容参考分光器厂家资料)2.按照应用范围分类按照应用范围划分可分为:盒式分光器、托盘式分光器、机架式分光器、壁挂式分光器等。
盒式分光器主要应用于机房ODF架内,光缆交接箱内等。
实物如图所示:图 1-3 :盒式分光器实物图托盘式分光器只能安装在机房ODF架或者光缆交接箱内,占用2个12芯熔纤盘的大小(1:16和1:32外壳大小一致),各个厂家生产的产品有差异,有塑料外壳的和金属外壳2种。
实物如图所示:图 1-4 :托盘式分光器实物图机架式分光器只能安装在标准机架内,宽度为600mm,实物如图所示:图 1-5 :机架式分光器实物图壁挂式分光器安装在墙壁上,可安装在走廊,楼道内。
注意分光器需要防晒及防雨,主要原因是壁挂式分光器外壳为铁皮保护,夏天如爆晒,箱体内温度过高,箱子内分光器和尾纤为塑料制品会影响分光器的使用年限甚至灼坏。
实物如下图:图 1-6 :壁挂式分光器实物图户外型分光器,目前不在移动公司集采范围之内,实物如下图:图 1-7 :户外直熔型光分路单元(不带连接头及适配器)微型分光器。
实物如下图:裸纤式分光器可应用于光缆接头盒内,不便于管理和维护,实物如下图所示:图 1-10 :裸纤式分光器实物图分析与总结:分光器越小适用范围越广,但由于没有外壳保护,安全性、可管理和维护性都比较低,分光器有外壳保护的适用范围有限,但方便管理和维护。
EPON 及分光器介绍1:EPON 系统简介以太网无源光网络(EPON )是一种基于以太网的采用点到多点(P2MP )结构的单纤双向波分复用光接入网络,EPON 网络可以灵活的组成星型、树型、总线型等网络拓扑。
EPON 单纤双向波分复用:下行发送波长:1490nm,1550nm(CATV);上行接收波长:1310nm 。
EPON 系统由局端的光线路终端(OLT )、用户端的光网络单元(ONU )和光分配网络(ODN )组成。
在下行方向(OLT 到ONU )采用广播的方式,OLT 发送的信号通过ODN 到达各个ONU 。
ONU 只接收自身LLID (Logical Link Identifier ,逻辑链路标识)或者广播LLID 的数据包;在上行方向(ONU 到OLT )采用TDMA 多址接入方式,OLT 可以为每个ONU 都分配一个时隙,各个ONU 只能在自己的时隙内顺序发送数据, ONU 发送的信号只会通过ODN 到达OLT ,而不会到达其他ONU 。
ODN 由光纤和一个或多个无源光分路器和相关无源光器件等组成,在OLT 和ONU 间提供光传输通道。
EPON 系统参考结构如图所示:2:分光器介绍EPON 分光器分类:(1)按分路比可分为1:2,1:8,1:16,1:32; (2)按分光形式可分为均分,非均分;(3)按类型分可分为熔融拉锥型(FBT )和平面波导型(PLC )两大类。
分路比为1:8及以下建议使用熔融拉锥型,分路比为1:16及以上建议使用平面波导型。
平面波导型的带宽在1260nm ~1610nm 较宽,能满足EPON 网络中对3个波长的应用;当采用熔融拉锥型时,应选用单模光纤双窗口树型宽带分光器,在1310nm 和1550nm 时的带宽应不小于±50nm 。
网络拓扑为树型或星型,可采用均分分光器。
网络拓扑为链型或环型,需要多级分路时,可采用非均分分光器。
非均匀分光器一般都采用FBT 技术,1:2的分光器较为常见。
常用的分光器规格一、单模分光器单模分光器是一种将单一模式光信号分成多个信号的光学器件。
常见的单模分光器规格有1x2、1x4、1x8、1x16、1x32、1x64等。
其中的数字表示分光比,即输入光信号被分成的输出信号数量。
例如,1x2表示将一个输入的光信号分成两个输出信号。
单模分光器通常用于光通信系统中,用于光纤传输信号的分配和复用。
它具有低插入损耗、高耦合效率、稳定性好等特点,因此被广泛应用于光纤网络、光纤传感、光纤测试仪器等领域。
二、多模分光器多模分光器是一种将多模光信号分成多个信号的光学器件。
常见的多模分光器规格有1x2、1x4、1x8、1x16、1x32等。
与单模分光器类似,其中的数字表示分光比,即输入光信号被分成的输出信号数量。
多模分光器主要用于局域网、数据中心等场合,用于实现多个设备之间的光纤信号分配和复用。
它具有低插入损耗、低耦合效率、成本较低等特点。
三、双窗口分光器双窗口分光器是一种可以同时处理1310nm和1550nm两个波长的光学器件。
它可以将这两个波长的光信号分成多个输出信号,常见的规格有1x2、1x4、1x8等。
双窗口分光器常用于光纤传输系统中,用于同时传输不同波长的光信号。
它具有低插入损耗、高耦合效率、稳定性好等特点。
四、三波长分光器三波长分光器是一种可以同时处理1310nm、1490nm和1550nm 三个波长的光学器件。
它可以将这三个波长的光信号分成多个输出信号,常见的规格有1x2、1x4、1x8等。
三波长分光器主要用于光纤传输系统中,用于同时传输不同波长的光信号。
它具有低插入损耗、高耦合效率、稳定性好等特点。
五、树状分光器树状分光器是一种将一个输入光信号分成多个输出信号的光学器件。
它的规格通常用"N×M"来表示,其中N表示输入端口的数量,M 表示输出端口的数量。
常见的树状分光器规格有1x2、1x4、1x8、1x16、1x32等。
树状分光器通常用于光纤传输系统中,用于将一个输入的光信号分配给多个输出设备。
分光器的分类
嘿,朋友们!今天咱们来聊聊分光器的分类呀!
分光器就好像一个超级魔术师,能把一束光神奇地分成好几束。
你想想看,这多有意思啊!
按照分光比来分的话呢,有均分分光器,就好比把一块蛋糕平均分给每个人,大家都得到一样多的那份;还有非均分分光器呢,哎呀呀,这就像是分水果,有的大有的小啦!比如说,在一条光路上,有的分支得到的光强一些,有的就少一些咯,这多灵活呀!
再来说说按结构分,可以分成模块式分光器和托盘式分光器。
模块式分光器就像是一个小盒子,小巧玲珑但能量满满,你看它不占太多地方,却能发挥大作用;托盘式分光器呢,就好像一个大托盘,稳稳地待在那里,给人一种很可靠的感觉呢!
还有按端口类型来分呢,有单模分光器和多模分光器。
单模分光器就像个专心致志的人,只专注于一种模式的光;而多模分光器呢,就像是个很会包容的人,多种模式的光都能应对自如。
“那分光器的这些分类到底有啥用啊?”你可能会这么问。
嘿,用处可大啦!在不同的场景里,我们就可以根据具体需求选择不同类型的分光器呀!就像你去参加不同的活动会穿不同的衣服一样。
比如在需要均匀分光的地方,肯定就选均分分光器啦;要是空间有限,那模块式分光器不就正合适嘛!
总之啊,分光器的分类丰富多样,每一种都有它独特的魅力和用途,就看你怎么去发现和运用咯!所以啊,可别小看了分光器的分类呀,它能在光通信领域发挥大作用呢!。
分光器分光比计算方式分光器是一种常用的光学元件,用于将进入的光信号按照一定比例进行分配。
分光比是指分光器输出端的各路光功率之间的比例关系。
分光比的计算方式取决于分光器的类型和工作原理。
本文将介绍两种常见的分光器类型:均匀分光器和非均匀分光器,并详细解释其分光比的计算方式。
1.均匀分光器:均匀分光器是指将进入分光器的光信号按照相同的功率比例进行分配的分光器。
常见的均匀分光器有平均功率分光器和3dB分光器。
1.1平均功率分光器:平均功率分光器是指将进入分光器的总功率均匀地分配到各路输出端的分光器。
假设进入分光器的光功率为P_in,输出端的光功率分别为P_out1、P_out2、P_out3...,以上有n个输出端。
则平均功率分光器的分光比计算方式为:分光比 = P_out1 / P_in = P_out2 / P_in = P_out3 / P_in = ... = P_outn / P_in1.23dB分光器:3 dB分光器是指将进入分光器的光功率均匀地分配到两个输出端的分光器。
假设进入分光器的光功率为P_in,两个输出端的光功率分别为P_out1和P_out2、则3 dB分光器的分光比计算方式为:分光比= P_out1 / P_in = P_out2 / P_in = 1 / √2 ≈ 0.7072.非均匀分光器:非均匀分光器是指将进入分光器的光功率按照不同的比例分配到各路输出端的分光器。
常见的非均匀分光器有梯度分光器和光学多路复用器(MUX)。
2.1梯度分光器:梯度分光器是指将进入分光器的光功率按照一定梯度进行分配的分光器。
假设进入分光器的光功率为P_in,输出端的光功率分别为P_out1、P_out2、P_out3...,以上有n个输出端。
梯度分光器的分光比计算方式与输入光功率和输出光功率之间的关系函数相关。
2.2光学多路复用器(MUX):光学多路复用器是指将多路输入光信号按照一定的比例进行复用到一个输出光信号的分光器。
分光器类型与损耗计算分光器(coupler)是一种常用的光传输设备,用于将光信号分割成多个输出信号。
常见的分光器类型包括平面波导型和柱波导型。
在进行分光器的损耗计算时,需要考虑插入损耗和分光比等因素。
平面波导型分光器是一种基于平准波导(planar waveguide)的光传输设备。
分光器通常由一个入口波导和多个出口波导组成,通过将光信号从入口波导的端面引入分光器,然后通过波导的传导模式将光信号分割到各个出口波导中。
平面波导型分光器适用于分光比相等的应用场景。
柱波导型分光器也称为Tree Coupler,它是一种基于柱波导(cylinder waveguide)的光传输设备。
分光器的入口是一个柱波导,而出口则是多个柱波导。
柱波导型分光器通过将光信号从入口柱波导传导到各个出口柱波导,实现信号的分割。
柱波导型分光器适用于需要将光信号分割到不同比例的输出端口的应用场景。
分光器的损耗主要包括插入损耗和分光比不均匀度。
插入损耗是指在将光信号从入口引入分光器后,信号在传输过程中的损耗。
插入损耗是分光器设计中的一个重要指标,通常用于衡量分光器的性能。
常见的插入损耗计算方法是通过将光信号的输入功率与输出功率进行比较。
分光比不均匀度是指分光器在将光信号分割到各个出口时,各个出口之间的信号分割比例的不均匀程度。
分光比不均匀度也是分光器设计中需要考虑的一个重要指标。
通常,分光比不均匀度可以通过在各个出口波导中测量输出信号的功率来计算。
接下来,我们将详细介绍分光器的损耗计算方法。
1.插入损耗计算插入损耗是指将光信号从入口引入分光器后,信号在传输过程中的损耗。
插入损耗通常用单位为分贝(dB)来表示。
插入损耗(dB) = 10 * log10(输入功率 / 输出功率)其中,输入功率是指将光信号输入到分光器的功率,输出功率是指将光信号输出到分光器各个出口的功率之和。
2.分光比不均匀度计算分光比不均匀度是指分光器在将光信号分割到各个出口时,各个出口之间的信号分割比例的不均匀程度。
玻璃基离子交换型多模光分路器芯片:玻璃基离子交换型多模光分路器芯片主要制作方法是通过镀膜、光刻工艺在玻璃基片表面的镀膜层刻下设计好的器件图形,然后通过离子交换在玻璃基片内部形成与图形相吻合的折射率变化区,进而构成具有光学功能的光波导器件芯片,经过封装,成为多模光分路器。
与熔融拉锥多模光分路器相比,玻璃基离子交换型多模光分路器具有的优点是体积小巧,集成化批量生产,波长不敏感,可以是1×4以上的多分支多模器件。
(A)图1 (A)玻璃基离子交换型多模光分路器示意图(B)1×2器件实物图主要优点:1. 可集成化批量生产;2. 体积小巧,多分支器件也不会引起器件长度呈几何级数增长;3. 插入损耗低,均匀性好;4. 器件一致好,无温漂;5. 波长不敏感,可适用于多波段。
主要缺点:1. 因为玻璃基离子交换技术为新技术,因此市场上知名度不高熔融拉锥型多模光分路器:熔融拉锥多模光分路器的制作是将两根或多根多模光纤捆在一起,在拉锥机上熔融拉伸,实时监控分光比的变化,当分光比达到要求时,停止熔融拉伸,其中一端保留一根光纤,其余光纤剪去,作为输入端,另一端则作多路输出端(图2)。
熔融拉锥型多模光分路器由于其制作过程的实时监控性,使得其损耗控制较为精确,可以制作多种分光比的光分路器件。
但由于多分支一次性熔制的复杂性,目前成熟的熔融拉锥工艺一般限于1×4 以下的光分支器件。
1×4 以上的器件由于成品率和生产效率较低,一般用多个1×2 的器件级联而成。
(B)图2 (A)熔融拉锥型多模光分路器示意图(B)1×2 器件实物图主要优点:1. 工艺成熟简单,设备和工艺具有沿用性2. 制作成本低廉3. 分光比可以实时控制,可以按照要求实现非均分的光分路器主要缺点:1. 波长敏感性:熔融拉锥多模光分路器的分路功能是通过光纤间耦合实现的,是定向耦合器的结构,一般一种耦合结构只适用于一个波长。
什么是分光器?如何选购分光器?分光器(即光分路器)是多个输入端和输出端的连接器件,可实现光网络系统中光信号的耦合、分支及分配等,是光纤链路中最重要组成部分。
常用M×N来表示一个分光器有M个输入端和N个输出端,在现如今组网中使用的分光器一般都是1×2、1×4分光器。
那么您知道分光器光衰多少?分光器如何选购?一分二分光器如何使用?分光器光衰多少?如何计算?分光器的四大常用技术指标:波长、插入损耗、附加损耗以及分光比。
其实分光器最主要的指标是分光器在特定的分光比下所产生的不同光衰,在不同分光比的条件下,分光器光衰也不会不同。
那么分光器光衰如何计算呢?分光器光衰值=发送光功率+附加损耗+插入损耗+裸纤损耗。
1.分光器分光比计算☛公式:ki=Pi/SP*100%其中,Pi为每条光链路所需的驱动功率,SP为激光器所带各光链路的所需驱动功率之和。
注:实际使用中厂家已注明了分光比,如一分二为80%:20%或70%:30%;一分三为70%:15%:15%;一分四为70%:10%:10%:10%。
2.附加损耗计算在实际操作的过程中,可以进行附加损耗值的测量,只需要按照一定的操作规范进行数值的检测和记录即可,做好不同链路的分类。
一般1×N 单模标准型分光器损耗如下:3.插入损耗计算☛公式:IL=-10lg(Po/Pi)其中,Po是输出端的光功率,Pi是输入端的光功率。
注:公式中Po/Pi相当于分光器的分光比,即:IL=-10lg(ki)。
例如有一分二分光器,为二八分光,即分光比为20%:80%。
其20%分光链路插入损耗理论值为-10lg(20%),大约等于6.99dB。
4.裸纤损耗计算实际操作中,这个数值不用计算,有一定的参考标准。
要严格参照数值标准,对不同波长的损耗数值进行测量,确定最终的损耗数值。
注:活动连接器衰耗:一般每个为0.5dB。
分光器类型有哪些?分光器如何选购?分光器根据应用范围的不同可以分为盒式分光器、托盘式分光器、机架式分光器、壁挂式分光器等。
分光器、分纤器、分路器各是什么,有什么区别分光器分光器是一进多出的光缆分线器,我见过的有1进16出或者是2进32出的使用时需要把局端的主线溶出一芯来接到IN口,这样每一个OUT口都有信号了。
和楼里的分光缆接到一起就可以了。
(随便接没有顺序的而且是双向通信)分光器的连接一般有两种,一种是不带适配器的用热熔的方法连接;还有一种是带适配器的,用光跳线和其它ODF跳接。
不管哪种连接方式,不管是1分8、1分16还是1分32,都是用局端来的1芯,通过分光器分出很多芯去连接至各楼的光缆。
看图好像你没有和局端的光缆熔接吧,每个分光器会有1芯的。
分光器顾名思义就是把一路光信号分为几路,并且可以订制光功率的分光比连接很简单啊,要是分光器有头子就用法兰接,没头子就用熔接机焊看的有点似懂非懂楼层1光缆--->跳线1--->分光器第1路---分光器进线<---跳线<---主缆楼层2光缆--->跳线2--->分光器第2路---楼层2光缆--->跳线3--->分光器第3路---分线器原理在我们使用的10/100M以太网网络中,传输界质是五类双绞线。
它是有4对共8芯线组成。
我们只用其中4根(2对)进行数据的传输,还有4根(2对)线剩余。
因此,我们可以利用剩余的4根线同样作为数据的传输。
这样就达到一根网络线同时供两个用户上网的目的了。
我们一般不这样使用。
了解了分线器的原理后,我们就应该明白,网络中心制作的分线器仍然是让用户单独享用线路,它是把网络线中的8根线分成两组线路传输数据,因此,并不会影响用户上网的速度和带宽。
这个与一般外面买回来的分线接头在传输上有着本质上的差别。
所以,它也不会导致接在同一对分线器上用户不能互相访问。
分线器的组成分线器是成对使用。
一对分线器是由两根分线器的组成。
一个分线器由两个水晶头,一个模块组成,两个水晶头是通过双绞线与模块进行连接的。
其中一个水晶头的排法是,蓝、蓝白,棕白、棕4根线,分别在水晶头的1,2,3,6槽内。
插片式分光器(也称为光纤分光器或光纤耦合器)是一种用于光学通信和传感应用的设备,它的主要功能是将入射的光信号分成两个或多个不同的输出光信号,或将多个输入光信号合并成一个输出光信号。
插片式分光器的工作原理涉及光的折射、反射和干涉等光学原理,具体工作原理取决于其类型和设计。
以下是两种常见类型的插片式分光器的工作原理:
1. **平板型分光器**:
- 平板型分光器是一种将光信号分割为两个输出信号的设备,通常用于将光信号分为正向和反向传播的情况。
- 这种分光器通常由一块光学玻璃板或光纤芯片制成,其表面被精确地刻蚀或镀膜,以在特定波长范围内分割光信号。
- 工作原理基于反射和透射。
光信号入射到分光器表面时,一部分光会反射,一部分光会透射。
通过精确设计的光学几何,可以实现特定波长的反射和透射,从而将光信号分为两个不同的路径。
- 这种类型的分光器可用于多个应用,包括光纤通信、光谱分析和传感器。
2. **光纤分光器**:
- 光纤分光器通常包括一个光纤耦合器,用于将多个输入光信号合并成一个输出信号,或将一个光信号分成多个输出信号。
- 工作原理基于光的干涉现象。
多个输入光信号通过光纤耦合器的不同路径传播,然后再次交汇在一个输出光纤中。
当光波的相位满足特定条件时,会发生干涉现象,导致在输出光纤中形成明暗相间的干涉图样。
- 这种类型的分光器通常用于光纤通信和传感应用,例如光纤传感器和干涉仪器。
总的来说,插片式分光器的工作原理基于光学现象,它们被广泛应用于光学系统中,用于分割、合并和分配光信号,以满足不同应用的需求。
不同类型的分光器采用不同的光学设计和工作原理,以实现不同的功能。
平面波导型和熔融拉锥型光分路器目前,光分路器主要有平面光波导技术和熔融拉锥技术两种。
1.平面波导型光分路器(PLC Splitter)PLC由一个光分路器芯片和两端的光纤阵列耦合组成,采用半导体技术,工艺稳定性、一致性好,损耗与光波长不相关,通道均匀性好,结构紧凑体积小,大规模产业化技术成熟。
2.熔融拉锥光纤分路器(FBT Splitter)熔融拉锥技术是将两根或多根光纤捆在一起,然后在拉锥机上熔融拉伸,其中一端保留一根光纤(其余剪掉)作为输入端,另一端则作多路输出端。
3.两种器件性能的比较a)工作波长平面波导型光分路器工作波长达到1260~1650nm,覆盖了现阶段各种PON所需要的波长。
拉锥型光分路器可根据需要调整波长到1310nm,1490nm,1550nm等,工艺较复杂,而且工艺控制不好,随着工作时间和温度的变化,插损会发生变化。
b)分光均匀性平面波导器件的分光比由于半导体工艺的一致性高,器件通道的均匀性非常好。
拉锥型分路器的分光比均匀性差,但拉锥型分路器分光比可变是此器件的最大优势。
c)温度相关性TDL(Temperature Dependent Loss)平面波导器件工作温度变化量较小;拉锥型分路器插入损耗随温度变化较大。
d)成本按目前的生产成本,1×8是临界点,1×16以上PLC性价比明显占优,1×4以下拉锥型分路器性价比占优。
e)可靠性PLC与拉锥型分路器比较,PLC理论上只有两个交接面存在故障点,而1×N拉锥型分路器有2N-3个故障点。
4.总结拉锥型器件在成本方面有明显优势,平面波导光分路器在性能、可靠性方面具有明显的优势。
我们建议,低分路器件(1×4以下)可以选用拉锥器件,高分路器件(1×8以上)优先选用平面波导器件。
一级分光就是指从OLT到ONU之间,所有的分光器是并行的,就是说结构是OLT----分光器----ONU,只要是这种情况就是一级分光;二级分光嘛就是OL T和ONU之间,分光器之间有串联的(也叫级联吧)的情况,就是说结构是OLT---分光器1----分光器2----ONU,只要存在这种情况就是二级分光。
模式一:一级分光光分路器集中设置方式,是指光分路器集中设置在小区内的免跳接光配线箱(小区光交)内建设初期PON口占用数少,光分路器端口初级利用率最高;模式二:一级分光光分路器分散设置方式,是指光分路器分散设置在楼宇、楼层、单元的分光分纤箱内建设初期PON口占用数最多,光分路器端口利用率最低模式三:二级分光方式,是指第一级光分路器设置在小区免跳接光配线箱内,第二级光分路器设置在楼宇、楼层、单元的分光分纤箱内通过两级光分路器合理有效的收纳更多的住户;建设初期PON口占用数少,光分路器端口利用率适中综合以上1、别墅场景宜选用一级分光光分路器集中设置方式建设2、多层、小高层、高层等场景宜首先选择二级分光方式建设接入层的光缆,在PON网络出现前,是按分主干和配线两层来划分的在PON网络出现以后,基本是按照主干光缆、配线广缆、用户引入光缆来划分。
要分成三个层次。
比如说一个FTTH工程:主干光缆:就是馈线光缆,是指从端局到设备间(或光交接箱)之间的那段光缆。
这段光缆一般选用通用室外型的光缆,芯数从12芯到144芯不等,根据实际需要选用。
配线光缆:是指从设备间(或光交接箱)到大楼弱电间或其他位置安装的光分纤箱之间的那段光缆。
这段光缆选型时要根据实际应用位置来确定,一般选用通用室外型的光缆,考虑到楼内布缆,建议选用加强芯是铝芯的光缆,另外,对于某些使用场合,还需要选择阻燃型,芯数从12芯到144芯不等,根据实际需要选用。
楼内的光缆分支接续,若条件许可,可以选择光缆分线箱分配光缆,分光器的安装位置,可以考虑采用柜式的,集中安装在用户托管机房、设备间、光缆交接箱,以便于维护管理;也可以选择安装在光缆分线箱内。
1.1分光器的选择
无源光分路器(POS)光分路比应在常用的1:2、1:4、1:8、1:16、1:32、1:64六种形式中根据情况选用。
在有保护需求的情况下可以选用2:N的光分路器。
当前主要选择平面波导型(PLC)光分路器,ODN总分光比应根据用户带宽要求、光链路衰减要求等因素确定。
1×N PLC分路器光学特性(不含连接器)
2×N PLC分路器光学特性(不含连接器)
1.2光接口链路预算要求
光接口链路预算=光功率预算-光功率代价。
现阶段主流PON设备PON接口的光功率预算和链路预算指标如下表所示。
光接口链路预算是光分配网络ODN允许的衰减,工程建设中严禁光分配网络ODN全程衰减值大于光接口链路预算值。
为满足大分光比和长距离传输,选用的PON设备光接口链路预算不应小于28dB,并随技术发展,尽可能选用光链路预算更高的产品,
以支持更远的接入距离和更高的分光比。
分光器是一种无源器件,它们不需要外部能量,只要有输入光即可。
光线进入分光器后,把普通光线按波长可分为以下三种类:近紫外线(near UV):200-380nm真空紫外线(vacuumUV〈VUV〉:10-200nm极紫外线、极端紫外线(Extreme UV〈EUV〉):1-10nm从人类健康和环保角度,还可分为UVA(315~400nm)、UVB(280~315nm)、UVC(280nm 以下)。
分光器由入射和出射狭缝、反射镜和色散元件组成,其作用是将所需要的共振吸收线分离出来。
分光器的关键部件是色散元件,现在商品仪器都是使用光栅。
原子吸收光谱仪对分光器的分辨率要求不高,曾以能分辨开镍三线Ni230.003、Ni231.603、Ni231.096nm为标准,后采用Mn279.5和279.8nm代替Ni三线来检定分辨率。
光栅放置在原子化器之后,以阻止来自原子化器内的所有不需要的辐射进入检测器。
光通信时代的分光器是组建EPON网络的一个组件,是一个连接OLT和ONU的无源设备,它的功能是分发下行数据,并集中上行数据。
分光器带有一个上行光接口,若干下行光接口。
从上行光接口过来的光信号被分配到所有的下行光接口传输出去,从下行光接口过来的光信号被分配到唯一的上行光接口传输出去。
只是光信号从上行光接口转到下行光接口的时候,光信号强度/光功率将下降,从下行光接口转到上行光接口的时候,同样如此。
各个下行光接口出来的光信号强度可以相同,也可以不同。
每个光纤都有2根接头这就有了0.2db的衰减然后一侧光纤与另一根光纤通过连接器连接衰减就为4x0.1+1x0.4=0.8db 的损耗了一般发端的光功率很高滴有时候因为到终端这边功率高的还有误码哈哈加个衰减器就好了这东西不需要精确到小数点后面的吧对了连接器应该叫法兰盘哦epon在物理层采用了PON技术,在链路层使用以太网协议,利用PON的拓扑结构实现了以太网的接入。
在光网络中,其实就是epon波分复用,实现点到多点的结构,自然就需要分光器了。
光分束器的种类
光分束器是一种将光场以一定比例分开至不同路径中的光学元件,其种类包括以下几种:
1. 能量分光型:通过在普通光学平片上镀膜实现,将入射光按照特定比例分光,与光波偏振无关。
2. 偏振分光型:分为两种,一种是偏振分光器通过在光学元件表面镀窄带偏振分光膜实现,在使用时对入射角有要求;另一种是采用双折射晶体实现,光束通过晶体后o光和e光的偏振态相互垂直,两束光也会分开一定的距离,只是不能按90°分开。
3. 二向色性分光器:根据不同波长选择性透过或者反射以实现分光,特别适用于不同波长分光和合束的场景。
4. 光纤分束器:通过将多根熔接耦合或者其他方式实现分光,光纤分光在很多应用场合比较方便。
5. 其他分光:包括光栅衍射等其他类型的分光。
此外,还有Y型分束器和MMI型分束器等其他类型的分束器。
其中Y型分束器结构简单,具有50/50的分光比例,插损较大;而MMI型分束器则是基于多模干涉原理工作。
以上信息仅供参考,如有需要建议查阅相关文献或咨询相关领域专家。
随着光纤通信产业的复苏以及FTTX的发展,光分路器(Splitter)市场的春天也随之到来。
目前光分路器主要有两种类型:一种是采用传统光无源器件制作技术(拉锥耦合方法)生产的熔融拉锥式光纤分路器;另一种是采用集成光学技术生产的平面光波导(PLC)分路器。
PLC分路器是当今国内外研究的热点,具有很好的应用前景,然而PLC分路器的封装是制造PLC分路器中的难点。
PLC分路器内部结构。
PLC分路器的封装是指将平面波导分路器上的各个导光通路(即波导通路)与光纤阵列中的光纤一一对准,然后用特定的胶(如环氧胶)将其粘合在一起的技术。
其中PLC分路器与光纤阵列的对准精确度是该项技术的关键。
PLC分路器的封装涉及到光纤阵列与光波导的六维紧密对准,难度较大。
当采用人工操作时,其缺点是效率低,重复性差,人为因素多且难以实现规模化的生产等。
PLC分路器实物照片。
PLC分路器的制作PLC分路器采用半导体工艺(光刻、腐蚀、显影等技术)制作。
光波导阵列位于芯片的上表面,分路功能集成在芯片上,也就是在一只芯片上实现1、1等分路;然后,在芯片两端分别耦合输入端以及输出端的多通道光纤阵列并进行封装。
其内部结构和实物照片分别如图1、2所示。
与熔融拉锥式分路器相比,PLC分路器的优点有:(1)损耗对光波长不敏感,可以满足不同波长的传输需要。
(2)分光均匀,可以将信号均匀分配给用户。
(3)结构紧凑,体积小,可以直接安装在现有的各种交接箱内,不需留出很大的安装空间。
(4)单只器件分路通道很多,可以达到32路以上。
(5)多路成本低,分路数越多,成本优势越明显。
同时,PLC分路器的主要缺点有:(1)器件制作工艺复杂,技术门槛较高,目前芯片被国外几家公司垄断,国内能够大批量封装生产的企业很少。
(2)相对于熔融拉锥式分路器成本较高,特别在低通道分路器方面更处于劣势。
PLC分路器封装技术PLC分路器的封装过程包括耦合对准和粘接等操作。
PLC分路器芯片与光纤阵列的耦合对准有手工和自动两种,它们依赖的硬件主要有六维精密微调架、光源、功率计、显微观测系统等,而最常用的是自动对准,它是通过光功率反馈形成闭环控制,因而对接精度和对接的耦合效率高。
玻璃基离子交换型多模光分路器芯片:玻璃基离子交换型多模光分路器芯片主要制作方法是通过镀膜、光刻工艺在玻璃基片表面的镀膜层刻下设计好的器件图形,然后通过离子交换在玻璃基片内部形成与图形相吻合的折射率变化区,进而构成具有光学功能的光波导器件芯片,经过封装,成为多模光分路器。
与熔融拉锥多模光分路器相比,玻璃基离子交换型多模光分路器具有的优点是体积小巧,集成化批量生产,波长不敏感,可以是1×4以上的多分支多模器件。
(A)图1 (A)玻璃基离子交换型多模光分路器示意图(B)1×2器件实物图主要优点:1. 可集成化批量生产;2. 体积小巧,多分支器件也不会引起器件长度呈几何级数增长;3. 插入损耗低,均匀性好;4. 器件一致好,无温漂;5. 波长不敏感,可适用于多波段。
主要缺点:1. 因为玻璃基离子交换技术为新技术,因此市场上知名度不高熔融拉锥型多模光分路器:熔融拉锥多模光分路器的制作是将两根或多根多模光纤捆在一起,在拉锥机上熔融拉伸,实时监控分光比的变化,当分光比达到要求时,停止熔融拉伸,其中一端保留一根光纤,其余光纤剪去,作为输入端,另一端则作多路输出端(图2)。
熔融拉锥型多模光分路器由于其制作过程的实时监控性,使得其损耗控制较为精确,可以制作多种分光比的光分路器件。
但由于多分支一次性熔制的复杂性,目前成熟的熔融拉锥工艺一般限于1×4 以下的光分支器件。
1×4 以上的器件由于成品率和生产效率较低,一般用多个1×2 的器件级联而成。
(B)图2 (A)熔融拉锥型多模光分路器示意图(B)1×2 器件实物图主要优点:1. 工艺成熟简单,设备和工艺具有沿用性2. 制作成本低廉3. 分光比可以实时控制,可以按照要求实现非均分的光分路器主要缺点:1. 波长敏感性:熔融拉锥多模光分路器的分路功能是通过光纤间耦合实现的,是定向耦合器的结构,一般一种耦合结构只适用于一个波长。
随着光纤通信产业的复苏以及FTTX的发展,光分路器(Splitter)市场的春天也随之到来。
目前光分路器主要有两种类型:一种是采用传统光无源器件制作技术(拉锥耦合方法)生产的熔融拉锥式光纤分路器;另一种是采用集成光学技术生产的平面光波导(PLC)分路器。
PLC分路器是当今国内外研究的热点,具有很好的应用前景,然而PLC分路器的封装是制造PLC分路器中的难点。
PLC分路器内部结构。
PLC分路器的封装是指将平面波导分路器上的各个导光通路(即波导通路)与光纤阵列中的光纤一一对准,然后用特定的胶(如环氧胶)将其粘合在一起的技术。
其中PLC分路器与光纤阵列的对准精确度是该项技术的关键。
PLC分路器的封装涉及到光纤阵列与光波导的六维紧密对准,难度较大。
当采用人工操作时,其缺点是效率低,重复性差,人为因素多且难以实现规模化的生产等。
PLC分路器实物照片。
PLC分路器的制作
PLC分路器采用半导体工艺(光刻、腐蚀、显影等技术)制作。
光波导阵列位于芯片的上表面,分路功能集成在芯片上,也就是在一只芯片上实现1、1等分路;然后,在芯片两端分别耦合输入端以及输出端的多通道光纤阵列并进行封装。
其内部结构和实物照片分别如图1、2所示。
与熔融拉锥式分路器相比,PLC分路器的优点有:(1)损耗对光波长不敏感,可以满足不同波长的传输需要。
(2)分光均匀,可以将信号均匀分配给用户。
(3)结构紧凑,体积小,可以直接安装在现有的各种交接箱内,不需留出很大的安装空间。
(4)单只器件分路通道很多,可以达到32路以上。
(5)多路成本低,分路数越多,成本优势越明显。
同时,PLC分路器的主要缺点有:(1)器件制作工艺复杂,技术门槛较高,目前芯片被国外几家公司垄断,国内能够大批量封装生产的企业很少。
(2)相对于熔融拉锥式分路器成本较高,特别在低通道分路器方面更处于劣势。
PLC分路器封装技术
PLC分路器的封装过程包括耦合对准和粘接等操作。
PLC分路器芯片与光纤阵列的耦合对准有手工和自动两种,它们依赖的硬件主要有六维精密微调架、光源、功率计、显微观测系统等,而最常用的是自动对准,它是通过光功率反馈形成闭环控制,因而对接精度和对接的耦合效率高。
PLC分路器封装主要流程如下:
(1)耦合对准的准备工作:先将波导清洗干净后小心地安装到波导架上;再将光纤清洗干净,一端安装在入射端的精密调整架上,另一端接上光源(先接6.328微米的红光光源,以便初步调试通光时观察所用)。
(2)借助显微观测系统观察入射端光纤与波导的位置,并通过计算机指令手动调整光纤与波导的平行度和端面间隔。
(3)打开激光光源,根据显微系统观测到的X轴和Y轴的图像,并借助波导输出端的光斑初步判断入射端光纤与波导的耦合对准情况,以实现光纤和波导对接时良好的通光效果。
(4)当显微观测系统观察到波导输出端的光斑达到理想的效果后,移开显微观测系统。
(5)将波导输出端光纤阵列(FA)的第一和第八通道清洗干净,并用吹气球吹干。
再采用步骤(2)的方法将波导输出端与光纤阵列连接并初步调整到合适的位置。
然后将其连接到双通道功率计的两个探测接口上。
(6)将光纤阵列入射端6.328微米波长的光源切换为1.310/1.550微米的光源,启动光功率搜索程序自动调整波导输出端与光纤阵列的位置,使波导出射端接收到的光功率值最大,且两个采样通道的光功率值应尽量相等(即自动调整输出端光纤阵列,使其与波导入射端实现精确的对准,从而提高整体的耦合效率)。
图3.1分支PLC分路器芯片封装结构
(7)当波导输出端光纤阵列的光功率值达到最大且尽量相等后,再进行点胶工作。
(8)重复步骤(6),再次寻找波导输出端光纤阵列接收到的光功率最大值,以保证点胶后波导与光纤阵列的最佳耦合对准,并将其固化,再进行后续操作,完成封装。
在上面的耦合对准过程中,PLC分路器有8个通道且每个通道都要精确对准,由于波导芯片和光纤阵列(FA)的制造工艺保证了各个通道间的相对位置,所以只需把PLC分路器与FA的第一通道和第八通道同时对准,便可保证其他通道也实现了对准,这样可以减少
封装的复杂程度。
在上面的封装操作中最重要、技术难度最高的就是耦合对准操作,它包括初调和精确对准两个步骤。
其中初调的目的是使波导能够良好的通光;精确对准的目的是完成最佳光功率耦合点的精确定位,它是靠搜索光功率最大值的程序来实现的。
对接光波导需要6个自由度;3个平动(X、Y、Z)和3个转动(α、β、g),要使封装的波导器件性能良好,则对准的平动精度应控制在0.5微米以下,转动精度应高于0.05度。
1×8分支PLC分路器的封装
对1分支PLC分路器进行封装,封装的耦合对准过程采用上面介绍的封装工艺流程。
对准封装后的结构如图3所示,封装的组件由PLC分路器芯片和光纤阵列组成。
在PLC分路器芯片的连接部位,为了确保连接的机械强度和长期可靠性,对玻璃板整片用胶粘住。
光纤阵列是用机械的方法在玻璃板上以250微米间距加工成V形沟槽,然后将光纤阵列固定在此。
制作8芯光纤阵列的最高累计间隔误差平均为0.48微米,精确度极高。
在PLC分路器芯片与光纤阵列的连接以及各个部件的组装过程中,为了减少组装时间,采用紫外固化粘接剂。
光纤连接界面是保持长期可靠的重点,应选用耐湿、耐剥离的氟化物环氧树脂与硅烷链材料组合的粘接剂。
为了减少端面的反射,采用8°研磨技术。
连接和组装好光纤阵列后的PLC分路器芯片被封装在金属(铝)管壳内。
1分支的组件外形尺寸约为73。