高分子的链结构
- 格式:ppt
- 大小:1.27 MB
- 文档页数:20
高分子的链结构一、概念1、构型:分子中由化学键所固定的原子在空间的几何排列。
2、构象:由于单键的内旋转而产生的分子中原子在空间位置上的变化3、链段:高分子链上划分出的可以任意取向的最小单元或高分子链上能够独立运动的最小单元称为链段。
4、柔顺性:分子链能够改变其构象的性质。
5、H31螺旋体:每三个链节构成一个基本螺圈。
末端距6、末端距:线行高分子链的一端至另一端的直接距离。
均方末端距:2二、简答1、构型不同的异构体有哪些?旋光,几何,键接。
2、试举例总结影响高分子柔性的因素有哪些?有何影响?(1)主链结构:a.柔性大小-Si-O->-C-N->-C-O->-C-C- b.含双键(非共轭)的高分子有较好的柔性c.含共轭双键或苯环的高分子柔性差(2)取代基:a.极性取代基:1.取代基极性越大,柔性越差 2.取代基密度越大,柔性越差 3.取代基在主链上的分布有对称性,柔性越好 b.非极性取代基:1.取代基增加空间位阻,柔性越差 2.削弱了分子间作用力,柔性越好。
最终决定与哪一方面起主要作用。
(3)支化、交联,柔性越差(4)分子链长,柔性越好,但一定限度后,分子链长短无影响(5)分子间作用力大,柔性越差,有氢键存在,则柔性越差(6)分子越规整,柔性越差(7)温度升高,柔性越好(8)外力作用时间越长,柔性越易显示(9)溶剂:溶剂对大分子运动的影响3、写出自由连接链、自由旋转链、受阻旋转链,等效自由连接链的均方末端距表达式。
自由连接链:自由旋转链:受阻旋转链:等效自由连接链的均方末端距:4、聚合物在溶液中通常呈什么构象?但对于聚乙烯晶体而言,其分子链在晶体中为什么构象?等规聚丙烯晶体的分子链呈什么构象?无规线团;聚乙烯晶体:平面锯齿形构象;等规聚丙烯晶体:H31螺旋构象5、高分子链的柔顺性越大,它在溶液中的构象数多还是少?其均方末端距呢?构象数多;均方末端距小6、构型和构象有何区别?全同立构聚丙烯能否通过化学键(C-C单键)内旋转把“全同”变为“间同”?为什么?构型事指分子中有化学键所固定的原子在空间的几何排列。
第一章高分子的链结构第一节高分子结构的特点与分类一、高分子物理研究的内容高分子物理,又叫“高聚物的结构与性能”,是研究高聚物的结构、高聚物的性能、以及结构与性能相互关系的一门科学。
二、高聚物结构的分类(一)分类(1)分子内结构:高分子的链结构(2)分子间结构:高分子的聚集态结构(二)高分子的链结构1、定义是指单个高分子的结构和形态,研究的是单个高分子链中原子或基团的几何排列。
包括高分子链的近程结构和远程结构。
2、高分子链的近程结构(1)定义是以一个或几个结构单元为研究对象,研究的是链的构造与构型;属于化学结构。
也叫“一次结构”。
(2)高分子链的构造是指高分子链的组成,包括:链节的化学组成;结构单元的键接顺序;链的几何形状。
(3)高分子链的构型是指高分子链中取代基的几何排列,包括:a、几何异构b、旋光异构3、高分子链的远程结构(1)定义以整个链为研究对象,研究的是分子链中链段的运动,涉及单个高分子的构象结构,研究链的大小和形态。
也叫“二次结构”。
(2)高分子链的大小即分子量的问题。
(3)高分子链的形态即链构象的问题。
(三)高分子的聚集态结构1、定义是指分子之间相互排列的结构和形态,包括三次结构和高次结构;属于物理结构。
2、高分子的三次结构分子链之间通过分子间作用力聚集而成的结构,包括结晶态、非晶态、取向态、液晶态结构等。
注意:二次结构与三次结构之间的区别3、高分子的高次结构是指高分子与添加剂之间、高分子之间所形成的结构,包括合金结构和复合材料的结构。
也叫“织态结构”。
高聚物结构研究的内容:三、高分子结构的特点与低分子物质相比,高分子的结构有如下特点:(1)高分子链由许多结构单元组成结构单元相当于一个小分子,可以是一种(均聚物),也可以是几种(共聚物);以共价健相连接,形成线形的、支化的、网状的。
(2)高分子链具有柔性主链有一定的内旋转自由度,可以使主链弯曲而具有柔性;并且由于分子的热运动,弯曲链的形状可以不断改变。
第1章高分子的链结构高分子是由许多重复单元组成的大分子,其链结构对于其物理性质和化学性质都具有重要影响。
高分子的链结构取决于单体的选择和聚合反应的方式。
高分子链结构可以分为直线链、支化链和交联链三种类型。
直线链是最简单的链结构,所有的单体按照线性方式连接起来。
例如,聚乙烯就是一种直线链的高分子。
直线链的性质通常比较均匀,易于处理和加工。
但是,直线链在固态时的流动性较差,降低了材料的韧性。
支化链是直线链上的一种变形,其在链的其中一部分上有分支。
分支可以是直线的或者是环状的。
支化链能够提高高分子材料的流动性,增加其韧性和热稳定性。
例如,聚丙烯是一种支化链的高分子。
交联链是由两个或更多直线链相互连接形成的链结构。
交联可以是通过化学交联剂引起的,也可以是热交联或辐射交联引起的。
交联链增加了高分子材料的硬度、强度和耐久性,但同时也降低了其可加工性和可回收性。
例如,橡胶就是一种交联链的高分子。
高分子的链结构还可以通过链的排列方式来描述。
如果链呈无序排列,则称为无定形链。
无定形链的性质通常比较均匀,但是其熔点较低,易于变形。
如果链呈有序排列,则称为有定形链。
有定形链的性质通常比较有规律,具有较高的熔点和结晶性。
有定形链通常需要经过热处理才能形成。
总之,高分子的链结构对其物理性质和化学性质具有重要影响。
不同类型的链结构决定了高分子的流动性、韧性、硬度和稳定性等特性。
通过控制和调整链结构,可以改变高分子材料的性质,满足不同的应用需求。
高分子链结构包括1.直链结构:直链结构是指所有重复单元沿着链轴方向依次排列的结构。
这种结构的高分子链形状通常呈直线或缓和曲线,如聚乙烯(PE)等。
直链结构的高分子材料通常具有较低的结晶性能和较高的可拉伸性。
2.支链结构:支链结构是指在高分子链上存在侧链或支链的结构。
这些支链可以是由分子链的反应延伸形成的,也可以是在聚合过程中引入的。
支链结构的高分子材料通常具有较低的结晶性能、较高的溶解性能和较大的膨胀系数,具有较低的熔点和较好的柔韧性。
3.交联结构:交联结构是指高分子链之间通过化学键或物理力相互连接形成三维网络结构的结构。
高分子材料的交联结构可以通过化学交联(如热交联、辐射交联)或物理交联(如热压缩、溶剂交联)形成。
交联结构的高分子材料具有较高的力学强度、耐热性和耐化学性。
4.线性共聚物结构:线性共聚物结构是指由两种或以上的重复单元交替组成的高分子链结构。
这种结构的高分子材料可以通过合适的共聚反应合成,例如丙烯酸苯乙酯-苯乙烯共聚物(P(BA-PS))。
线性共聚物的结构可以调控单体比例和分子量分布来改变材料的特性。
5.集块共聚物结构:集块共聚物结构是指由连续的重复单元组成的高分子链结构,其中相邻的重复单元之间具有不同的化学性质。
这种结构的高分子材料可以通过区域选择性聚合、接枝聚合等方法合成。
集块共聚物结构可以使高分子材料具有特殊的相分离行为,从而使其具有独特的性能,如热塑性弹性体(TPE)。
综上所述,高分子链结构是高分子材料的重要特征之一、不同类型的高分子链结构决定了高分子材料的功效和应用领域。
在实际应用中,可以通过调控高分子链结构来改善材料的性能和功能。
1高分子链的结构高分子是指由许多小分子单元通过共价键连接而成的一种大分子化合物。
高分子链是高分子的主要结构,它具有长链结构,且由不同的单体单元连接而成。
高分子链的结构决定了高分子的性质和用途。
下面将详细介绍高分子链的结构及其影响因素。
高分子链的结构可以分为线性结构、支化结构、交联结构和网状结构。
线性结构是指高分子链中的单体单元按照直线排列连接而成,没有侧链或支链的结构。
例如,聚乙烯就是一种具有线性结构的高分子。
支化结构是指高分子链中存在侧链或支链的结构,这些侧链或支链可以改变高分子的性质。
例如,聚丙烯就是一种具有支化结构的高分子。
交联结构是指高分子链中的单体单元之间通过共价键有多个键相互连接,形成稠密的网络结构。
例如,硫化橡胶就是一种具有交联结构的高分子。
网状结构是指高分子链之间还存在着物理交联的结构,形成一种类似网状的结构。
例如,凝胶就是一种具有网状结构的高分子。
高分子链的结构对高分子的性质和用途有着重要的影响。
首先,线性结构的高分子通常具有较高的拉伸强度和刚性,适用于制备塑料材料。
支化结构的高分子通常具有良好的抗寒性和耐热性,适用于制备橡胶制品。
交联结构的高分子通常具有良好的弹性和强度,适用于制备弹性体制品。
网状结构的高分子通常具有吸水性和保湿性,适用于制备化妆品。
除了高分子链的结构外,高分子链的长度和分子量也对高分子的性质和用途有着重要的影响。
高分子链的长度决定了高分子的分子间作用力的强弱,影响了高分子的流动性和稳定性。
高分子链的分子量决定了高分子的力学性能和物理性质,分子量越大,高分子的强度和硬度就越高。
高分子链的合成方法包括聚合反应、缩聚反应和交联反应。
聚合反应是指将低分子量的单体单元通过化学键连接成高分子链的过程,例如聚合物的合成。
缩聚反应是指将两个或多个低分子量的单体单元通过化学键连接成高分子链的过程,例如聚酯的合成。
交联反应是指将高分子链中的单体单元之间通过化学键相互连接成稠密的网络结构的过程,例如硫化橡胶的合成。
高分子结构与性能名词解释高分子结构与性能名词解释第一章高分子的链结构1、化学组成:高分子中结构单元或重复单元的所含的原子种类与数量。
按化学组成的不同,高分子可分为——碳链高分子、杂链高分子、元素有机高分子、无机高分子、梯形高分子和双螺旋高分子。
2、侧基:主链上的取代基团。
3、端基:聚合物主链两端的基团,主要来自单体、引发剂、溶剂或分子量调节剂,其化学性质与主链很不相同。
4、线型高分子:高分子链呈线型,没有支链或交联。
5、支化:在缩聚反应中存在三官能团单体,或在加聚反应中,如自由基聚合存在链转移反应,或二烯烃聚合物上的双键活化,或在射线辐射下,则都可能形成枝状的非线形结构高分子,称为支化。
6、支化度:以支化点密度或两相邻支化点之间的连平均相对分子质量来表示支化的程度。
7、交联:高分子链之间借助于多官能团单体的反应或某种助剂(如硫、过氧化物等)将大分子链之间通过支链或化学键键接形成三维空间网络结构的过程。
8、键接结构:结构单元在分子链中的连接方式。
9、构型:分子中通过化学键所固定的原子或基团在空间的相对位置和排列。
10、几何异构:双烯类单体1,4 –加成聚合的高分子主链上存在双键,由于取代基不能绕内双键旋转,因而内双键上的基团在双键两侧排列的方式不同而有顺式(cis)构型和反式(trans)构型之分,称为几何异构。
11、旋光异构:饱和碳氢化合物分子中由于存在不同取代基的不对称碳原子,形成两种互为镜像关系的构型,表现出不同的旋光性,分别用d和l表示。
12、全同立构:如果将聚合物分子链拉成平面锯齿状,每一结构单元的取代基可以全部位于平面的一侧,即高分子链全部由一种旋光异构的结构单元组成,称为全同立构。
13、间同立构:结构单元的取代基交替位于平面的两侧,即高分子链由两种旋光异构的结构单元交替键接而成,称为间同立构。
14、规整度:规整度用来表示有规立构的程度,可用聚合物中全同立构和间同立构的总的百分含量来表示。
第一章+高分子链的结构
第一章:高分子链的结构
高分子链是由许多重复单元组成的长链状分子。
高分子链的结构对于高分子材料的性质和应用具有重要的影响。
1. 高分子链的主链结构:高分子链的主链是由重复单元通过共价键连接在一起的。
不同的高分子材料具有不同的主链结构,如线性链、支化链、交联链等。
2. 高分子链的分子量:高分子链的分子量是指高分子链上重复单元的个数。
分子量越大,高分子链越长,其物理性质和力学性质也会发生变化。
3. 高分子链的排列方式:高分子链可以按照不同的排列方式进行组装,包括随机排列、有序排列和结晶排列。
不同的排列方式会导致高分子材料具有不同的熔点、硬度和透明性等特性。
4. 高分子链的取向:高分子链在固化过程中可能会发生取向现象,即高分子链趋向于在特定方向上排列。
取向的程度可以通过各种物理和化学方法进行调控,从而改善材料的性能。
5. 高分子链的侧基和支链:高分子链上的侧基和支链可以对高分子材料的性质进行调控。
侧基和支链的引入可以改变高分子
链的构型和相互作用方式,从而影响材料的热稳定性、光学性质和力学性能等。
高分子链的结构对高分子材料的性质和应用至关重要。
了解和控制高分子链的结构可以有助于合理设计高分子材料,以满足不同领域的需求。
高分子物理第02讲高分子链的结构高分子链是由一系列重复单元组成的长链状高分子分子,也是高分子的基本结构单元。
高分子链的组成主要由高分子单体通过共价键结合而成。
高分子链可以是线性的,也可以是分支的。
线性高分子链由单体经过链端的连续反应添加而成,而分支高分子链则是由于反应开始时引入了分支单体。
此外,高分子链还可以存在环状结构,环状结构的形成通常依赖于特定的反应条件。
高分子链的组成直接影响其物理性质和化学性质,因此了解高分子链的组成对于理解高分子物理至关重要。
高分子链的构型和取向是指高分子链在空间中的排列方式。
高分子链可以存在不同的构型,如螺旋状、扭曲状和直线状等。
高分子链的构型一方面取决于化学结构,另一方面也受到外部条件的影响,如温度和溶剂等。
高分子链的取向是指高分子链朝向空间的方向,一般可分为随机取向和有序取向。
有序取向通常是在特定的条件下形成的,如聚合物拉伸或拉延时。
高分子链的构型和取向决定了高分子材料的力学性质和物理性质。
高分子链的晶体结构是指高分子链在晶体中的排列方式。
高分子链可以形成晶体结构,也可以形成非晶体结构。
晶体结构是一种有序的高分子链排列方式,其中高分子链按照一定的规律排列,形成多个晶胞,并在空间中排列成一个有序的晶体。
晶体结构通常有明显的晶体衍射图样。
非晶体结构则是高分子链无规则排列的状态,通常没有明显的晶胞和晶体衍射图样。
非晶体结构的高分子材料具有较好的韧性和透明性。
高分子链的末端结构是指高分子链的端部结构。
高分子链的末端可能是自由基、离子或官能团等,末端的结构对高分子链的交联、反应和改性等具有重要的影响。
末端的结构可以通过在高分子合成过程中引入合适的单体来控制。
不同的末端结构可以使高分子链具有不同的性质和功能。
总结起来,高分子链的结构由其组成、构型和取向、晶体结构以及末端结构等多个方面决定。
了解高分子链的结构对于理解高分子物理和高分子材料的性质具有重要意义。
深入研究高分子链的结构对于设计和开发高分子材料具有重要的指导作用。