六年级奥数模拟试题(含答案)
- 格式:doc
- 大小:23.50 KB
- 文档页数:5
小学六年级奥数题100道及答案_小学六年级奥数练习题及答案【五篇】【第一篇:桥长】一列长200米的火车以每秒8米的速度通过一座大桥,用了2分5秒钟时间,求大桥的长度是多少米?求解:火车过桥所用的时间就是2分后5秒=125秒,共行的路程就是(8×125)米,这段路程就是(200米+桥长),所以,桥长为8×125-200=800(米)请问:大桥的长度就是800米。
【第二篇:列车长】一座大桥长2400米,一列火车以每分钟900米的速度通过大桥,从车头开到桥至车尾返回桥共须要3分钟。
这列于火车短多少米?解:火车3分钟所行的路程,就是桥长与火车车身长度的和。
(1)火车3分钟行多少米?900×3=2700(米)(2)这列火车长多少米?2700-2400=300(米)highcut综合算式900×3-2400=300(米)答:这列火车长300米。
【第三篇:街道长度】甲、乙、丙三人步行的速度分别是:每分钟甲走90米,乙走75米,丙走60米。
甲、丙从某长街的西头、乙从该长街的东头同时出发相向而行,甲、乙相遇后恰好4分钟乙、丙相遇,那麽这条长街的长度是多少米?答案与解析:甲、乙碰面后4分钟乙、丙碰面,表明甲、乙碰面时乙、丙还差4分钟的路程,即为还差4×(75+60)=540米;而这540米也就是甲、乙碰面时间里甲、丙的路程高,所以甲、乙碰面=540÷(90-60)=18分钟,所以长街短=18×(90+75)=2970米。
【第四篇:相遇次数】甲,乙两人在一条长100米的直路上往复跑步,甲的速度3米/秒,乙的速度2米/秒。
如果他们同时分别从直路的两端启程,当他们走了10分钟后,共碰面多少次?答案与解析:10分钟两人共跑了(3+2)×60×10=3000米3000÷100=30个全程。
我们知道两人同时从两地相向而行,他们总是在奇数个全程时相遇(不包括追上)1、3、5、7。
小学六年级奥数训练试卷一、计算题:(每题5分,共10分)1、21+(31+32)+(41+42+43)+……(401+402+……+4038+4039)2、(209594×1.65-209594+207×209594)×47.5×0.8×2.5二、填空题(每题5分,共25分)1、如图,三角形ABC 的面积是1,E 是AC 的中点,点D 在BC 上,且:1:2BD DC ,AD 与BE 交于点F .则四边形DFEC 的面积等于 .F ED CBA2、某商店将某种DVD 按进价提高35%后,打出“九折优惠酬宾,外送50元出租车费”的广告,结果每台仍旧获利208元,那么每台DVD 的进价是__________元。
3、在除13511,13903及14589时能剩下相同余数的最大整数是_________.4、有5个连续自然数,它们的和为一个平方数,中间三数的和为立方数,则这五个数中最小数的最小值为 .5、一个整数乘以13后,积的最后三位数是123,那么,这样的整数中最小是_________。
三、解答题:(1~7题每题5分,8,9,10题每题10分,共65分)1、甲、乙、丙三所小学学生人数的总和为1999,已知甲校学生人数的2倍、乙校学生人数减3、丙校学生人数加4都是相等的。
问:甲、乙、丙各校学生人数是多少?2、钟面上3时过几分,时针和分针离“3”的距离相等,并且在“3”的两旁?3、5个工人加工735个零件,2天加工了135个零件。
已知这2天中有1个人因故请假一天。
照这样的工作效率,如果几天后中无人请假还要多少天才能完成任务?4、小明爷爷的年龄是一个二位数,将此二位数的数字交换得到的数就是小明爸爸的年龄,又知道他们年龄之差是小明年龄的4倍,求小明的年龄。
(注意位值原理的运用)5、在1~100中任意取出两个不同的数相加,其和是偶数的共有多少种不同的取法?6、如果1112009A B=-,A B,均为正整数,则B最大是多少?7、下式中不同的汉字代表1~9种不同的数字,当算式成立时,“中国”这两个汉字所代表的两位数最大是多少?8、如图,直角三角形如果以BC 边为轴旋转一周,那么所形成的圆锥的体积为16π,以AC 边为轴旋转一周,那么所形成的圆锥的体积为12π,那么如果以AB 为轴旋转一周,那么所形成的几何体的体积是多少?ABC9、铁路旁的一条与铁路平行的小路上,有一行人与骑车人同时向南行进,行人速度为3.6千米/时,骑车人速度为10.8千米/时,这时有一列火车从他们背后开过来,火车通过行人用22秒,通过骑车人用26秒,这列火车的车身总长是多少?10、两袋什锦糖,甲袋有8千克奶糖和12千克水果糖混合而成,乙袋有15千克奶糖和5千克水果糖混合而成。
六年级小升初奥数题100例附答案(完整版)题目1:一个数的30%是15,这个数是多少?答案:15÷30% = 50题目2:比80 米多25%是多少米?答案:80×(1 + 25%) = 100 米题目3:某班男生人数是女生人数的4/5,女生比男生多5 人,男生有多少人?答案:设女生人数为x 人,则男生人数为4/5 x 人。
x - 4/5 x = 5 ,解得x = 25 ,男生人数为20 人。
题目4:一个圆的半径是4 厘米,它的面积是多少平方厘米?答案:3.14×4×4 = 50.24 平方厘米题目5:一件商品原价200 元,现打八折出售,现价是多少元?答案:200×80% = 160 元题目6:在一个比例中,两个外项互为倒数,其中一个内项是 2.5,另一个内项是多少?答案:两个外项互为倒数,积为1。
所以另一个内项为1÷2.5 = 0.4题目7:一项工程,甲单独做15 天完成,乙单独做20 天完成,甲乙合作几天完成?答案:1÷(1/15 + 1/20) = 60/7 天题目8:一个数除以8,商是12,余数是5,这个数是多少?答案:8×12 + 5 = 101题目9:有一堆煤,第一天用去1/3,第二天用去1/4,还剩下18 吨,这堆煤原有多少吨?答案:设这堆煤原有x 吨,x - 1/3 x - 1/4 x = 18 ,解得x = 43.2 吨题目10:一个长方体的棱长总和是48 厘米,长、宽、高的比是3:2:1,这个长方体的体积是多少?答案:48÷4 = 12 厘米,长为12×3/(3 + 2 + 1) = 6 厘米,宽为4 厘米,高为2 厘米,体积为6×4×2 = 48 立方厘米题目11:一个圆锥形沙堆,底面周长是18.84 米,高是 2 米,每立方米沙重 1.8 吨,这堆沙重多少吨?答案:底面半径为18.84÷3.14÷2 = 3 米,体积为1/3×3.14×3×3×2 = 18.84 立方米,重18.84×1.8 = 33.912 吨题目12:甲乙两车同时从A、B 两地相对开出,3 小时相遇,甲车每小时行50 千米,乙车每小时行40 千米,A、B 两地相距多少千米?答案:(50 + 40)×3 = 270 千米题目13:小明看一本120 页的书,第一天看了全书的1/4,第二天看了全书的1/3,第三天应从第几页看起?答案:第一天看了120×1/4 = 30 页,第二天看了120×1/3 = 40 页,前两天共看了70 页,第三天从第71 页看起。
(完整)小学六年级奥数题100道带答案有解题过程姓名:__________班级:__________学号:__________1.一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的工程由乙单独完成,还需要几天?解:设工程总量为单位“1”,甲的工作效率是1/10,乙的工作效率是1/15,两人合作4天完成的工作量是(1/10+1/15)×4=2/3,剩下的工作量是1-2/3=1/3,那么乙单独完成需要的时间是1/3÷1/15=5天。
思路:先求出合作完成的工作量,再求剩余工作量以及乙完成剩余工作所需时间。
2.一个数的20%比它的3/5少30,这个数是多少?解:设这个数为x,则3/5x-20%x=30,即0.6x-0.2x=30,0.4x=30,解得x=75。
思路:根据数量关系列方程求解。
3.甲乙两车分别从A、B两地同时出发,相向而行,甲车每小时行60千米,乙车每小时行80千米,3小时后两车相距40千米,A、B两地相距多少千米?解:两车3小时行驶的路程之和再加上相距的40千米就是A、B两地的距离,(60+80)×3+40=460千米。
思路:先求两车行驶的路程和,再加上相距距离。
4.一个圆柱的底面半径是2厘米,高是5厘米,求它的侧面积和体积。
解:侧面积=2πrh=2×3.14×2×5=62.8平方厘米,体积=πr²h=3.14×2²×5=62.8立方厘米。
思路:根据圆柱侧面积和体积公式计算。
5.有浓度为20%的盐水80克,要把它变成浓度为40%的盐水,需要加盐多少克?解:设需要加盐x克,根据盐的质量关系可列方程,(80×20%+x)÷(80+x)=40%,即(16+x)÷(80+x)=0.4,16+x=0.4×(80+x),16+x=32+0.4x,0.6x=16,解得x=80/3。
六年级十道奥数题及答案1. 题目一:一个数的3倍加上10等于这个数的5倍减去8,求这个数是多少?答案:设这个数为x,根据题意可得方程:3x + 10 = 5x - 8。
解这个方程,我们可以得到2x = 18,所以x = 9。
2. 题目二:一个班级有45名学生,其中1/3是男生,1/4是女生,剩下的是双胞胎。
求班级中有多少对双胞胎?答案:男生人数为45 * 1/3 = 15人,女生人数为45 * 1/4 = 11.25,但人数不能为小数,所以女生人数为11人。
剩下的人数为45 - 15 - 11 = 19人。
因为双胞胎是两人一组,所以有19 / 2 = 9.5对双胞胎,但双胞胎的对数不能是小数,所以班级中有9对双胞胎。
3. 题目三:一个长方体的长、宽、高分别是10厘米、8厘米和6厘米,求这个长方体的体积。
答案:长方体的体积是长、宽、高的乘积,即10 * 8 * 6 = 480立方厘米。
4. 题目四:一个数的平方加上它的两倍等于这个数的5倍,求这个数。
答案:设这个数为x,根据题意可得方程:x^2 + 2x = 5x。
简化得到x^2 - 3x = 0,提取x得到x(x - 3) = 0,所以x = 0或x = 3。
5. 题目五:一个数的1/5加上这个数的1/4等于这个数的1/3,求这个数。
答案:设这个数为x,根据题意可得方程:x/5 + x/4 = x/3。
解这个方程,我们可以得到12x + 15x = 20x,即27x = 20x,所以x = 0。
但是题目中通常不涉及0,所以可能是题目有误。
6. 题目六:一个圆的半径是5厘米,求这个圆的周长和面积。
答案:圆的周长是2πr,所以周长为2 * π * 5 = 10π ≈ 31.42厘米。
圆的面积是πr^2,所以面积为π * 5^2 = 25π ≈ 78.54平方厘米。
7. 题目七:一个数的3/4加上另一个数的1/2等于这两个数的和的1/3,求这两个数的和。
六年级奥数题及答案(五篇)六年级奥数题及答案 1某造纸厂在100天里共生产2024吨纸,开始阶段,每天只能生产10吨纸.中间阶段由于改进了技术,每天的产量提高了一倍.最后阶段由于购置了新设备,每天的产量又比中间阶段提高了一倍半.已知中间阶段生产天数的2倍比开始阶段多13天,那么最后阶段有几天?中间阶段每天的产量:10×2=20吨,最后阶段每天的产量:20×(1+1.5)=50吨,因为在100天里共生产2024吨,*均每天产量:2024÷100=20吨,最后阶段每天可以补开始阶段(50-20=30吨),这样,最后阶段时间与开始阶段时间比是1:3最后阶段时间:(100-13÷2)÷(1+3+3/2)=17天中间阶段每天的产量:10×2=20吨,最后阶段每天的产量:20×(1+1.5)=50吨,因为在100天里共生产2024吨,*均每天产量:2024÷100=20吨,最后阶段每天可以补开始阶段(50-20=30吨),这样,最后阶段时间与开始阶段时间比是1:3最后阶段时间:(100-13÷2)÷(1+3+3/2)=17天六年级奥数题及答案 2从花城到太阳城的公路长12公里.在该路的2千米处有个铁道路口,是每关闭3分钟又开放3分钟的.还有在第4千米及第6千米有交通灯,每亮2分钟红灯后就亮3分钟绿灯.小糊涂驾驶电动车从花城到太阳城,出发时道口刚刚关闭,而那两处交通灯也都刚刚切换成红灯.已知电动车速度是常数,小糊涂既不刹车也不加速,那么在不违反交通规则的情况下,他到达太阳城最快需要多少分钟?答案与解析:画出反映交通灯红绿情况的s-t图,可得出小糊涂的行车图像不与实线相交情况下速度最大可以是0.5千米/分钟,此时恰好经过第6千米的红绿灯由红转绿的点,所以他到达太阳城最快需要24分钟.六年级奥数题及答案 3分母不大于60,分子小于6的'最简真分数有____个?答案与解析:分类讨论:(1)分子是1,分母是2~60的最简真分数有59个:(2)分子是2,分母是3~60,其中非2、的倍数有58-58÷2=29(个);(3)分子是3,分母是4~60,其中非3的倍数有57-57÷3-38(个);(4)分子是4,分母是5~60,其中非2的倍数有56-56÷2-28c个);(5)分子是5,分母是6~60,其中非5的倍数有55-55÷5―44(个).这样,分子小于6,分母不大于60的最简真分数一共有59+29+38+28+44=198(个).六年级奥数题及答案 4甲、乙、丙三人依次相距280米,甲、乙、丙每分钟依次走90米、80米、72米.如果甲、乙、丙同时出发,那么经过几分钟,甲第一次与乙、丙的距离相等?答案与解析:甲与乙、丙的距离相等有两种情况:一种是乙追上丙时;另一种是甲位于乙、丙之间.⑴乙追上丙需:280(80-72)=35(分钟).⑵甲位于乙、丙之间且与乙、丙等距离,我们可以假设有一个丁,他的速度为乙、丙的速度的*均值,即(80+72)2=76(米/分),且开始时丁在乙、丙之间的中点的位置,这样开始时丁与乙、丙的距离相等,而且无论经过多长时间,乙比丁多走的路程与丁比丙多走的路程相等,所以丁与乙、丙的距离也还相等,也就是说丁始终在乙、丙的中点.所以当甲遇上丁时甲与乙、丙的距离相等,而甲与丁相遇时间为:(280+2802)(90-76)=30(分钟).经比较,甲第一次与乙、丙的距离相等需经过30分钟.六年级奥数题及答案 5王师傅驾车从甲地开往乙地交货.如果他往返都以每小时60千米的速度行驶,正好可以按时返回甲地.可是,当到达乙地时,他发现从甲地到乙地的速度只有每小时50千米.如果他想按时返回甲地,他应以多大的速度往回开?答案与解析:本题相当于去的时候速度为每小时50千米,而整个行程的*均速度为每小时60千米,求回来的时候的速度.根据例题中的分析,可以假设甲地到乙地的路程为300千米,那么往返一次需时间__*2=10(小时),现在从甲地到乙地花费了时间__=6(小时),所以从乙地返回到甲地时所用的时间是10-6=4(小时).如果他想按时返回甲地,他应以3004=75(千米/时)的速度往回开.。
小学六年级数学奥数题100题附答案(完整版)题目1甲、乙两车分别从A、B 两地同时相向而行,在距A 地80 千米处相遇,相遇后两车继续前进,甲车到达B 地、乙车到达A 地后均立即按原路返回,第二次在距B 地60 千米处相遇。
A、B 两地相距多少千米?答案:第一次相遇时,甲、乙两车共行了A、B 两地的距离,其中甲行了80 千米。
第二次相遇时,甲、乙两车共行了A、B 两地距离的3 倍,则甲车行了80×3 = 240 千米。
此时甲行的路程是一个A、B 两地的距离加上60 千米,所以A、B 两地相距240 - 60 = 180 千米。
题目2一项工程,甲单独做12 天完成,乙单独做18 天完成。
两人合作多少天可以完成这项工程的2/3 ?答案:甲的工作效率为1/12,乙的工作效率为1/18,两人合作的工作效率为1/12 + 1/18 = 5/36 。
完成工程的2/3 需要的时间为2/3 ÷5/36 = 24/5 = 4.8 天。
题目3一个分数,分子与分母的和是68,约分后是8/9,原来这个分数是多少?答案:设分子为8x,分母为9x,则8x + 9x = 68,17x = 68,x = 4 。
分子为8×4 = 32,分母为9×4 = 36,原来的分数是32/36 。
题目4在一个周长为62.8 米的圆形花坛周围铺一条 2 米宽的小路,这条小路的面积是多少平方米?答案:花坛的半径:62.8÷3.14÷2 = 10 米加上小路后的半径:10 + 2 = 12 米小路的面积:3.14×(12²- 10²) = 138.16 平方米题目5有浓度为20%的糖水300 克,要使其浓度变为40%,需要加糖多少克?答案:原来糖水中糖的质量:300×20% = 60 克设加糖x 克,(60 + x)÷(300 + x) = 40% ,解得x = 100 克题目6一本书,第一天看了全书的1/4,第二天看了120 页,这时已看的页数与未看的页数比是2:3,这本书共有多少页?答案:已看的页数占全书的2/(2 + 3) = 2/5第二天看的占全书的2/5 - 1/4 = 3/20全书页数:120÷3/20 = 800 页题目7一个长方体的棱长总和是120 厘米,长、宽、高的比是5:3:2,这个长方体的体积是多少立方厘米?答案:一组长、宽、高的和:120÷4 = 30 厘米长:30×5/(5 + 3 + 2) = 15 厘米宽:30×3/(5 + 3 + 2) = 9 厘米高:30×2/(5 + 3 + 2) = 6 厘米体积:15×9×6 = 810 立方厘米题目8甲、乙两个仓库共存粮90 吨,其中甲仓库的存粮是乙仓库的4/5。
小学六年级奥数题及答案【5篇】1.小学六年级奥数题及答案1.有两组数字。
第一组9个数之和是63,第二组的平均数是11,两组所有数的平均数是8。
问:第二组有多少个数字?解:设第二组有x个数,则63+11x=8×(9+x),解得x=3。
2.小明参加了六次测试,第三次和第四次测试的平均分比前两次高2分,比后两次低2分。
如果最后三次平均分比前三次平均分高3分,那么第四次比第三次高多少分?解:第三、四次的成绩和比前两次的成绩和多4分,比后两次的成绩和少4分,推知后两次的成绩和比前两次的成绩和多8分。
因为后三次的成绩和比前三次的成绩和多9分,所以第四次比第三次多9-8=1(分)。
3.妈妈每四天去一次杂货店,每五天去一次百货商店。
妈妈平均每周去这两家店几次?(用十进制表示)解:每20天去9次,9÷20×7=3.15(次)。
2.小学六年级奥数题及答案1、学校数学竞赛出了A,B,C三道题,至少做对一道的有25人,其中做对A题的有10人,做对B题的有13人,做对C题的有15人。
如果二道题都做对的只有1人,那么只做对两道题和只做对一道题的各有多少人?解:只做对两道题的人数为(10+13+15)-25-2×1=11(人),只做对一道题的人数为25-11-1=13(人)。
2.从五年级的六个班级中选出一个学习、体育、健康先进集体。
有多少种不同的选择结果?解:6*6*6=216种3.大林和小林的漫画不超过50本。
他们每个人拥有漫画书有多少种可能的情况?解:他们一共可能有0~50本书,如果他们共有n本书,则大林可能有书0~n本,也就是说这n本书在两人之间的分配情况共有(n+1)种。
所以不超过50本书的所有可能的分配情况共有1+2+3…+51=1326(种)。
3.小学六年级奥数题及答案1.六年级学生参加学校数学竞赛。
有50道测试题。
评分标准是:答对一题给3分,答错一题给1分,答错一题给1分。
小学六年级奥数题100道及答案Part 1 warm up1.甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?解:那2分钟是甲和丙相遇,所以距离是(60+75)×2=270米,这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间=270÷(67.5-60)=36分钟,所以路程=36×(60+75)=4860米。
2. 小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。
如果小明明天早晨还是6:50从家出发,那么,每分钟必须比往常多走25米才能按老师的要求准时到校。
问:小明家到学校多远?(第六届《小数报》数学竞赛初赛题第1题)解:原来花时间是30分钟,后来提前6分钟,就是路上要花时间为24分钟。
这时每分钟必须多走25米,所以总共多走了24×25=600米,而这和30分钟时间里,后6分钟走的路程是一样的,所以原来每分钟走600÷6=100米。
总路程就是=100×30=3000米。
3. 小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村3.5千米处第一次相遇,在离乙村2千米处第二次相遇.问他们两人第四次相遇的地点离乙村多远(相遇指迎面相遇)?解:画示意图如下.第二次相遇两人已共同走了甲、乙两村距离的3倍,因此张走了3.5×3=10.5(千米).从图上可看出,第二次相遇处离乙村2千米.因此,甲、乙两村距离是10.5-2=8.5(千米).每次要再相遇,两人就要共同再走甲、乙两村距离2倍的路程.第四次相遇时,两人已共同走了两村距离(3+2+2)倍的行程.其中张走了3.5×7=24.5(千米),24.5=8.5+8.5+7.5(千米).就知道第四次相遇处,离乙村8.5-7.5=1(千米).答:第四次相遇地点离乙村1千米.4. 哥哥有12枚5分硬币,妹妹有10枚2分硬币,哥哥给妹妹几枚5分硬币,两人的钱数相等?解答:5×12=60(分) 2×10=20(分) (60-20)÷2=20(分) 20÷5=4(枚)5.阿香去吃午饭,发现附近的中餐厅有9个,西餐厅有3个,日式餐厅有2个,他准备找一家餐厅吃饭,一共有多少种不同的选择?解答:9+3+2=14(种)6.用400个棋子摆放了5层空心方阵,最内层每边有几个棋子?解答:400÷5=80(个) 80-8-8=64(个) 64÷4+1=17(个)7.用棋子摆方阵恰好摆成每边为20的实心方阵,若改为4层空心方阵,最外层每边应放几枚?解答:20×20=400(个) 400+8×(1+2+3)=448(个)448÷4=112(个) 112÷4+1=29(个)8.一把钥匙只能开一把锁,现有10把钥匙和10把锁,最少要试验多少次就一定能使全部的钥匙和锁相匹配?解答:从最不利的情形考虑。
适用标准文档六年级世界少年奥林匹克数学比赛全真模拟卷(一)姓名一、填空题(每题 6 分,共 48 分)l 、有若干个小朋友,他们的年龄各不一样样。
将他们的年龄分别填入式子:1<5<3的□中,都能使不2 □4等式成立。
这些小朋友最多有几个。
2、一项工程,甲、乙两队合作20 天完成,乙丙两队合作60 天完成,丙丁两队合作30 天完成,甲丁合作几日完成。
3、有一个分数,它的分母比分子多 4. 假如把分子、分母都加上9,获取的分数约分后是7,这个分数是9多少?4、在 3:5 里,假如前项加上6,要使比值不便,后项应加()。
5、两车同时从甲乙两地相对开出,甲每小时行48 千米,乙车每小时行54 千米,相遇时两车离中点36 千米,甲乙两地相距多少千米。
6、学校五( 1)班 40 名学生中,年龄最大的是13 岁,最小的是11 岁,那么此中必有()名学生是同年同月出生的。
7、某商品按每个 5 元利润卖出11 个的价格,与按每个11 元的利润卖出10 个价格相同多。
这个商品的成本是()元。
8、一把钥匙只好开一把锁。
此刻有 4 把钥匙 4 把锁,但不知哪把钥匙开哪把锁,最多要试()次才能配好所有的钥匙和锁。
二、计算题(每题8 分,共 16 分)9、计算: 6.8 ×8+0.32 ×÷ 25 25适用标准文档10、 算:1 + 1+ 1 +⋯⋯+ 99 1 1 2 2 3 3 4 100三、解答 ( 11、 12、 13 ,每 10 分, 14 12 分, 15 14 分,共 56 分)11、算出 内正方形的面 。
12、一个正方体的表面 是 384 平方分米,体 是 512 立方分米, 个正方体棱 的 和是多少?13、“ IMO ”是国 数学奥林匹克的 写,把 三个字母写成三种不一样样 色, 有五种不一样样 色的笔,按上述要求能写出多少种不一样样 色搭配的“IMO ”?14、在 1~ 100 的自然数中,是 5 的倍数或是 7 的倍数的数有多少个?15、若 笔 本 3 本、 笔 5 支、格尺 1 个,共需 6.10 元;若 笔 本4 本、 笔7 支、格尺 1 个,共需 7.92 元。
六年级奥数模拟试题(时间:90分钟总分:100分)一、选择题(每题2分,共20分)1. 如果甲堆煤的重量比乙堆煤少,那么下列说法中正确的有()。
①乙堆的重量比甲堆多20%;②甲、乙两堆重量的比是6:7;③如果从乙堆中取出给甲堆,那么两堆煤的重量就同样多;④甲堆煤占两堆煤总重量的。
A. ①②③B. ①②④C. ①③④D. ②③④2. 钟面上如果分针旋转周,那么时针旋转的度数是()。
A. 15°B. 180°C. 30°D. 60°3. 一个两位数,交换它的十位数字和个位数字,所得的两位数是原数的,则这样的两位数有()。
A. 1个B. 2个C. 4个D. 无数个4. 最小的合数除最小的质数,商是()。
A. 整数B. 循环小数C. 有限小数D. 无限不循环小数5. 从和式中必须去掉()两个分数,才能使余下的分数之和等于1。
A. B. C. D.6. 一辆汽车往返于甲、乙两地,去时用了5小时,回来时速度提高,比去时少用了()小时。
A. B. C. D.7. 如图,算得小红家到公路上的最短路程长为()。
A. 4千米B. 2.4千米C. 3千米D. 3.8千米8. 在一个密封的不透明的袋子里装了两只红球、两只黄球,明明伸手任意抓一只球,抓到红球的机会是()。
A. B. C. D. 不确定9. 一根铁丝剪成两段,第一段长米,第二段占全长的,那么()。
A. 第一段长B. 第二段长C. 无法确定谁长D. 一样长10. 1997个空格排成一行,预先在左边第1格放入一枚棋子,然后甲、乙两人交替走棋。
先甲后乙,每步可向右移1格、2格、3格、4格,规定谁先到最右一格为胜。
甲为了保证获胜,他第一步必须把棋子向右移()。
A. 1格B. 2格C. 3格D. 4格二、填空题(每题2分,共20分)1. 三十亿零八十一万七千零九写作(),四舍五入到万位是()万。
2. 如下图所示,用“十字形”分割正方形。
分割一次,分成了4个正方形;分割两次,分成了7个正方形。
如果连续用“十字形”分割20次,分成了()个正方形。
如果分成了361个正方形,共用“十字形”分割了()次。
3. 如图所示,已知∠1=21°,∠2=64°,∠3=35°,则∠4=()。
4. 如图,在2×2的方格中,画一条直线最多可穿过3个方格,那么在12×12的方格中,画一条直线最多可穿过()个方格。
5. 把,,,这四个分数按从小到大的顺序排列是:()<()<()<()。
6. 甲、乙两个长方形,它们的周长相等。
甲的长与宽之比是4:3,乙的长与宽之比是5:6,甲、乙两个长方形的面积之比是()。
7. 从运动场的一端到另一端全长100米,从一端起到另一端止每隔4米插一面小红旗。
现在要改成每隔5米插一面,有()面小红旗不用移动。
8. 现有12个小球,其中有一个次品,若次品比正品重一点,利用一架天平,最少称()次,一定能把次品找到。
9. 已知一个容器内已注满水,有大、中、小三个球,第一次把小球沉入水中,第二次取出小球再将中球沉入水中,第三次取出中球,把小球和大球一起沉入水中,现在知道,第一次溢出的水是第二次的,第三次是第一次的2.5倍,则大、中、小三球的体积比是()。
10. 学生书店进了一批学生英语辅导书,带有碟片,书和碟片的定价相同,可以单卖。
已知书和碟片的份数比是3:2。
进货时,书需按定价的78%付款,碟片需按定价的82%付款。
卖完这批书学生书店可获利()%。
三、计算题(每题4分,共20分)1. 99999×77778+33333×666662. ++++3. 规定A⊙B=A×B+A+B,那么当(A⊙2)⊙1=29时,A等于几?4. +++++5. 小马虎将乘一个数,误写成2.08乘一个数,结果与正确答案正好相差2.08,那么正确的答案应该是多少?四、解答题(前2题每题6分,后4题每题7分,共40分)1. (6分)如图所示,已知点O是圆心,圆中直角三角形的面积是30平方厘米,求圆的面积。
(π取3.14)2. (6分)如图所示,BD、CF将长方形ABCD分成4块,△DFE的面积是4平方厘米,△CDE的面积是6平方厘米。
问:四边形ABEF的面积是多少平方厘米?3. (7分)兄妹二人同时从家里出发去上学,哥哥骑车每分钟行400米,妹妹步行每分钟行100米。
哥哥到校门时,发现忘了带课本,立即沿原路返回,途中与妹妹相遇。
已知家与学校相距1000米,求兄妹二人从出发到相遇共用了多少分钟?4. (7分)一种浓度为30%的新农药,稀释到2%时,灭虫最有效。
那么,用多少千克浓度为30%的农药加多少千克水,才能配成2%的农药150千克?5. (7分)有若干堆围棋棋子,每堆棋子数目一样多,且每堆中白子都占30%。
小明从某一堆中拿走一半棋子,而且拿走的都是黑子,现在白子占所有棋子的40%,那么共有棋子多少堆?6. 单独修一条公路,甲队需100天完成,乙队需150天完成。
甲、乙两队合修50天后,余下的工程由乙队单独做,还需几天才能完成?六年级奥数通用版北京市重点中学招生模拟试题一(上)试卷分析参考答案一、选择题1. C 分析:甲堆煤的重量比乙堆煤少,可以假设甲是5份,乙是6份。
①(6-5)÷5×100%=20%,正确;②很明显甲、乙的重量比是5:6,所以错误;③甲、乙两堆煤的重量差是乙的,所以如果从乙堆中取出给甲堆,那么两堆煤的重量就同样多,正确;④甲堆煤占两堆煤总重量的=,正确。
所以选C。
2. A 分析:每个小格旋转的度数:,分针每分钟转:1个小格,时针每分钟转:个小格,分针旋转了周,经过了30分钟,所以时针旋转的度数为:3. C 分析:,(10a+b)=10b+a,变形为2a=b,两位数分别为12、24、36、48,故选C。
4. C 分析:2÷4=0.5,选C。
5. D 分析:=1,所以去掉的两个分数是和。
6. A 分析:根据比例关系,路程一定,时间与速度成反比。
即:,,,则回来时比去时少用了(小时)。
7. B 分析:3×4÷5=2.4(千米)8. A 分析:2÷(2+2)=,故选A。
9. A 分析:第一段占全长的,全长为:,第二段绳子长:,所以第一段绳子长。
10. A 分析:要想让走最后一步的人胜,则甲必须保证手中的棋子为(1+4)n+1枚,即5n+1枚。
1997=5×399+2,因左边第一格已预先放入一枚棋子,所以第一步只需向右移动1格即可。
二、填空题1. 3000817009 300082 分析:300081∣7009,所以进1为300082万。
2. 61 120 分析:第一次分成4个;第二次分成7个;第三次分成10个;第四次分成13个;由此可知这是一个等差数列,通项公式为。
则分割20次后:(个)。
分为361个是第几项,相当于求项数:(项)。
3. 120°分析:∠4=180°-∠5-∠6;∠1+∠2+∠3=180°-∠5-∠6,所以∠4=∠1+∠2+∠3=21°+64°+35°=120°。
4. 23 分析:在n×n的方格中,一条直线最多能穿过2n-1个方格,12×2-1=23。
5. 分析:=,比其他数都小;=+,=+,=+,所以。
6. 242:245 分析:设甲、乙的长宽之和均为1,则甲的长为,甲的宽为,甲的面积为;乙的长为,乙的宽为,则乙的面积为;甲的面积:乙的面积=。
7. 6 分析:4和5的最小公倍数是20,所以每隔20米的红旗不用移动,即求总长100米时每隔20米需要插多少根小红旗,100÷20+1=6(面)。
8. 3 分析:第一次:可以把12个球平均分为2份,每份6个球,哪边沉一些,次品就在那一堆当中;第二次:把6个球平均分为2份,每份3个球,哪边沉一些,次品就在那一堆当中;第三次:把3个球平均分成3份,如果有一边沉说明那个就是次品,如果天平平衡的话,证明剩下那个没称重的是次品。
9. 11:8:2 分析:第一次溢出的水的体积=小球体积第二次溢出的水的体积=中球体积-小球体积第三次溢出的水的体积=大球体积+小球体积-中球体积第一次=第二次2.5第一次=第三次设小球体积=1,则可求出小球体积=1;中球体积=4;大球体积=5.5。
则大:中:小=11:8:210. 25.6 分析:设每本书与每张碟片的定价都为100元。
每本书可以赚:元每张碟片可以赚:元则利润率为:三、计算题1. 解:原式=99999×77778+99999×22222=99999×(77778+22222)=99999×100000=99999000002. 解:原式=+++…+==3. A=4 分析:A⊙2=2A+A+2=3A+2,(A⊙2)⊙1=1×(3A+2)+(3A+2)+1=6A+5,6 A+5=29,A=4。
4. 解:利用分数裂项的变形公式+++++5. 解:x-2.08x=2.08,先将化成分数,因为×100=,×10=,所以=,即得x-2.08x =2.08,解得x=234。
所以正确的答案应该是2.08×234+2.08=488.8。
四、解答题1. 解:在求圆的面积时,有的时候不一定非要求出半径r,我们只要知道即可。
=(平方厘米)(平方厘米)2. 解:根据蝴蝶定理可知所以,,,3. 解:如遇到两人往返或者多次相遇的情况,考虑两个人一共所行的路程和。
两人共行了两个全程:(米)所用时间:(分钟)4. 解:根据浓度十字相乘法可得,设需要浓度为30%的农药x千克,需要水(150-x)千克。
,解得x=10150-10=140(千克)则需要浓度为30%的农药10千克,加水140千克。
5. 解:不妨设共有n堆棋子,则白子总数为30%n;拿走某堆的一半黑子后,所有的棋子还剩下;,n=2所以共有2堆棋子。
6. 解:甲的工作效率:,乙的工作效率:,两队合修50天的工作量:还需天数:(天)。