开关电源的频域分析与综合(连载汇总)
- 格式:pdf
- 大小:1.55 MB
- 文档页数:34
开关电源工作原理超详细解析开关电源(Switching Power Supply)是一种先将输入交流电转换为直流电,再通过变换器和开关元件进行调制和控制,最终输出所需电压和电流的电源装置。
它可以高效地进行能量转换,减少功耗,适用于各种电子设备。
下面将详细解析开关电源的工作原理。
1.开关电源的基本组成开关电源由输入滤波器、整流器、脉宽调制器、变压器、输出滤波器和反馈电路组成。
-输入滤波器:用于滤除输入电源中的干扰信号,并平滑输送到整流器。
-整流器:将交流电转换为直流电,常用的整流方式有全波整流和半波整流。
-脉宽调制器:根据反馈信号调整开关管的导通时间,控制开关元件的开关频率和占空比。
-变压器:将输入电压转换为所需的输出电压,并通过与脉宽调制器协调工作来控制输出电压的稳定性。
-输出滤波器:用于平滑输出电压,减少纹波幅度,并滤波输出电流。
-反馈电路:通过采样输出电压并与目标电压进行比较,产生反馈信号控制脉宽调制器的输出。
2.工作原理-输入滤波:交流电经过输入滤波器后,去除干扰信号,并保持电压稳定。
输入滤波器通常由电容和电感组成,它们通过电压和电流的交替变化,将输入电源趋于稳定。
-变压:通过变压器将输入电压进行转换,以获得需要的输出电压。
变压器一般由磁性材料、绕线、磁心等组成,通过众多的绕线匝数比实现输入电压于输出电压的变化。
-输出滤波:经过变压器的输出信号包含较多的纹波幅度,通过输出滤波器将纹波幅度减小到可以忽略不计的程度。
输出滤波器通常包括电感和电容,通过滤除高频杂波和平滑输出电流。
3.脉宽调制脉宽调制器是开关电源中至关重要的一个部件,负责控制开关元件(如晶体管或MOSFET)的开关频率和占空比,以调节输出电压的稳定性。
- 控制开关频率:脉宽调制器根据输出电压的需求,采用不同的控制方式,例如固定频率PWM(Pulse-Width Modulation)、可变频率PWM和电流模式控制。
通过调整开关频率,可以实现对输出电压的精确控制。
开关电源工作频率的原理分析开关电源是一种高效稳定的电源供应系统,在许多电子设备中得到广泛应用。
在开关电源的设计和使用过程中,工作频率是一个至关重要的参数。
本文将分析开关电源工作频率的原理,并探讨其对性能的影响。
一、开关电源的基本原理开关电源是通过快速开关管将输入电源切换成高频脉冲信号,然后经过滤波、调整和变换等环节,最终得到稳定的输出电压。
这种切换过程会产生开关频率的信号,即工作频率。
二、工作频率的选择原则1. 效率:开关电源的效率在很大程度上取决于工作频率。
较高的工作频率会导致较低的开关损耗,从而提高整个系统的效率。
2. 尺寸:开关频率高的电源可以采用较小的元件,减小整体体积。
尤其在微型电子设备中,对尺寸的要求较高。
3. 抗干扰能力:工作频率的选择还应考虑系统对外界干扰的抗性。
合适的工作频率可以减小电源对周围环境电磁波的敏感程度,提高系统的抗干扰能力。
三、开关电源工作频率的影响因素1. 电感元件:工作频率越高,电感元件的体积越小。
同时,高频信号会导致电感元件产生更大的功率损耗,因此需要选择工作频率适中的电感元件来平衡体积和损耗的关系。
2. 开关管:开关管具有较大的开关频率响应能力,但频率过高会产生更大的导通压降和开关损耗。
因此,在选择开关管时,需综合考虑频率响应和损耗的权衡。
3. 输出滤波:工作频率的选择还涉及输出滤波电容的大小。
频率过高会导致输出滤波电容变得更小,从而可能引起输出电压波动或噪声。
四、常见的工作频率范围开关电源的工作频率通常分为几个常见的范围,包括:1. 低频范围(20 kHz以下):适用于需要高功率输出和承受重载的应用,如电感加热、电动工具等。
2. 中频范围(20 kHz至100 kHz):适用于一般的电子设备,如计算机、通信设备等。
在这个频率范围内,可以实现较高的效率和尺寸优势。
3. 高频范围(100 kHz以上):适用于追求小型化和高效率的应用,如笔记本电脑、手机等微型电子设备。
开关电容滤波器频域分析2009-10-26 9:21:00 【文章字体:大中小】推荐收藏打印摘要:介绍了利用频域方法对一种常用的开关电容滤波器的传输特性进行理论分析,得出了其等效噪声带宽,并给出了仿真结果。
所得结果与参考文献中时域方法分析的结果相一致,但是分析过程要简洁得多,而且更容易理解。
随着集成电路技术的发展和工艺的改进,高质量的MOS电子开关和电容可以集成在体积很小的芯片上,从而使开关电容滤波器(SCF)得到广泛应用。
SCF中既有模拟电路,又有开关电路,其分析和综合方法往往比较复杂,已见报道的有阻抗变换法、双线性z变换法、时域分析方法等。
本文针对一种常用的SCF电容,利用频域方法分析其传输特性,所得结果与时域方法分析的结果相一致。
1 开关电容滤波器频域分析图1(a)所示是一种常用的开关电容滤波电路,它既有滤波作用,又有放大作用。
图中的K1和K2是由脉冲信号控制的双刀双掷同步电子开关,其控制信号p(t)是频率为f0的方波,如图1(b)所示。
当p(t)为高电平时,电子开关接到A(如实线所示),当p(t)为低电平时,电子开关接到B(如虚线所示)。
考虑到运算放大器输入负端为虚地,流经反馈支路的电流i(t)(设定方向如图中箭头所示)与输入电压vi(t)之间的关系为:vi(t)=-R1i(t) (1) 式(1)的傅立叶变换式为:Vi(ω)=-R1I(ω) (2) 式(2)中的Vi(ω)和I(ω)分别表示vi(t)和i(t)的频谱。
对于反馈支路,由于电子开关的作用,电流i(t)通过电子开关周期性地变换方向给RC并联电路交替充电,这相当于对i(t)周期性地乘以+1和-1,这样就可以用i'(t)=p(t)×i(t) (3) 来表示流经RC积分电路的电流。
设方波p(t)的周期为T0,角频率为ω0=2π/T0,如图1(b)所示。
这样的周期函数可以展开为如下指数形式的傅立叶级数:将(4)式代入(3)式,得:对(5)式进行傅立叶变换,并利用F[x(t)exp(jω1t)]=X(ω-ω1)的频移特性,得:式中,I'(ω)为i'(t)的频谱,I(ω)为i(t)的频谱。
反激式开关电源工作原理及波形分析
本页仅作为文档封面,使用时可以删除
This document is for reference only-rar21year.March
反激式开关电源工作时可以简化为下图所示电路:
Mos管控制原边(左侧)电流的通断。
Mos管导通时:
电感充电(实则为建立磁通),副边二极管截止,无电流。
Mos管断开时:
由于电流不同突变(实际上是磁通不能突变),于是在副边形成感应电流,二极管导通。
原边反射电压:
副边有电流流通时,会在原边感应出一个电压(下+上-),叠加在输入电压上。
原边的尖峰电压:
由于漏电感的存在,该部分的磁通没有通过磁芯耦合到副边,因此mos管断开时,会产生很大的电压来维持电流,从而达到维持磁通的目的。
振荡波形:
Mos管关断时尾部有振荡,是由于开关电流工作在断续模式时,能量释放完全后,原边、副边无电流。
此时原边的电路可以等效为电源+电感+电容(Mos 管输入电容),发生谐振。
实测波形如下:
(黄色为mos驱动,绿色为mos管的VDS,粉色是原边线圈的电流)。
开关电源分析开关电源是一种广泛应用于电子设备中的电源转换器。
它将输入电压转换为所需输出电压,并通过开关元件的控制实现电路的开关功能。
在讨论开关电源的原理和分析之前,我们先来了解一下开关电源的基本构成和工作原理。
开关电源通常由输入滤波电路、整流电路、变换电路和输出滤波电路四个主要部分组成。
首先是输入滤波电路,它主要用来对输入电压进行滤波和去除杂散干扰。
输入电压经过输入滤波电路后,得到平稳的直流电压。
接下来是整流电路,它将输入直流电压转换为脉冲电压。
整流电路通常采用二极管桥整流电路。
当输入电压大于输出电压时,二极管导通,电流经过负载;否则,二极管不导通,电流通过滤波电容器进行充电。
然后是变换电路,它是开关电源的核心部分,用于将脉冲电压转换为所需的输出电压。
变换电路主要由开关管和变压器组成。
开关管控制变压器的工作状态,将输入电压转换为脉冲电流,并通过变压器的绝缘性能得到所需的输出电压。
最后是输出滤波电路,它主要用于滤波输出脉冲电压,使其变得平稳,以供给电子设备使用。
了解了开关电源的基本构成和工作原理,我们接下来来分析一下开关电源的优点和缺点。
首先是开关电源的优点。
开关电源的转换效率较高,一般可以达到70%以上,有些高效率电源甚至可以达到90%以上。
这是因为开关电源采用了高频开关技术,减小了传统线性电源中能量损耗较高的电压调节器。
开关电源还具有体积小、重量轻的特点,便于携带和安装。
此外,开关电源还能实现对输出电压和电流的精确控制,并提供额外的保护功能,如电流限制、过温保护等。
然而,开关电源也存在一些缺点。
首先是开关电源产生的高频噪声会对其他电子设备造成干扰。
其次,开关电源的设计和制造要求较高,需要较复杂的电路和元器件,增加了成本和技术难度。
此外,开关电源还可能产生较多的电磁辐射,对周围环境和人体健康造成一定的影响。
因此,在实际应用中,我们需要根据具体情况来选择是否使用开关电源。
最后,我们来简单介绍一下开关电源的应用领域。
【很完整】⽜⼈教你开关电源各功能部分原理分析、计算与选型1 开关电源介绍此⽂档是作为张占松⾼级开关电源设计之后的强化培训,基于计划安排,由申⼯讲解了变压器设计之后,在此⽂章中简单带过变压器设计原理,重点讲解电路⼯作原理和设计过程中关键器件计算与选型。
开关电源的⼯作过程相当容易理解,其拥有三个明显特征:开关:电⼒电⼦器件⼯作在开关状态⽽不是线性状态⾼频:电⼒电⼦器件⼯作在⾼频⽽不是接近⼯频的低频直流:开关电源输出的是直流⽽不是交流也可以输出⾼频交流如电⼦变压器1.1 开关电源基本组成部分1.2 开关电源分类:开关电源按照拓扑分很多类型:buck boost 正激反激半桥全桥 LLC 等等,但是从本质上区分,开关电源只有两种⼯作⽅式:正激:是开关管开通时传输能量,反激:开关管关断时传输能量。
下⾯将以反激电源为例进⾏讲解。
1.3 反激开关电源简介反激⼜被称为隔离buck-boost 电路。
基本⼯作原理:开关管打开时变压器存储能量,开关管关断时释放存储的能量反激开关电源根据开关管数⽬可分为双端和单端反激。
根据反激变压器⼯作模式可分为CCM 和DCM 模式反激电源。
根据控制⽅式可分为PFM 和PWM 型反激电源。
根据驱动占空⽐的产⽣⽅式可分为电压型和电流型反激开关电源。
我们所要讲的反激电源精确定义为:电流型PWM 单端反激电源。
1.4 电流型PWM 单端反激电源此类反激电源优点:结构简单价格便宜,适⽤⼩功率电源。
此类反激电源缺点:功率较⼩,⼀般在150w 以下,纹波较⼤,电压负载调整率低,⼀般⼤于5%。
此类反激电源设计难点主要是变压器的设计,特别是宽输⼊电压,多路输出的变压器。
2 举例讲解设计过程为了更清楚了解设计中详细计算过程,我们将以220VAC-380VAC 输⼊,+5V±3%(5A),±15±5%(0.5A)三路共地输出反激电源为例讲解设计过程。
提出上⾯要求,选择思路如下:提出上⾯要求,选择思路如下:电源总输出功率P=5*5W+15*0.5*2=40W 功率较⼩,可以选择反激开关电源。
开关电源工作频率的原理分析第一篇:开关电源工作频率的原理分析开关电源工作频率的原理分析一、开关电源的原理和发展趋势第一节高频开关电源电路原理高频开关电源由以下几个部分组成:图12-1(一)主电路从交流电网输入、直流输出的全过程,包括:1、输入滤波器:其作用是将电网存在的杂波过滤,同时也阻碍本机产生的杂波反馈到公共电网。
2、整流与滤波:将电网交流电源直接整流为较平滑的直流电,以供下一级变换。
3、逆变:将整流后的直流电变为高频交流电,这是高频开关电源的核心部分,频率越高,体积、重量与输出功率之比越小。
4、输出整流与滤波:根据负载需要,提供稳定可靠的直流电源。
(二)控制电路一方面从输出端取样,经与设定标准进行比较,然后去控制逆变器,改变其频率或脉宽,达到输出稳定,另一方面,根据测试电路提供的数据,经保护电路鉴别,提供控制电路对整机进行各种保护措施。
(三)检测电路除了提供保护电路中正在运行中各种参数外,还提供各种显示仪表数据。
(四)辅助电源提供所有单一电路的不同要求电源。
第二节开关控制稳压原理图12-2 开关K以一定的时间间隔重复地接通和断开,在开关K接通时,输入电源E通过开关K和滤波电路提供给负载RL,在整个开关接通期间,电源E向负载提供能量;当开关K断开时,输入电源E便中断了能量的提供。
可见,输入电源向负载提供能量是断续的,为使负载能得到连续的能量提供,开关稳压电源必须要有一套储能装置,在开关接通时将一部份能量储存起来,在开关断开时,向负载释放。
图中,由电感L、电容C2和二极管D组成的电路,就具有这种功能。
电感L用以储存能量,在开关断开时,储存在电感L中的能量通过二极管D释放给负载,使负载得到连续而稳定的能量,因二极管D使负载电流连续不断,所以称为续流二极管。
在AB间的电压平均值EAB可用下式表示:EAB=TON/T*E式中TON为开关每次接通的时间,T为开关通断的工作周期(即开关接通时间TON和关断时间TOFF之和)。
开关电源一、定义电源是电子设备中的一个重要组成部分,其性能的优劣直接影响着设备的工作质量,随着技术的不断革新,电源技术发生了巨大变化。
1.线性电源线性电源是先将交流电经过变压器降低电压幅值,再经过整流电路整流后,得到脉冲直流电,后经滤波得到带有微小波纹电压的直流电压。
要达到高精度的直流电压,必须经过稳压电路进行稳压。
2.开关电源开关电源是利用现代电力电子技术,采用功率半导体器件作为开关,通过控制开关晶体管开通和关断的时间比率(占空比),调整输出电压,维持输出稳定的一种电源。
它可以就是一个对不同输入电压进行变换和调整,以适应不同的负载要求。
其特点是电源工作在开/关状态,工作效率高,是一种比线性控制电源应用更广范的电源转换装置。
二、开关电源应用和分类开关电源的应用遍及各个行业和领域,例如:电子手表、MP3、MP4、手机、节能灯、LED灯、充电器、电源适配器、电脑、电视机、变频空调、UPS电源、电磁炉、电动摩托、电动汽车、动车组、逆变器、太阳能(风能)逆变站、高压直流电网等。
根据用途来分,电源产品可分为5大系列:AA系列——交流稳压电源;AB 系列——交流或电池输入,交流输出,又名UPS 电源;AD系列——交流变直流( 直流电源) ;ADA系列——将交流先变成直流,再将直流变为交流(净化电源) ;DD系列——直流变直流。
而传统的电源技术仅仅局限于AA系列和AD 系列两个方面。
三、电源技术的发展及现存问题1.电源技术的发展历程传统的晶体管串联调整稳压电源是连续控制的线性稳压电源。
这种传统稳压电源技术比较成熟,并且已有大量集成化的线性稳压电源模块,具有稳定性能好、输出纹波电压小、使用可靠等优点。
但其通常都需要体积大且笨重的工频变压器与体积和重量都很大的滤波器。
由于调整管工作在线性放大状态,为了保证输出电压稳定,其集电极与发射极之间必须承受较大的电压差,导致调整管功耗较大,电源效率很低,一般只有45%左右。
開關電源中反饋環路的組成Vin Vout系統總的增益為個部分增益的乘機常用的开关电压电源未补偿的开环传递函数Tu 可分为单极点和双极点两种,对于单极点一般采用PI (比例积分)补偿,双极点一般采用PID (比例积分微分)补偿。
也可以大致理解为电流型控制的采用PI 补偿,电压型控制的采用PID 补偿。
在開關電源的設計中,除了磁性元件的設計外,另外一項比較比較麻煩但是對系統穩定性非常重要的就是環路設計了,它不僅涉及到模擬電子電路技術,同時還涉及到自動控制,測量與計算技術,通常,電源設計時,主電路是根據應用要求設計的,控制環路的設計是在主功率部分設計完成后再考慮的,一般不會提前考慮控制環路的設計,其中:Kpwr,Kmod,Klc,Kfb分別表示功率部分開環增益,PWM控制部分開環增益,輸出濾波部分開環增益,輸出反饋增益,Kea為運放補償增益(通常所說的“調反饋”有很大一部分是集中在這一塊的,一般而言,電路拓撲結構一旦確定,Kpwr就不會有太大的更改,而Kmod要根據所選擇的IC datasheet進行調節,LC的選擇不僅要考慮系統的穩定,同時還要考慮電源的頻率,電源的輸出連波要求等因素,為了方便理解,我們先粗略的了解一下在電流控制型開關電源中常用的三種反饋補償方式以及相對應的BODE圖,下面在介紹它們的推導過程從而理解三種補償方式的由來Kpwr KlcKmod KeaKfb 光耦運放圖一:反激開關電源中常用的實際反饋補償電路其傳遞函數Kea=Iopto=(Vo-V1)/Rb補償方式一:單極點補償適用條件:補償方式二:極點零點補償適用條件:補償方式三:雙極點單零點補償電流型控制和DCM(斷續電流模式)並且電容的ESR零點頻率較低的電源系統,其主要作用是把環路中第一個極點和其餘的極點距離拉開,使相位達到180以前將增益降到0DB,結果會使補償后的最大帶寬小於補償前第一個極點的帶寬和主極點補償的條件近似,其極點相當于主極點中的極點,零點則是把第一個極點抵消,這時的帶寬可以達到第二個極點的帶寬,帶寬最大,這樣既達到可主極點補償的效果又增加了帶寬適用條件:補償方式四:三极点,双零点补偿(在反激拓撲中很少使用)適用條件:注:C1和R2串联是用来抑制低频时的100HZ 纹波的,在介紹補償方式的推導過程之前,先介紹一下幾個基本概念三:穿越頻率,相位裕量和增益裕量(如下圖所示)相位裕度是指环路增益为 0dB 的频率处的环路相位,增益裕度则是指环路相位为 360o 的频率处的环路增益穿越頻率是指增益曲綫穿越0dB線時對應的頻率適用於傳遞函數有雙極點的補償,輸出帶LC諧振的拓撲結構,如所有沒用電流型控制的電感電流連續方式拓撲結構中(公式中的傳遞函數進行了適當的工程近似)一:BODE圖:根據頻率特性繪製出的一種對數頻率特性曲綫,有兩部分組成,幅頻特性和相頻特性二:零點和極點 表示的是增益斜率變化的拐點,其中零點使增益斜率變化+1,極點使增益斜率變化-1適用於功率部分只有一個極點的補償,如所有電流型控制和非連續性電壓型控制,(公式中的傳遞函數進行了適當的工程近似)如圖所示,虛短:虛斷五:捲積 卷积的过程就是相当于把信号分解为无穷多的冲击信号,然后进行冲击响应的叠加。
开关电源高频化和软开关技术开关电源高频化和软开关技术近年来, 电力电子技术发展迅猛, 直流开关电源广泛应用于计算机、航空航天等领域。
如今, 笨重型、低效电源装置已被小型、高效电源所取代。
为了实现电源装置的高性能、高效率、高可靠性,减小体积和重量, 必须实现直流开关电源的高频化。
直流开关电源的高频化不仅减小了功率变换器的体积, 增大了变换器的功率密度和性能价格比, 而且极大地提高了瞬时响应速度, 抑制了电源所产生的音频噪声, 从而已成为新的发展趋势。
然而功率变换器开关频率的进一步提高将受以下因素的限制: ①在通断瞬间切换过程中, 功率器件的开关应力。
②开关损耗。
③剧烈的d i/ d t 和d u/ d t 冲击及其产生的电磁干扰(EMI) 。
软开关技术是使功率变换器得以高频化的重要技术之一, 它应用谐振的原理, 使开关器件中的电流(或电压) 按正弦或准正弦规律变化。
当电流自然过零时, 使器件关断(或电压为零时, 使器件开通) , 从而减少开关损耗。
它不仅可以解决硬开关变换器中的硬开关损耗问题、容性开通问题、感性关断问题及二极管反向恢复问题, 而且还能解决由硬开关引起的EMI 等问题。
为此先后有人提出了谐振变换器( resonantconverter) , 准谐振变换器(quasi resonant converter)和多谐振变换器(muti resonant converter) , 零开关PWM 变换器(zero switching PWM converter) , 零转换PWM变换器(zero transition PWM converter) 及无源无损缓冲电路(passive lossless snubber circuit) 等多种软开关技术。
谐振变换器谐振变换器实际上是直流开关电源负载谐振变换器, 在20世纪70 年代最早被提出来, 它通过在标准PWM变换器结构上简单地附加谐振网络的方法而得到。
开关电源电路分析开关电源电路是一种常见的电源供应电路,其采用开关元件(比如晶体管)实现高效率的能量转换,能够将输入电压转换为所需的输出电压。
在现代电子设备中广泛应用,例如电脑、手机充电器等。
优点开关电源电路相比线性电源电路具有许多优点。
首先,开关电源电路的效率较高,能够实现更小的能量损耗,从而减少发热。
其次,由于采用开关控制,使得开关电源电路具有更好的调节性能和稳定性。
另外,开关电源电路可以实现不同输入电压到输出电压的转换,提高了适用范围。
原理开关电源电路的基本原理是通过不断打开和关闭开关元件,控制电能的流动,将直流电转换为高频脉冲,再经过滤波电路输出平稳的直流电。
其中,开关元件的导通和关断状态由控制电路控制,通常采用PWM(脉宽调制)技术实现。
三种基本结构单端开关电源电路单端开关电源电路是最基本的一种结构,由开关管、变压器、整流电路和滤波电路组成。
通过变压器的变换,将输入电压转换为所需的输出电压,并通过整流和滤波电路实现输出平稳化。
双端开关电源电路双端开关电源电路在单端结构的基础上增加了一个反激变压器,可以实现正负电压输出,适用于需要正负电压的场合,如全桥、半桥等拓扑结构。
开关降压升压电源电路开关降压升压电源电路能够实现输出电压高于或低于输入电压的情况,适用于需要多种输出电压的场合,例如电动汽车充电桩等。
设计考虑在设计开关电源电路时,需要考虑以下几个方面:首先是效率和稳定性,选择高效的开关元件和合适的控制电路是关键;其次是输出电压的精度和波动,需要合理设计滤波电路和反馈控制;最后是成本和体积,应该在满足性能指标的前提下尽可能减小电路的成本和体积。
应用领域开关电源电路广泛应用于各种电子设备中,例如通信设备、工业控制、医疗设备等。
随着电子技术的发展,对开关电源电路的要求越来越高,不断涌现出更加高效、稳定的设计方案。
总的来说,开关电源电路作为一种高效、灵活的电源设计方案,在现代电子领域有着重要的地位,为各种电子设备的稳定供电提供了技术支撑。
开关电源EMC频谱和串扰基础技术知识(图文并茂详解)1、频谱基础电气信号是以开关信号为前提的。
首先来看下面的原理示意图。
在表示开关信号的脉冲波形中,包括tw(脉冲宽度)和ts (上升/下降时间)。
中间的图是基于傅里叶变换的理论上的脉冲波形频谱。
这是“振幅随着频率的升高而衰减,衰减斜率随着tw和ts而变化”的常见频谱。
右图表示脉冲的ts延迟后的频谱变化。
斜率变为-40dB/dec 时的1/πts频率降低是理所当然的,最终结果是其后的振幅减少。
简而言之就是“当ts延迟时频谱的振幅衰减”。
接下来将使用实际的频谱分析仪数据来看频率等其他参数变化时的频谱变化。
这里的关键点是“对于信号波形的变化,频谱将以怎样的趋势变化”。
这是用来通过实际的开关电源电路的开关相关的频谱来分析并解决EMC问题所必须的知识。
波形变化与频谱变化:前面给出的图是用来比较的默认条件下的数据。
下面波形图中的条件是:振幅10V,频率400kHz,Duty(占空比)50%,tr/tf(上升时间/下降时间)10ns。
中间的图表示n次谐波和振幅(V)的关系。
1倍的频率=基波,也就是说400kHz的分量大,以奇数倍的频率形成频谱。
谐波仅为奇数次是Duty为50%=1:1的频谱特征。
各分量的大小为基波分量的1/次数,例如3次谐波分量为1/3,n次谐波分量为1/n。
右图是振幅为dB?V的对数曲线图。
顺便提一下,dBμV是基于以1?V电压为基准的电压比的dB值。
①、将频率变更为2MHz时的频谱。
从频率-振幅(dBV)关系图可以明确看出,当频率增加时振幅整体增加。
②、tr和tf同时延迟为100ns时的频谱。
结果如原理示意图所示,进入-40dB/dec衰减时的频率降低,频谱的振幅衰减。
③、将Duty50%变为20%时的频谱。
由于Duty不是1:1,因此会产生偶次谐波,但峰值基本上没变化。
随着脉冲宽度tw变窄,基波频谱的振幅衰减。
④、仅tr(上升时间)延迟时的频普。
在复平面(s=σ+jω)上,使传递函数G(s)→∞的点,称为G(s)的极点;使G(s)=0的点,称为G(s)的零点。
零点或极点为复数时,为复零点或复极点。
实零点或实极点为实数,位于实轴(α轴)上。
位于s右半平面(RHP-Right Half Plane)的正零点或正极点,称为RHP零点或RHP极点;位于s左半平面(LHP-Left Half Plane)的负零点或负极点,称为LHP零点或LHP极点。
只要含有一个RI-IP极点,系统就是不稳定的;系统的全部极点都是LHP极点时,系统才是稳定的。
极点和零点为虚数时,位于虚轴(J 轴)上;有虚极点的系统属于不稳定系统。
一阶系统的几种零、极点特性的比较见表表一阶系统的几种零、极点特性的比较以图1所示的二阶滤波电路为例来分析二阶系统的零、极点特性。
其传递函数也可以写成图1 二阶低通滤波器电路它有两个LHP极点:-1/T1,和-1/T2。
图2所示为举例给出的某个Buck-Boost转换器控制一输出传递函数的零、极点分布。
它有两个LHP极点(pole)P1、P2,P1,2=(-1,1±j2,2)×103,还有一个RHP零点(zero)Z,z=+6.1×103,Bode图上,相位总滞后为270°。
开关转换器的传递函数中,有时出现所谓ESR零点,它是指由于滤波电容有等效串联电阻(ESR),使传递函数包含一个ESR零点。
例如式(13-9)所示二阶低通输出滤波器,设电图2 Buck Boost转换器的零、极点分布容C的ESR为Rc,则其传递函数为G(s)有一个LHP零点:z=-1/RcC,称为滤波电容的ESR零点。
(本文转自家居建材网:)。
开关电源各功能电路详解一、开关电源的电路组成。
开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成.辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。
开关电源的电路组成方框图如下:二、输入电路的原理及常见电路.1、AC 输入整流滤波电路原理:① 防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1 组成的电路进行保护。
当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3 会烧毁保护后级电路。
② 输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。
当电源开启瞬间,要对 C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。
因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。
③ 整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。
若C5容量变小,输出的交流纹波将增大.2、 DC 输入滤波电路原理:① 输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。
C3、C4 为安规电容,L2、L3为差模电感.② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。
在起机的瞬间,由于 C6的存在Q2不导通,电流经RT1构成回路。
当C6上的电压充至Z1的稳压值时Q2导通。
如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使 Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。
开关电源原理与分析开关电源是一种将电能进行转换的电源设备。
它通过快速开关器件的控制,将输入电源信号转换为高频脉冲信号,然后经过滤波和稳压电路的处理,输出稳定的直流电压。
开关电源具有体积小、效率高、可靠性强等优点,已广泛应用于各个领域。
一、开关电源工作原理开关电源的主要工作原理是利用开关器件(如晶体管、MOSFET等)的导通和截断特性,在开关状态之间进行快速切换,将输入电源信号转换为高频脉冲信号。
开关电源的核心是开关转换器,包括输入滤波电路、开关管、变压器、输出整流滤波电路等组成。
1. 输入滤波电路输入滤波电路的作用是将输入电源中的高频噪声滤除,保证后续电路的稳定工作。
一般采用电容滤波和电感滤波的方式,将高频噪声滤除。
2. 开关管开关管是开关电源的核心元件之一,负责开关电源的开关操作。
常用的开关管有晶体管、MOSFET等。
开关管在导通和截断状态之间快速切换,将输入电源信号转换为高频脉冲信号。
3. 变压器变压器是开关电源的重要组成部分,用于将高频脉冲信号进行变压变换。
通过变压器的差分传递,从而实现输入输出电压的转换。
变压器通常采用高频变压器,具有体积小、效率高等特点。
4. 输出整流滤波电路输出整流滤波电路负责将高频脉冲信号转换为稳定的直流电压。
一般采用二极管整流和电容滤波的方式,将脉冲波形变为平滑的直流电压。
通过稳压电路对输出电压进行调整,以保证输出的稳定性。
二、开关电源的优点与应用开关电源相比传统的线性电源,具有以下优点:1. 效率高:开关电源的转换效率通常在80%以上,比线性电源高很多,能够更好地节约能源。
2. 体积小:开关电源采用高频脉冲转换,减小了变压器和滤波电容的体积,因此体积小巧,适合应用于有空间限制的场合。
3. 可靠性强:采用开关器件进行转换,工作频率高,寿命长,可靠性较高。
开关电源广泛应用于各个领域,包括但不限于:1. 通信领域:用于通信基站、无线电台等设备的电源供应,具有高效率和稳定性的特点。
BUCK 电路下面分析开关管导通与截至的情况与输出电压的关系,以及电感电流连续状态下器件的选择。
设s V 为输入电压,o V 为输出电压,o I 为负载电流,电感量为L ,开关频率s f 为48KHz ,开关周期为s T ,导通时间为1t =s T D 1,断开时间为s T D t 22=,开关管导通时间为s ON T D t t 11==,开关管截止时间s s O FF T D t T t t 212=-==;sONT T D =1<1,称1D 为导通时间占空比,2D 为截止时间占空比,很明显1D +2D =1。
在输入输出不变的前提下,当开关管导通时,电感电流平均值RV I I OO L ==,电感电流线性上升增量为S OS L T D LV V i 1--=∆ 式(4.1) 当开关管截止时,电感电流L i ∆增量为S SL T D LV i 2-=∆ 式(4.2) 由于稳态时这两个电流变化量相等,即L L i i ∆=∆,所以()LT D V V T D L V S O S S O12-= 式(4.3) 又因为1D +2D =1整理得1D V V S O = 式(4.4)这表明,输出电压O V 随占空比1D 而变化,由于1D <1,故O V <S V ,SOV V 是电压增益,表示为M ,所以BUCK 电路的增益M=SOV V =1D 式(4.5) 电压增益M 由开关管导通时间占空比1D 决定,即BUCK 变换器有很好的控制特性。
电感的选择当电感L 大于临界电感C L 时,电路工作于电感电流连续状态,临界电感CL 为()112D I T V L OSO C -=式(4.6) 电容的参数计算流经电容的电流C i 对电容充电产生的电压o V ∆称为纹波电压o V ∆=LCTD V s o 822 式(4.11)其中2D =11D -在指定纹波电压限值下,需要电容值C 移项得C=os o V L TD V ∆822 式(4.12)二极管的参数计算及器件选择有L I ∆=LT D V so 2可计算得L I ∆,然后计算出峰值电流TP I TP I =o I +*21L I ∆=o I +L T D V so 221反激变换器的缓冲器设计在反激变换器中,引起开关应力高(可导致开关损坏)的原因有两个:一是开关关断时,漏电感引起开关管集电极电压突然升高;二是负载线不够合理。
开关电源的频域分析与综合设计开关电源的瞬态分析与综合方法有时域法和频域法两种。
综合的主要任务有两个:一个是设计开关电源的电压与电流控制器(也称补偿器);二是选定补偿网络的元件参数。
开关电源是一个非线性闭环系统,瞬态性能与控制变量之间表现出很强的非线性关系,所建立的是非线性模型(也称大信号模型)。
利用频域模型(如方块图、传递函数等),在复频域(S域)内对开关电源进行交流小信号分析(或仿真)的最终目的是要检验系统的时域性能指标是否满足要求。
频域分析的方法包括零点极点分析、频域特性和频率响应分析等。
开关电源系统的频域综合分析的一般步骤(1)确定控制方法,电压型控制或电流型控制;(2)画出闭环系统应有(希望)的Bode图;(3)画出变换器功率级电路、电压检测(分压器)、脉宽调制器、驱动电路等的Bode图;(4)将步骤(2)、步骤(3)所得的两个Bode图相减,就可以得到补偿网络应有的Bode图,可以根据该Bode图 来确定补偿网络的主电路和元件参数,因此开关电源系统的设计问题归结为控制电路中补偿网络的设计问题。
时域法综合分析系统的步骤用时域法综合确定自定调节系统的控制器(或补偿网络)参数的步骤如下:(1)当开关电源初步设计完成后,加阶跃负载或阶跃输入电压;(2)测量开关电源样品对加阶跃负载或阶跃输入电压的响应;(3)如果对瞬态响应不满意,或是瞬态响应不满足规定要求时,则要修改控制器(或补偿网络)参数,重复上 述步骤,直到满意为止。
时域法综合法是一种试验法(或试探法),即调试方法。
利用频域进行分析后,仍然要进行调试。
设计一个性能优良的电源除了选择好正确的方案(如拓扑结构,IC 等)外,还应包括储能元件和环路参数 的优化计算。
环路包含电压环和电流环两部分,而电压环与输出电压的调整息息相关,它涉及到系统的负反馈网络,影响系统的稳定度,故它显得尤为重要;现在就让我们一起探讨一下该部分的设计内容。
第一节 与环路相关的基本概念1、转移函数(传递函数)定义为系统输出量除以输入量的比值。