地下水动力学知识点总结
- 格式:docx
- 大小:38.66 KB
- 文档页数:13
地下水动力学复习资料名词解释1、地下水动力学就是研究地下水在孔隙岩石、裂隙岩石、与喀斯特岩石中运动规律的科学。
它就是模拟地下水流基本状态与地下水中溶质运移过程,对地下水从数量与质量上进行定量评价与合理开发利用,以及兴利除害的理论基础。
2、流量:单位时间通过过水断面的水量称为通过该断面的渗流量。
3、渗流速度:假设水流通过整个岩层断面(骨架+空隙)时所具有的虚拟平均流速,定义为通过单位过水断面面积的流量。
4、渗流场:发生渗流的区域称为渗流场。
就是由固体骨架与岩石空隙中的水两部分组成。
5、层流:水质点作有秩序、互不混杂的流动。
6、紊流:水质点作无秩序、互相混杂的流动。
7、稳定流与非稳定流:若流场中所有空间点上一切运动要素都不随时间改变时,称为稳定流,否则称为非稳定流。
8、雷诺数:表征运动流体质点所受惯性力与粘性力的比值。
9、雷诺数的物理意义:水流的惯性力与黏滞力之比。
10、渗透系数:在各项同性介质(均质)中,用单位水力梯度下单位面积上的流量表示流体通过孔隙骨架的难易程度,称之为渗透系数。
11、流网:在渗流场中,由流线与等水头线组成的网络称为流网。
12、折射现象:地下水在非均质岩层中运动,当水流通过渗透系数突变的分界面时,出现流线改变方向的现象。
13、裘布依假设:绝大多数地下水具有缓变流的特点。
14、完整井:贯穿整个含水层,在全部含水层厚度上都安装有过滤器并能全断面进水的井。
15、非完整井:未揭穿整个含水层、只有井底与含水层的部分厚度上能进水或进水部分仅揭穿部分含水层的井。
16、水位降深:抽水井及其周围某时刻的水头比初始水头的降低值。
17、水位降落漏斗:抽水井周围由抽水(排水)而形成的漏斗状水头(水位)下降区,称为降落漏斗。
18、影响半径:就是从抽水井到实际观测不到水位降深处的径向距离。
19、有效井半径:由井轴到井管外壁某一点的水平距离。
在该点,按稳定流计算的理论降深正好等于过滤器外壁的实际降深。
20、井损水流经过滤器的水头损失与在井内向上运动至水泵吸水口时的水头损失,统称为井损。
内容主要有:(1)渗流理论基础;(2)地下水向河渠的稳定运动;(3)地下水向完整井的稳定运动;(4)地下水向完整井的非稳定运动;(5)地下水向边界附近井的稳定和非稳定运动。
重点考核地下水运动的基本概念、基本原理和方法。
题目类型有名词解释、判断题、作图题和计算题等,其中计算题占试题总分数的65%。
《地下水动力学》复习要点第一章 渗流理论基础一、基本内容1、基本概念:多孔介质、贮水率、贮水系数(弹性给水度)、渗流、渗流速度及与实际速度关系、水头(位置水头、测压管水头)、水力坡度、渗透系数、渗透率、导水系数、各向异性介质、各向同性介质、均质与非均质、水流折射原理、流网、dupuit 假设、第一类边界条件、第二类边界条件等2、基本定律:达西定律及适用范围3、描述地下水运动的方程:渗流连续性方程、承压水运动的基本微分方程、潜水运动的基本微分方程、越流含水层地下水非稳定流运动方程4、定解条件(初始条件、边界条件),数值方法基本思想二、要求1、理解并掌握上述概念和理论2、用达西定律分析水头线的变化或根据流网分析水文地质条件变化;3、给定水文地质条件,能正确画出反映地下水运动特点的流网图;4、给定水文地质模型和水文地质条件,写出反映地下水运动的基本方程(给定假设条件,建立数学模型,包括初始条件、边界条件)第二章 河间地块地下水的稳定运动一、基本内容有入渗时河间地块潜水的稳定运动问题(水文地质模型、假设条件、数学模型、流网、任意过水断面流量、分水岭移动规律、水头线)、无入渗时潜水的稳定运动、承压水的稳定运动,水在承压—无压含水层中的运动,非均质含水层中水的运动问题。
二、学习要求根据给定问题的水文地质条件,用相关公式计算过水断面流量或水位。
三、常用公式 1、承压含水层(达西定律) l H H m m kq 21212++= x lH H H H 211--= 2、无入渗潜水含水层(达西定律)l h h h h k q 21212-+= x lh h h h 2122212-+= 3、有入渗时潜水 wx wl l h h k q +--=2122221 )(22122212x lx kw x l h h h h -+-+= 4、分水岭位置 l h h w k l a 222221--= 5、其它流动问题(水平层状含水层、非均质含水层、承压—无压含水层、厚度或水流厚度沿流向变化等)第三章 地下水向完整井的稳定运动一、 基本概念:完整井、不完整井、水井及周围水位(水头)、稳定井流条件(定水头边界、越流、入渗补给)、井损与水跃、影响半径与引用影响半径、叠加原理、均匀流及平面或剖面流网二、学习要求1、掌握地下水向承压水井和潜水井运动问题的假设条件、数学模型、平面或剖面流网特征2、利用有关公式计算抽水量、降深或利用抽水试验资料(已知降深或水位),求含水层参数(导水系数或渗透系数)3、应用叠加原理地下水向完整井群的稳定运动问题。
(完整版)地下⽔动⼒学知识点总结基本问题潜⽔含⽔层的贮⽔能⼒可表⽰为Q=HF;承压含⽔层的贮⽔能⼒可表⽰为Q=HF;式中Q——含⽔层⽔位变化时H的贮⽔能⼒,H——⽔位变化幅度;F——地下⽔位受⼈⼯回灌影响的范围。
从中可以看出,因为承压含⽔层的弹性释⽔系数远远⼩于潜⽔含⽔层的给⽔度,因此在相同条件下进⾏⼈⼯回灌时,潜⽔含⽔层的贮⽔能⼒远远⼤于承压含⽔层的贮⽔能⼒。
⽔跃:抽⽔井中的⽔位与井壁外的⽔位之间存在差值的现象(seepage face)。
井损(well loss)是由于抽⽔井管所造成的⽔头损失。
①井损的存在:渗透⽔流由井壁外通过过滤器或缝隙进⼊抽⽔井时要克服阻⼒,产⽣⼀部分⽔头损失h1。
②⽔进⼊抽⽔井后,井内⽔流井⽔向⽔泵及⽔笼头流动过程中要克服⼀定阻⼒,产⽣⼀部分⽔头差h2。
③井壁附近的三维流也产⽣⽔头差h3。
通常将(h1+h2+h3)统称为⽔跃值.趋于等速下降。
113承压⽔井的Dupuit公式的⽔⽂地质概念模型(1)含⽔层为均质、各向同性,产状⽔平、厚度不变(等厚)、,分布⾯积很⼤,可视为⽆限延伸;或呈圆岛状分布,岛外有定⽔头补给;(2)抽⽔前地下⽔⾯是⽔平的,并视为稳定的;含⽔层中的⽔流服从Darcy’s Law,并在⽔头下降的瞬间将⽔释放出来,可忽略弱透⽔层的弹性释⽔;(3)完整井,定流量抽⽔,在距井⼀定距离上有圆形补给边界,⽔位降落漏⽃为圆域,半径为影响半径;经过较长时间抽⽔,地下⽔运动出现稳定状态;(4)⽔流为平⾯径向流,流线为指向井轴的径向直线,等⽔头⾯为以井为共轴的圆柱⾯,并和过⽔断⾯⼀致;通过各过⽔断⾯的流量处处相等,并等于抽⽔井的流量。
123承压⽔井的Dupuit公式的表达式及符号含义或式中,s w—井中⽔位降深,m;Q—抽⽔井流量,m3/d;M—含⽔层厚度,m;K—渗透系数,m/d;r w—井半径,m;R—影响半径(圆岛半径),m。
133Theim公式的表达式若存在两个观测孔,距离井中⼼的距离分别为r1,r2,⽔位分别为H1,H2,在r1到r2区间积分得:式中s1、s2分别为r1和r2处的⽔位降深。
基本问题潜水含水层的贮水能力可表示为Q=HF;承压含水层的贮水能力可表示为Q=HF;式中Q——含水层水位变化时H的贮水能力,H——水位变化幅度;F——地下水位受人工回灌影响的范围。
从中可以看出,因为承压含水层的弹性释水系数远远小于潜水含水层的给水度,因此在相同条件下进行人工回灌时,潜水含水层的贮水能力远远大于承压含水层的贮水能力。
水跃:抽水井中的水位与井壁外的水位之间存在差值的现象(seepage face)。
井损(well loss)是由于抽水井管所造成的水头损失。
①井损的存在:渗透水流由井壁外通过过滤器或缝隙进入抽水井时要克服阻力,产生一部分水头损失h1。
②水进入抽水井后,井内水流井水向水泵及水笼头流动过程中要克服一定阻力,产生一部分水头差h2。
③井壁附近的三维流也产生水头差h3。
通常将(h1+h2+h3)统称为水跃值.13地下水流向井的稳定运动和非稳定运动的主要区别是什么?(1)从流量看,稳定井流不同断面的流量处处相等,都等于抽水井的流量;而任一断面非稳定井流的流量都不相等,沿着地下水流向流量逐渐增大,直至抽水井处为最大(抽水井的出水量)。
(2)只要给定边界水头和井内水头,就可以确定稳定井流抽水井附近的水头分布,且水头分布不随时间发生变化;非稳定井流抽水井附近的水头分布是随抽水时间而不断发生变化的,例如Theis井流,在抽水初期水头降速快,1/u=1时达到最大,之后降速由大减小,最后趋于等速下降。
113承压水井的Dupuit公式的水文地质概念模型(1)含水层为均质、各向同性,产状水平、厚度不变(等厚)、,分布面积很大,可视为无限延伸;或呈圆岛状分布,岛外有定水头补给;(2)抽水前地下水面是水平的,并视为稳定的;含水层中的水流服从Darcy’s Law,并在水头下降的瞬间将水释放出来,可忽略弱透水层的弹性释水;(3)完整井,定流量抽水,在距井一定距离上有圆形补给边界,水位降落漏斗为圆域,半径为影响半径;经过较长时间抽水,地下水运动出现稳定状态;(4)水流为平面径向流,流线为指向井轴的径向直线,等水头面为以井为共轴的圆柱面,并和过水断面一致;通过各过水断面的流量处处相等,并等于抽水井的流量。
地下⽔动⼒学地下⽔动⼒学要点总结By Zero渗流:地下⽔在岩⽯空隙中或是多孔介质中的流动有效空隙:地下⽔动⼒学中将互相连通的,不为结合⽔所占据的部分空隙叫做有效空隙储⽔系数:表⽰⾯积为1个单位,厚度为整个承压含⽔层的含⽔层柱体,当⽔头改变⼀个单位时,所储存或是释放的⽔量,⽆量纲。
储⽔率:表⽰⾯积为1个单位的承压含⽔层,当厚度为1个单位的时候,⽔头下降⼀个单位时所能释放的⽔量。
给⽔度:是含⽔层的释⽔能⼒。
表⽰单位⾯积的含⽔层,当潜⽔⾯下降⼀个单位长度时在重⼒作⽤下能释放出⽔量。
地下⽔的总⽔头:即地下⽔的总机械能H=Z+P/r⽔⼒坡度:地下⽔动⼒学中,⼤⼩等于梯度值,⽅向沿等⽔头⾯法线所指向的⽔头下降⽅向的⽮量称⽔⼒坡度。
地下⽔流态:包括[层流]、[紊流],判别流态⽤[雷诺数RE判别]Darcy定律的适⽤范围:[在雷诺数RE<1~10之间的某个数值时,即粘滞⼒占优势的层流运动]渗透系数(K):表⽰岩⼟透⽔性能的数量指标。
亦称⽔⼒传导度。
可由达西定律求得:q=KI影响渗透系数的因素:空隙⼤⼩、岩⽯的⾃⾝的性质、渗透液体的物理性质(容重、黏滞性等)渗透率:是表征⼟或岩⽯本⾝传导液体能⼒的参数导⽔系数:即T=KM,它的物理含义是⽔⼒坡度等于1时,通过整个含⽔层厚度的单宽流量。
导⽔系数的概念只能⽤于⼆维的地下⽔流动不能⽤于三维。
岩层透⽔特征的分类:均质、⾮均质、各向同性、各向异性均质:在渗流场中,所有点都具有相同的渗透系数,则称该岩层是均质的,反之为⾮均质。
各向同性:在渗流场中,某⼀点的渗透系数不取决于⽅向,即不管渗流的⽅向如何都具有相同的渗透系数,则称为各向同性,反之为各向异性。
越流系数:当主含⽔层和供给越流的含⽔层间的⽔头差为1个长度单位时,通过主含⽔层和弱透⽔层间单位⾯积上的⽔流量。
定解条件:稳定流的定解条件:基本微分⽅程+边界条件⾮稳定流的定解条件:基本微分⽅程+初始条件+边界条件边界条件的分类:定⽔头边界、定流量边界、混合边界条件稳定流需要的定解条件:基本微分⽅程+边界条件⾮稳定流定解条件:基本微分条件+边界条件+初始条件渗流和空隙中的真实⽔流的区别;⼟壤孔隙度⼩于1,所以渗流流量1、流速⽅⾯渗流速度和地下⽔实际运动速度⽅向不同,速度之间的关系如:v=nu(v渗流速度、n含⽔层的空隙度、u实际评价流速)2、流速⽅向渗流是假象的⽔流,⽽真实⽔流的运动是杂乱⽆章的3、流量⽅⾯渗流流量⼩于实际流量4、⽔头⽅⾯地下⽔总⽔头H=Z+P/r+u^2/(2g) u为地下⽔的流速5、过⽔断⾯完整井:完全贯穿整个含⽔层的井,且在全部含⽔层厚度上都装有过滤器,能全⾯进⽔的井不完整井:未完全贯穿整个含⽔层,只有井底或是井壁含⽔层部分厚度上能进⽔的井不完整井的三种类型:井底进⽔、井壁进⽔、井底和井壁同时进⽔降落漏⽃:在井抽⽔井,以井为中⼼最⼤,离井越远,降深越⼩,总体上形成漏⽃状的⽔头下降去区称为降落漏⽃Dupuit中井径和流量的关系:1】当降深相同时,井径增加同样的幅度,k(渗透系数)⼤的,抽⽔流量⼤2】当对于同⼀岩层(k同),井径增加同样的幅度,⼤降深抽⽔的流量增加的多3】对于同样的岩层和降深,井径越⼤的,再增加井径,抽⽔的流量增⼤的幅度不明显流量和⽔位降深的经验公式类型:直线型(Q=qSw)、抛物线型(Sw=aQ+bQ^2)、幂函数型(Q=qSw^(1/m))、对数型(Q=a+blgSw)对于直线型经验公式,外推降深最⼤范围不能超过抽⽔试验时最⼤降深的1.5倍对于抛物线型、幂函数型和对数曲线型的⽅程,不能超过1.75~3.0倍运⽤叠加原理(线性定解问题)的条件:1】各个边界条件的作⽤彼此独⽴,即边界条件的存在不影响其他边界条件存在时得到的结果2】各抽⽔井的作⽤是独⽴的。
1494247821第一章1多孔介质(Porous medium):地下水动力学中具有空隙的岩石。
广义上包括孔隙介质、裂隙介质和岩溶不十分发育的由石灰岩和白云岩组成的介质,统称为多孔介质。
2多孔介质的性质(1) 孔隙性:有效孔隙和死端孔隙。
孔隙度:是多孔介质中孔隙体积与多孔介质总体积之比(符号为n),n=Vv/V ,可表示为小数或百分数。
有效孔隙:是多孔介质中相互连通的、不为结合水所占据的那一部分孔隙。
有效孔隙度:是多孔介质中有效孔隙体积与多孔介质总体积之比(符号为ne),ne=V e/V 。
死端孔隙:是多孔介质中一端与其它孔隙连通、另一端是封闭的孔隙。
(2) 压缩性:固体颗粒和孔隙的压缩系数推导。
多孔介质中固、液、气三相可共存。
其中固相的成为骨架,气相主要分布在非饱和带中,液相的地下水可以吸着水、薄膜水、毛管水和重力水等形式存在。
3理想渗流等效简化原则:质量等效能量等效4渗流的运动要素:流速压强与水头水力坡度5过水断面:垂直于所有流线的断面,称为渗流断面(过水断面)。
单位时间内通过渗流断面的地下水体积称为渗透流量。
6渗流分类:(1).按运动要素(v,p,H)是否随时间变化,分:稳定流与非稳定流(2).按渗流速度在空间上变化的特点,分一维流、二维流、三维流(3).按地下水质点运动状态的混杂程度,分:层流、紊流与过渡区流态(4).按地下水有无自由表面,分为:承压流、无压流、承压—无压流(5).按岩层透水性以及对地下水所起作用,分隔水层、含水层、透水层(弱透水层)7水力坡度:(1)沿等水头面(线)法线方向的水头变化率,称为水力坡度,(2):大小等于梯度值(dH/dn),方向沿着等水头线的法线方向指向水头降低的方向的矢量定义为水力坡度,记为J。
8:影响渗透系数大小的因素:①岩层空隙性质(孔隙大小、多少);②流体的物理性质决定;渗透率k:表征岩层透水性能的常数,仅仅取决于岩石的性质而与液体的性质无关。
9尺度效应:是指渗透系数与试验范围有关,随着试验范围的增大而增大的现象,K=K(x)。
地下水动力学复习资料1. 地下水动力学是研究地下水在孔隙岩石、裂隙岩石、和喀斯特岩石中运动规律的科学。
它是模拟地下水流基本状态和地下水中溶质运移过程,对地下水从数量和质量上进行定量评价和合理开发利用,以及兴利除害的理论基础。
2. 地下水在空隙介质中的运动称为渗透,而概化后的假象水流是流动于整个含水层中,此时称为渗流;描述地下水运动特征的物理量,如渗流速度、渗流量、水头等,他们是时间和空间的连续函数。
3. 渗透压力:又称动水压力,是指在渗流方向上水对单位体积土的压力。
4.渗透压力对岩、土体稳定性的影响随渗流方向不同而异。
如坝基下当渗流方向与重力一致时,渗透力能提高岩土体稳定性;如与重力方向相反,则将减小颗粒间压力,即产生扬压力对土体稳定不利。
5.流量:单位时间通过过水断面的水量称为通过该断面的渗流量。
6.渗流速度:假设水流通过整个岩层断面(骨架+空隙)时所具有的虚拟平均流速,定义为通过单位过水断面面积的流量。
7.渗流场:发生渗流的区域称为渗流场。
是由固体骨架和岩石空隙中的水两部分组成。
8. 层流:水质点作有秩序、互不混杂的流动。
9. 紊流:水质点作无秩序、互相混杂的流动。
10. 稳定流与非稳定流:若流场中所有空间点上一切运动要素都不随时间改变时,称为稳定流,否则称为非稳定流。
11.雷诺数:表征运动流体质点所受惯性力和粘性力的比值。
12.雷诺数的物理意义:水流的惯性力与黏滞力之比。
13.湿周:过流截面与固体边界相接触的线段长度。
14.水力半径:过流截面面积与对应湿周的比值。
15.渗透系数:在各项同性介质(均质)中,用单位水力梯度下单位面积上的流量表示流体通过孔隙骨架的难易程度,称之为渗透系数。
16. 在渗流场中,由流线和等水头线组成的网络称为流网。
17.渗透率是表征岩土本身固有传导液体能力的参数,其大小与孔隙度、液体渗透方向上空隙的几何形状、颗粒大小以及排列方向等因素有关,而与在介质中运动的液体性质无关18. 渗透系数与渗透率的差别在于:渗透率是与空隙介质的物理性质相关的量,而渗透系数是与空隙介质物理性质和渗透液体物理性质相关的量。
基本问题
趋于等速下降。
⑴含水层为均质、各向同性,产状水平、厚度不变(等厚)、,分布面积很大,可视为无限延伸;或呈圆岛状分布,岛外有定水头补给;
(2)抽水前地下水面是水平的,并视为稳定的;含水层中的水流服从
Darcy' s Law,并在水头下降的瞬间将水释放出来,可忽略弱透水层
的弹性释水;
(3)完整井,定流量抽水,在距井一定距离上有圆形补给边界,水位降落漏斗为圆域,半径为影响半径;经过较长时间抽水,地下水运动出现稳定状态;
(4)水流为平面径向流,流线为指向井轴的径向直线,等水头面为以井为共轴的圆柱面,并和过水断面一致;通过各过水断面的流量处处相
等,并等于抽水井的流量。
In—
12 承压水井的Dupuit
公式的表达式及符号
含义
式中,S w—井中水位降深,m;
Q —抽水井流量,m3/d ;
M —含水层厚度,m;
K —渗透系数,m/d;
r w—井半径,m;
R—影响半径(圆岛半径),m
13 3 Theim公式的表达式若存在两个观测孔,距离井中心的距离分别为
H2,在r1到r2区间积分得:
门,「2,水位分别为H1,
承压水井的Dupuit
公式的水文地质概念
模型
11
规律
得到贮存量的补给。
(2)由于沿途含水层的释放作用,使得渗流速度小于稳定状态的渗 流速度。
但随着时间的增加,又接近稳定渗流速度。
在无越流补给且侧向无限延伸的承压含水层中抽水时,
虽然理论上不
可能出现稳定状态,但随着抽水时间的增加,降落漏斗范围不断向外 扩展,自含水层四周向水井汇流的面积不断增大,水井附
近地下水测 压水头的变化渐渐趋于缓慢,在一定的范围内,接近稳定状态(似稳 定
流),和稳定流的降落曲线形状相同。
但是,这不能说明地下水头降落以达稳定。
由Theis 公式两端取对数,得到
二式右端的第二项在同一次抽水试验中都是常数。
因此,在双对数坐
标系内,对于定流量抽水 " 和 --标准曲线在形状上是
相同的,只是纵横坐标平移了 4池 心 距离而已。
只要将二曲
线重合,任选一匹配点,记下对应的坐标值,代入
(4-10)式(4-11 )式
即可确定有关参数。
此法称为降深-时间距离配线法。
同理,由实际资料绘制的s-t 曲线和与s-厂
曲线,分别与
ir (u )一 丄
::和W (u )-u 标准曲线有相似的形状。
因此,可以利用一
个观测孔不同时刻的降深值,在双对数纸上绘出s-t 曲线和
曲线,进行拟合,此法称为降深 -时间配线法。
如果有三个以上的观测孔,可以取 t 为定值,利用所有观测孔的降深
值,在双对数纸上绘出 s# 实际资料曲线与 W ( u ) - u 标准曲线拟
合,称为降深-距离配线法。
20
Theis 公式反应的影
响半径
21
Theis 配线法的原理
254
有越流补给的承压水完整
井公式的适用条件
(1 )越流系统中每一层都是均质各向同性,无限延伸的第一类越流系统,含水层底部水平,含水层和弱透水层都是等厚的;
(2)含水层中水流服从Darcy定律;
(3)虽然发生越流,但相邻含水层在抽水过程中水头保持不变(这在径流条件比较好的含水层中不难达到);
(4)弱透水层本身的弹性释水可以忽略,通过弱透水层的水流可视为垂向一维流;
(5)抽水含水层天然水力坡度为零,抽水后为平面径向流;
(6)抽水井为完整井,井径无限小,定流量抽水。
S -磊XT
其中,
f、
- rI
u—严
47k
有越流补给的承压水式中s——抽水井的水位降深,m;
264完整井公式
-Hantush-Jacob 公Q ――抽水井的流量,m3/d ;
式
T――含水层的导水系数,m2/d ;
心〕
1 序』――越流井函数,不考虑相邻弱透水层弹性释水时越流系
统的井函数;
B 越流因素,m;
r ——到抽水井的距离,m;
a ----- 含水层的导压系数,m2/d;
*——含水层的弹性是水系数;
t――自抽水开始起算的时间,d。
(1 )抽水早期,降深曲线同Theis曲线一致。
这表明越流尚未进入主
含水层,抽水量几乎全部来自主含水层的弹性释水。
在理论上和Theis
曲线一致。
(2)抽水中期,因水位下降变缓而开始偏离Theis曲线,说明越流已
越流完整井流公式反经开始进入抽水含水层。
这时,抽水量由两部分组成:一是抽水含水
274应的降深-时间曲线层的弹性释水,二是越流补给,因此,越流含水层的降深小于无越流的形状5r
含水层的降深,而且随叫增大(即£ 越大),越流含水层的降深比无
越流含水层的降深小得越多。
(3)抽水后期,曲线趋于水平直线,抽水量与越流补给量平衡,表示非
稳定流已转化为稳定流。
越流含水层水位下降速度比无越流含水层慢。
越流完整井流公式反
284
映的水头下降速度与无越流含水层一样,当t足够大时,在一定的范围内,水位下降速
度是相同的。
①在单对数坐标纸上绘制S-Igt曲线,用外推法确定最大降深S max,
并用(4-43)式计算拐点处降深S p;
②根据s p确定拐点位置,并从图上读出拐点出现的时间t p;
③ 做拐点P处曲线的切线,并从图上确定拐点P处的斜率i p;
有一个观测孔时,越
294流含水层抽水试验的
小〕和/值;
④求出有关数值后,查表确定
单孔拐点法求参步骤
r
r
⑤根据必值求B值:
1
按下式分别计算T和"值:
13Q 叫 g T
-t = e , =-
H眄胁叫矿
⑥验证,因为图解出的S max和S p常有较大的随意性而引起误差,所以进行验证是必要的。
将所求得的参数代入越流井流公式,并给岀不同的t值,计算理论深降。
然后把它同实测降深比较,如果不吻合,则应重新图解计算。
①绘每个观测孔的s-lgt曲线,并从图上确定每条曲线直线段的斜率
逐■近似地代替拐点处的斜率。
②根据各孔的斜率作r电■曲线,应为一条直线。
取该直线的斜率,
得:
③ 将r-lgi p直线段延长交横轴于一点,读得r=0时的(卞)。
304有多个观测孔时,越
流含水层抽水试验的缶F ,把它代入下式:
多孔拐点法求参步骤
_ 230 T
④ 将所求得的B、T代入有关公式,计算出不同观测孔的拐点处降深:
利用"止从s-lgt曲线上读得t p值,然后按下式算出各孔的"值:
B F
最后取其平均值。