人教版高中数学知识与巩固·函数及其表示方法(基础)
- 格式:doc
- 大小:1020.12 KB
- 文档页数:15
●备课资料在近几年的高考题中,我们发现考查函数思想方法的题目较多,选用的题目经常源自生产、生活的实际,也经常用到函数的知识、方法及思想,这就要我们在对函数的学习中,一定要认识函数思想的实质,强化函数的应用意识.1.对函数知识、方法及思想的应用[例1]经市场调查,某商品在近100天内,其销售量和价格均是时间t 的函数,且销售量近似地满足关系g(t )=-31t +3109(t ∈N *,0<t ≤100),在前40天内价格为f (t )=41t +22(t∈N *,0≤t ≤40),在后60天内价格为f (t )=-21t +52(t ∈N *,40<t ≤100),求这种商品的日销售额的最大值(近似到1元).分析:弄清“日销量”“价格”“日销额”这三个概念以建立它们之间的函数关系式.解:前40天内日销售额为:S =(41t +22)(-31t +3109) =-121t 2+47t +77931 ∴S =-121(t -10.5)2+4837849 后60天内日销售额为:S =(-21t +52)(-31t +3109) =61t 2-6213t +35668 ∴S =61(t -106.5)2-2425 ∴得函数关系式S =⎪⎪⎩⎪⎪⎨⎧N ∈≤<--N ∈≤<+--*)10040(2425)5.106(61*)400(4837849)5.10(12122t t t t t t 且且 由上式可知:对于0<t ≤40且t ∈N *,有当t =10或11时,S max ≈809对于40<t ≤100且t ∈N *,有当t =41时,S max =714.综上所述得:当t =10或11时,S max ≈809答:第10天或11天日售额最大值为809元[例2]某中学高一年级学生李鹏,对某蔬菜基地的收益作了调查,该蔬菜基地种植西红柿,由历年市场行情得知,从2月1日起的300天内,西红柿市场售价与上市时间的关系用图一的一条折线表示;西红柿的种植成本与上市时间的关系用图二的抛物线段表示,试解答下列问题.(注:市场售价和种植成本的单位:元/102kg ,时间单位:天)(1)写出图一表示的市场售价间接函数关系P =f (t ).写出图二表示的种植成本与时间的函数关系式Q =g (t )(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?解:(1)由图一可得市场售价间接函数关系为,f (t )=⎩⎨⎧≤≤-≤≤-)300200(,3002)2000(,300t t t t 由图二可得种植成本间接函数关系式为g (t )=2001(t -150)2+100,(0≤t ≤300) (2)设t 时刻的纯收益为h (t ),则由题意得h (t )=f (t )-g(t )即h (t )=⎪⎪⎩⎪⎪⎨⎧≤<-+-≤≤++-)300200(,21025722001)2000(,217521200122t t t t t t 当0≤t ≤200时,得h (t )=-2001(t -50)2+100 ∴当t =50时,h (t )取得在t ∈[0,200]上的最大值100; 当200<t ≤300时,得h (t )=-2001(t -350)2+100 ∴当t =300时,h (t )取得在t ∈(200,300]上的最大值87.5 综上所述由100>87.5可知,h (t )在t ∈[0,300]上可以取得最大值是100,此时t =50,即从2月1日开始的第50天时,上市的西红柿收益最大.评述:(1)以上两例都是考查用数学中函数知识思想、方法去解决实际问题的能力,注意其中关键词的理解,正确找出函数关系式.求最值时配方法是一种常用方法.(2)应用题是高考热点问题,且应用题的具体内容可以多种多样,千变万化,而抽象其数量关系,并建立函数关系式是具有普遍意义的方法.(3)数学应用题因其具有没有固定的背景与题型,难以摸拟分类的特点,也就更接近于我们的生产和实际生活.所以应用题是考查学生创新意识和创新能力的难得的有效题型,同时也不失为提高学生分析问题和解决问题能力的好题型.所以,我们广大师生应加强这一方面的训练,清除心理负面影响,以积极的姿态,迎接数学应用题的挑战,以适应高考的改革要求.二、“应用数学”的能力训练季节性服装当季节即将来临时,价格呈上升趋势,设某服装开始时定价为10元,并且每周(7天)涨价2元,5周后开始保持20元的价格平稳销售;10周后当季节即将过去时,平均每周削价2元,直到16周末,该服装已不再销售.(1)试建立价格P 与周次t 之间的函数关系式.(2)若此服装每件进价Q 与周次t 之间的关系为Q =-0.125(t -8)2+12,t ∈[0,16],t ∈N *.试问该服装第几周每件销售利润L 最大?解:(1)P = ⎪⎩⎪⎨⎧∈∈-∈∈∈∈+*]16,10[ ,240*]10,5[,20*[0,5) , 210N N N t t t t t t t t 且且且 (2)因每件销售利润=售价-进价,即L =P -Q 。
第二章函数高考导航知识网络2.1函数的概念及表示法典例精析题型一 求函数的解析式【例1】 (1)已知f(x +1)=x2+x +1,求f (x)的表达式; (2)已知f(x)+2f(-x)=3x2+5x +3,求f (x)的表达式. 【解析】(1)设x +1=t ,则x =t -1,代入得f (x)=(t -1)2+(t -1)+1=t2-t +1,所以f (x)=x2-x +1. (2)由f (x)+2f (-x)=3x2+5x +3,x 换成-x ,得f (-x)+2 f (x)=3x2-5x +3,解得f (x)=x2-5x +1.【点拨】已知f(x),g(x),求复合函数f[g(x)]的解析式,直接把f(x)中的x 换成g(x)即可,已知f[g(x)],求f (x)的解析式,常常是设g(x)=t ,或者在f[g(x)]中凑出g(x),再把g(x)换成x.【变式训练1】已知f (x x +-11)=2211x x +-,求f (x)的解析式.【解析】设x x +-11=t ,则x =t t +-11,所以f (t)=22)11(1)11(1t t tt +-++--=212t t +, 所以f (x)=212x x+(x≠-1).题型二 求函数的定义域【例2】(1)求函数y =229)2lg(x x x --的定义域;(2)已知f(x)的定义域为[-2,4],求f(x2-3x)的定义域. 【解析】(1)要使函数有意义,则只需要⎩⎨⎧>->-,09,0222x x x 即⎩⎨⎧<<-<>,33,02x x x 或解得-3<x <0或2<x <3,故所求的定义域为(-3,0)∪(2,3).(2)依题意,只需-2≤x2-3x≤4,解得-1≤x≤1或2≤x≤4,故f(x2-3x)的定义域为[-1,1]∪[2,4].【点拨】有解析式的函数的定义域是使解析式有意义的自变量的取值范围,往往列不等式组求解.对于抽象函数f[g(x)]的定义域要把g(x)当作f(x)中的x 来对待.【变式训练2】已知函数f (2x)的定义域为[-1,1],求f(log2x)的定义域.【解析】因为y =f(2x)的定义域为[-1,1],即-1≤x≤1时2-1≤2x≤21,所以y =f(x)的定义域为[12,2].令12≤log2x≤2,所以2≤x≤22=4,故所求y =f(log2x)的定义域为[2,4].题型三 由实际问题给出的函数【例3】 用长为l 的铁丝弯成下部为矩形,上部为半圆形的框架(如图),若矩形底部长为2x ,求此框围成的面积y 与x 的函数关系式,并指出其定义域.【解析】由题意知,此框架围成的面积是由一个矩形和一个半圆组成的图形的面积,而矩形的长AB =2x ,设宽为a ,则有2x +2a +πx =l ,即a =2l -2πx -x ,半圆的半径为x , 所以y =22πx +(2l -π2x -x)·2x =-(2+π2)x2+lx.由实际意义知2l -π2x -x >0,因x >0,解得0<x <π+2l. 即函数y =-(2+π2)x2+lx 的定义域是{x|0<x <π+2l}.【点拨】求由实际问题确定的定义域时,除考虑函数的解析式有意义外,还要考虑使实际问题有意义.如本题使函数解析式有意义的x 的取值范围是x ∈R ,但实际问题的意义是矩形的边长为正数,而边长是用变量x 表示的,这就是实际问题对变量的制约.【变式训练3】一张正方形的纸片,剪去两个一样的小矩形得到一个“E”形图案,如图所示,设小矩形的长、宽分别为x 、y ,剪去部分的面积为20,若2≤x≤10,记y =f(x),则y =f(x)的图象是( )【解析】由题意得y =10x (2≤x≤10),选A. 题型四 分段函数【例4】 已知函数f(x)=⎩⎨⎧≥+<+).0(1),0(32x x x x(1)求f(1)+f(-1)的值; (2)若f(a)=1,求a 的值;(3)若f(x)>2,求x 的取值范围.【解析】(1)由题意,得f(1)=2,f(-1)=2,所以f(1)+f(-1)=4. (2)当a <0时,f(a)=a +3=1,解得a =-2;当a≥0时,f(a)=a2+1=1,解得a =0. 所以a =-2或a =0. (3)当x <0时,f(x)=x +3>2,解得-1<x <0; 当x≥0时,f(x)=x2+1>2,解得x >1. 所以x 的取值范围是-1<x <0或x >1.【点拨】分段函数中,x 在不同的范围内取值时,其对应的函数关系式不同.因此,分段函数往往需要分段处理.【变式训练4】已知函数f(x)=⎪⎩⎪⎨⎧>+-≤<.10,621,100|,lg |x x x x 若a ,b ,c 互不相等,且f(a)=f(b)=f(c),则abc 的取值范围是( )A.(1,10)B.(5,6)C.(10,12)D.(20,24)【解析】不妨设a <b <c ,由f(a)=f(b)=f(c)及f(x)图象知110<a <1<b <10<c <12,所以-lg a =lg b =-12c +6,所以ab =1,所以abc 的范围为(10,12),故选C. 总结提高1.在函数三要素中,定义域是灵魂,对应法则是核心,因为值域由定义域和对应法则确定,所以两个函数当且仅当定义域与对应法则均相同时才表示同一个函数,而值域相同是两函数为同一函数的必要非充分条件.2.若一个函数在其定义域不同的子集上,解析式不同,则可用分段函数的形式表示.3.函数的三种表示法各有利弊,一般情况下,研究函数要求出函数的解析式,通过解析式来解题.求函数解析式的方法有:配方法、观察法、换元法和待定系数法等.。
第二章函数的概念与基本初等函数Ⅰ第一节函数及其表示一、基础知识1.函数与映射的概念2.函数的有关概念(1)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.求函数定义域的策略(1)确定函数的定义域常从解析式本身有意义,或从实际出发.(2)如果函数y=f(x)是用表格给出,则表格中x的集合即为定义域.(3)如果函数y=f(x)是用图象给出,则图象在x轴上的投影所覆盖的x的集合即为定义域.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.两函数值域与对应关系相同时,两函数不一定相同.(4)函数的表示法:表示函数的常用方法有:解析法、图象法、列表法.3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.关于分段函数的3个注意(1)分段函数虽然由几个部分构成,但它表示同一个函数.(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.(3)各段函数的定义域不可以相交.考点一 函数的定义域[典例] (1)(2019·长春质检)函数y =ln1-x x +1+1x的定义域是( ) A .[-1,0)∪(0,1) B .[-1,0)∪(0,1] C .(-1,0)∪(0,1]D .(-1,0)∪(0,1)(2)已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ) A .(-1,1) B.⎝⎛⎭⎫-1,-12 C .(-1,0)D.⎝⎛⎭⎫12,1[解析] (1)由题意得⎩⎪⎨⎪⎧1-x >0,x +1>0,x ≠0,解得-1<x <0或0<x <1.所以原函数的定义域为(-1,0)∪(0,1).(2)令u =2x +1,由f (x )的定义域为(-1,0),可知-1<u <0,即-1<2x +1<0, 得-1<x <-12.[答案] (1)D (2)B [解题技法]1.使函数解析式有意义的一般准则(1)分式中的分母不为0; (2)偶次根式的被开方数非负; (3)y =x 0要求x ≠0;(4)对数式中的真数大于0,底数大于0且不等于1; (5)正切函数y =tan x ,x ≠k π+π2(k ∈Z);(6)实际问题中除考虑函数解析式有意义外,还应考虑实际问题本身的要求. 2.抽象函数的定义域问题(1)若已知函数f (x )的定义域为[a ,b ],其复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]上的值域. [题组训练] 1.函数f (x )=1lnx +1+4-x 2的定义域为( ) A .[-2,0)∪(0,2] B .(-1,0)∪(0,2] C .[-2,2]D .(-1,2]解析:选B 由⎩⎪⎨⎪⎧x +1>0,ln x +1≠0,4-x 2≥0,得-1<x ≤2,且x ≠0.2.若函数y =f (x )的定义域是[1,2 019],则函数g (x )=f x +1x -1的定义域是________________.解析:因为y =f (x )的定义域是[1,2 019],所以若g (x )有意义,应满足⎩⎪⎨⎪⎧1≤x +1≤2 019,x -1≠0,所以0≤x ≤2 018,且x ≠1.因此g (x )的定义域是{x |0≤x ≤2 018,且x ≠1}. 答案:{x |0≤x ≤2 018,且x ≠1}考点二 求函数的解析式[典例] (1)已知二次函数f (2x +1)=4x 2-6x +5,求f (x ); (2)已知函数f (x )满足f (-x )+2f (x )=2x ,求f (x ). [解] (1)法一:待定系数法因为f (x )是二次函数,所以设f (x )=ax 2+bx +c (a ≠0),则f (2x +1)=a (2x +1)2+b (2x +1)+c =4ax 2+(4a +2b )x +a +b +c .因为f (2x +1)=4x 2-6x +5, 所以⎩⎪⎨⎪⎧4a =4,4a +2b =-6,a +b +c =5,解得⎩⎪⎨⎪⎧a =1,b =-5,c =9,所以f (x )=x 2-5x +9(x ∈R). 法二:换元法令2x +1=t (t ∈R),则x =t -12,所以f (t )=4⎝⎛⎭⎫t -122-6·t -12+5=t 2-5t +9(t ∈R),所以f (x )=x 2-5x +9(x ∈R). 法三:配凑法因为f (2x +1)=4x 2-6x +5=(2x +1)2-10x +4=(2x +1)2-5(2x +1)+9, 所以f (x )=x 2-5x +9(x ∈R).(2)解方程组法由f (-x )+2f (x )=2x , ① 得f (x )+2f (-x )=2-x ,② ①×2-②,得3f (x )=2x +1-2-x . 即f (x )=2x +1-2-x3.故f (x )的解析式是f (x )=2x +1-2-x3(x ∈R).[解题技法] 求函数解析式的4种方法及适用条件 (1)待定系数法先设出含有待定系数的解析式,再利用恒等式的性质,或将已知条件代入,建立方程(组),通过解方程(组)求出相应的待定系数.(2)换元法对于形如y =f (g (x ))的函数解析式,令t =g (x ),从中求出x =φ(t ),然后代入表达式求出f (t ),再将t 换成x ,得到f (x )的解析式,要注意新元的取值范围.(3)配凑法由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式.(4)解方程组法已知关于f (x )与f ⎝⎛⎭⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).[提醒] 由于函数的解析式相同,定义域不同,则为不相同的函数,因此求函数的解析式时,如果定义域不是R ,一定要注明函数的定义域.[题组训练]1.[口诀第2句]已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,则f (x )=________________.解析:设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx . 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x (x ∈R).答案:12x 2+12x (x ∈R)2.[口诀第3句]已知f ⎝⎛⎭⎫2x +1=lg x ,则f (x )=________________.解析:令2x +1=t ,得x =2t -1,则f (t )=lg 2t -1,又x >0,所以t >1,故f (x )的解析式是f (x )=lg2x -1(x >1). 答案:lg2x -1(x >1) 3.[口诀第4句]已知f (x )满足2f (x )+f ⎝⎛⎭⎫1x =3x ,则f (x )=________. 解析:∵2f (x )+f ⎝⎛⎭⎫1x =3x ,①把①中的x 换成1x ,得2f ⎝⎛⎭⎫1x +f (x )=3x.② 联立①②可得⎩⎨⎧2f x +f ⎝⎛⎭⎫1x =3x ,2f ⎝⎛⎭⎫1x +f x =3x,解此方程组可得f (x )=2x -1x(x ≠0).答案:2x -1x (x ≠0)考点三 分段函数考法(一) 求函数值[典例] (2019·石家庄模拟)已知f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,a x +b ,x ≤0(0<a <1),且f (-2)=5,f (-1)=3,则f (f (-3))=( )A .-2B .2C .3D .-3[解析] 由题意得,f (-2)=a -2+b =5,①f (-1)=a -1+b =3,②联立①②,结合0<a <1,得a =12,b =1,所以f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,⎝⎛⎭⎫12x +1,x ≤0,则f (-3)=⎝⎛⎭⎫12-3+1=9,f (f (-3))=f (9)=log 39=2. [答案] B[解题技法] 求分段函数的函数值的策略(1)求分段函数的函数值时,要先确定要求值的自变量属于哪一区间,然后代入该区间对应的解析式求值;(2)当出现f (f (a ))的形式时,应从内到外依次求值;(3)当自变量的值所在区间不确定时,要分类讨论,分类标准应参照分段函数不同段的端点.考法(二) 求参数或自变量的值(或范围)[典例] (2018·全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0)[解析] 法一:分类讨论法①当⎩⎪⎨⎪⎧x +1≤0,2x ≤0,即x ≤-1时,f (x +1)<f (2x ),即为2-(x +1)<2-2x,即-(x +1)<-2x ,解得x <1. 因此不等式的解集为(-∞,-1].②当⎩⎪⎨⎪⎧x +1≤0,2x >0时,不等式组无解.③当⎩⎪⎨⎪⎧x +1>0,2x ≤0,即-1<x ≤0时,f (x +1)<f (2x ),即为1<2-2x,解得x <0.因此不等式的解集为(-1,0).④当⎩⎪⎨⎪⎧x +1>0,2x >0,即x >0时,f (x +1)=1,f (2x )=1,不合题意.综上,不等式f (x +1)<f (2x )的解集为(-∞,0). 法二:数形结合法∵f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1,x >0,∴函数f (x )的图象如图所示. 结合图象知,要使f (x +1)<f (2x ), 则需⎩⎪⎨⎪⎧x +1<0,2x <0,2x <x +1或⎩⎪⎨⎪⎧x +1≥0,2x <0, ∴x <0,故选D. [答案] D[解题技法]已知函数值(或范围)求自变量的值(或范围)的方法(1)根据每一段的解析式分别求解,但要注意检验所求自变量的值(或范围)是否符合相应段的自变量的取值范围,最后将各段的结果合起来(求并集)即可;(2)如果分段函数的图象易得,也可以画出函数图象后结合图象求解.[题组训练]1.设f (x )=⎩⎨⎧x ,0<x <1,2x -1,x ≥1,若f (a )=f (a +1),则f ⎝⎛⎭⎫1a =( ) A .2 B .4 C .6D .8解析:选C 当0<a <1时,a +1>1,f (a )=a ,f (a +1)=2(a +1-1)=2a , ∵f (a )=f (a +1),∴a =2a , 解得a =14或a =0(舍去).∴f ⎝⎛⎭⎫1a =f (4)=2×(4-1)=6.当a ≥1时,a +1≥2,f (a )=2(a -1),f (a +1)=2(a +1-1)=2a , ∵f (a )=f (a +1),∴2(a -1)=2a ,无解. 综上,f ⎝⎛⎭⎫1a =6.2.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x ≤1,f x -1,x >1,则f (f (3))=________.解析:由题意,得f (3)=f (2)=f (1)=21=2, ∴f (f (3))=f (2)=2. 答案:23.(2017·全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝⎛⎭⎫x -12>1的x 的取值范围是________.解析:由题意知,可对不等式分x ≤0,0<x ≤12,x >12讨论.①当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,故-14<x ≤0.②当0<x ≤12时,原不等式为2x +x +12>1,显然成立.③当x >12时,原不等式为2x +2x -12>1,显然成立.综上可知,所求x 的取值范围是⎝⎛⎭⎫-14,+∞. 答案:⎝⎛⎭⎫-14,+∞ 4.设函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是____________.解析:若a <0,则f (a )<1⇔⎝⎛⎭⎫12a-7<1⇔⎝⎛⎭⎫12a <8,解得a >-3,故-3<a <0; 若a ≥0,则f (a )<1⇔a <1,解得a <1,故0≤a <1. 综上可得-3<a <1. 答案:(-3,1)[课时跟踪检测]1.下列所给图象是函数图象的个数为( )A .1B .2C .3D .4解析:选B ①中当x >0时,每一个x 的值对应两个不同的y 值,因此不是函数图象;②中当x =x 0时,y 的值有两个,因此不是函数图象;③④中每一个x 的值对应唯一的y 值,因此是函数图象.故选B.2.函数f (x )=2x -1+1x -2的定义域为( ) A .[0,2)B .(2,+∞)C .[0,2)∪(2,+∞)D .(-∞,2)∪(2,+∞)解析:选C 由题意得⎩⎪⎨⎪⎧2x -1≥0,x -2≠0,解得x ≥0,且x ≠2.3.已知f ⎝⎛⎭⎫12x -1=2x -5,且f (a )=6,则a 等于( ) A.74 B .-74C.43D .-43解析:选A 令t =12x -1,则x =2t +2,f (t )=2(2t +2)-5=4t -1,则4a -1=6,解得a =74.4.(2019·贵阳检测)下列函数中,同一个函数的定义域与值域相同的是( ) A .y =x -1 B .y =ln x C .y =13x -1D .y =x +1x -1解析:选D 对于A ,定义域为[1,+∞),值域为[0,+∞),不满足题意;对于B ,定义域为(0,+∞),值域为R ,不满足题意;对于C ,定义域为(-∞,0)∪(0,+∞),值域为(-∞,-1)∪(0,+∞),不满足题意;对于D ,y =x +1x -1=1+2x -1,定义域为(-∞,1)∪(1,+∞),值域也是(-∞,1)∪(1,+∞).5.(2018·福建期末)已知函数f (x )=⎩⎪⎨⎪⎧log 2x +a ,x >0,4x -2-1,x ≤0.若f (a )=3,则f (a -2)=( )A .-1516B .3C .-6364或3D .-1516或3解析:选A 当a >0时,若f (a )=3,则log 2a +a =3,解得a =2(满足a >0);当a ≤0时,若f (a )=3,则4a -2-1=3,解得a =3,不满足a ≤0,所以舍去.于是,可得a =2.故f (a -2)=f (0)=4-2-1=-1516.6.已知函数y =f (2x -1)的定义域是[0,1],则函数f 2x +1log 2x +1的定义域是( )A .[1,2]B .(-1,1] C.⎣⎡⎦⎤-12,0 D .(-1,0)解析:选D 由f (2x -1)的定义域是[0,1], 得0≤x ≤1,故-1≤2x -1≤1, ∴f (x )的定义域是[-1,1], ∴要使函数f 2x +1log 2x +1有意义,需满足⎩⎪⎨⎪⎧-1≤2x +1≤1,x +1>0,x +1≠1,解得-1<x <0.7.下列函数中,不满足f (2 018x )=2 018f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +2D .f (x )=-2x解析:选C 若f (x )=|x |,则f (2 018x )=|2 018x |=2 018|x |=2 018f (x );若f (x )=x -|x |,则f (2 018x )=2 018x -|2 018x |=2 018(x -|x |)=2 018f (x );若f (x )=x +2,则f (2 018x )=2 018x +2,而2 018f (x )=2 018x +2 018×2,故f (x )=x +2不满足f (2 018x )=2 018f (x );若f (x )=-2x ,则f (2 018x )=-2×2 018x =2 018×(-2x )=2 018f (x ).故选C.8.已知具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数: ①f (x )=x -1x ;②f (x )=x +1x ;③f (x )=⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是( ) A .①② B .①③ C .②③D .①解析:选B 对于①,f (x )=x -1x ,f ⎝⎛⎭⎫1x =1x-x =-f (x ),满足题意;对于②,f ⎝⎛⎭⎫1x =1x +x=f (x ),不满足题意;对于③,f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧ 1x ,0<1x <1,0,1x =1,-x ,1x >1,即f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧ 1x ,x >1,0,x =1,-x ,0<x <1,故f ⎝⎛⎭⎫1x =-f (x ),满足题意.综上可知,满足“倒负”变换的函数是①③. 9.(2019·青岛模拟)函数y =ln ⎝⎛⎭⎫1+1x +1-x 2的定义域为________. 解析:由⎩⎪⎨⎪⎧ 1+1x >0,1-x 2≥0⇒⎩⎪⎨⎪⎧x <-1或x >0,-1≤x ≤1⇒0<x ≤1. 所以该函数的定义域为(0,1].答案:(0,1]10.(2019·益阳、湘潭调研)若函数f (x )=⎩⎨⎧ lg 1-x ,x <0,-2x ,x ≥0,则f (f (-9))=________. 解析:∵函数f (x )=⎩⎨⎧ lg 1-x ,x <0,-2x ,x ≥0,∴f (-9)=lg 10=1,∴f (f (-9))=f (1)=-2. 答案:-211.(2018·张掖一诊)已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于________.解析:∵f (1)=2,且f (1)+f (a )=0,∴f (a )=-2<0,故a ≤0. 依题知a +1=-2,解得a =-3.答案:-312.已知f (x )=⎩⎪⎨⎪⎧ 12x +1,x ≤0,-x -12,x >0,使f (x )≥-1成立的x 的取值范围是________. 解析:由题意知⎩⎪⎨⎪⎧ x ≤0,12x +1≥-1或⎩⎪⎨⎪⎧ x >0,-x -12≥-1,解得-4≤x ≤0或0<x ≤2,故所求x 的取值范围是[-4,2].答案:[-4,2]13.设函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <0,2x ,x ≥0,且f (-2)=3,f (-1)=f (1). (1)求函数f (x )的解析式;(2)在如图所示的直角坐标系中画出f (x )的图象.解:(1)由f (-2)=3,f (-1)=f (1),得⎩⎪⎨⎪⎧ -2a +b =3,-a +b =2, 解得⎩⎪⎨⎪⎧ a =-1,b =1,所以f (x )=⎩⎪⎨⎪⎧-x +1,x <0,2x ,x ≥0. (2)函数f (x )的图象如图所示.。
人教版函数知识点总结一、函数的定义1.1 函数的基本概念函数是一种特殊的关系,它将每一个自变量映射到唯一的因变量上。
在数学中,我们通常用f(x)表示函数,其中x为自变量,f(x)为因变量。
1.2 函数的符号表示在函数的定义中,我们通常通过符号来表示函数。
例如,y=f(x)、y=g(x)等。
1.3 函数的定义域和值域函数的定义域是指自变量的取值范围,值域是指因变量的取值范围。
在函数的图像中,定义域通常对应横坐标的取值范围,值域对应纵坐标的取值范围。
1.4 函数的判定确定一个关系是否为函数,可以通过水平线测试或者垂直线测试来进行判断。
如果任意一条垂直线只与图像相交一次,则该关系是函数。
1.5 函数的表示方法函数可以通过一张表格、一条曲线、一个公式等方式进行表示。
在实际应用中,我们通常通过表格、曲线等方式来描述函数的性质和特点。
二、函数的性质2.1 奇函数与偶函数奇函数指的是满足f(-x)=-f(x)的函数,偶函数指的是满足f(-x)=f(x)的函数。
奇函数通常以原点对称,偶函数通常以y轴对称。
2.2 单调递增与单调递减单调递增指的是当自变量增大时,因变量也随之增大;单调递减指的是当自变量增大时,因变量却减小。
单调递增函数通常在定义域内是一个递增的曲线,单调递减函数则是一个递减的曲线。
2.3 周期函数周期函数指的是具有周期性的函数,它在一个周期内重复自身。
常见的周期函数有正弦函数和余弦函数。
2.4 反函数函数f(x)的反函数通常表示为f^(-1)(x),它满足f(f^(-1)(x))=x和f^(-1)(f(x))=x的性质。
反函数是原函数的镜像,它的定义域和值域与原函数互换。
三、函数的图像3.1 直角坐标系中的函数图像在直角坐标系中,函数的图像通常用曲线来表示。
曲线的形状与函数的性质密切相关,通过观察曲线的变化可以了解函数的单调性、奇偶性、周期性等性质。
3.2 参数方程中的函数图像在参数方程中,函数的图像通常用参数的取值来表示。
高中数学学习材料马鸣风萧萧 *整理制作函数及其表示方法【学习目标】(1) 会用集合与对应的语言刻画函数,会求一些简单函数的定义域和值域,初步掌握换元法的简单运用.(2)能正确认识和使用函数的三种表示法:解析法,列表法和图象法.了解每种方法的优点.在实际情境中,会根据不同的需要选择恰当的方法表示函数.(3)求简单分段函数的解析式;了解分段函数及其简单应用.【要点梳理】要点一、函数的概念1.函数的定义设 A、B 是非空的数集,如果按照某个确定的对应关系 f ,使对于集合 A 中的任意一个数 x,在集合 B 中都有唯一确定的数 f(x) 和它对应,那么就称 f:A →B 为从集合 A 到集合 B 的一个函数 .记作: y=f(x),x A.其中, x 叫做自变量,x 的取值范围 A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合 {f(x)|x A} 叫做函数的值域.要点诠释:( 1)A、 B 集合的非空性;( 2)对应关系的存在性、唯一性、确定性;(3)A中元素的无剩余性;(4)B中元素的可剩余性。
2.构成函数的三要素:定义域、对应关系和值域①构成函数的三个要素是定义域、对应关系和值域. 由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全—致,即称这两个函数相等( 或为同一函数 ) ;②两个函数相等当且仅当它们的定义域和对应关系完全—致,而与表示自变量和函数值的字母无关.3.区间的概念(1) 区间的分类:开区间、闭区间、半开半闭区间;(2) 无穷区间;(3) 区间的数轴表示.区间表示:{ x | a x b} ( a, b);{x|a≤ x≤ b}=[a,b];{ x | a x b}a,b ;{ x | a x b}a, b ;{ x | x b}- ,b ;{ x | a x}a,.要点二、函数的表示法1.函数的三种表示方法:解析法:用数学表达式表示两个变量之间的对应关系.优点:简明,给自变量求函数值.图象法:用图象表示两个变量之间的对应关系.优点:直观形象,反应变化趋势.列表法:列出表格来表示两个变量之间的对应关系.优点:不需计算就可看出函数值.2.分段函数:分段函数的解析式不能写成几个不同的方程,而应写函数几种不同的表达式并用个左大括号括起来,并分别注明各部分的自变量的取值情况.要点三、映射与函数1. 映射定义:设 A、B 是两个非空集合,如果按照某个对应法则 f ,对于集合 A 中的任何一个元素,在集合 B 中都有唯一的元素和它对应,这样的对应叫做从 A 到 B 的映射;记为 f :A→ B.象与原象:如果给定一个从集合 A 到集合 B 的映射,那么 A 中的元素 a 对应的 B 中的元素 b 叫做 a 的象, a 叫做 b 的原象 .要点诠释:(1)A 中的每一个元素都有象,且唯一;(2)B 中的元素未必有原象,即使有,也未必唯一;(3)a的象记为f(a).2. 如何确定象与原象对于给出原象要求象的问题,只需将原象代入对应关系中,即可求出象. 对于给出象,要求原象的问题,可先假设原象,再代入对应关系中得已知的象,从而求出原象;也可根据对应关系,由象逆推出原象.3. 函数与映射的区别与联系:设 A、B 是两个非空数集,若 f : A→B 是从集合 A 到集合 B 的映射,这个映射叫做从集合 A 到集合 B 的函数,记为 y=f(x).要点诠释:(1)函数一定是映射,映射不一定是函数;(2)函数三要素:定义域、值域、对应法则;(3)B 中的元素未必有原象,即使有原象,也未必唯一;(4)原象集合 =定义域,值域 =象集合 .4. 函数定义域的求法(1) 当函数是以解析式的形式给出时,其定义域就是使函数解析式有意义的自变量的取值的集合. 具体地讲,就是考虑分母不为零,偶次根号的被开方数、式大于或等于零,零次幂的底数不为零以及我们在后面学习时碰到的所有有意义的限制条件 .(2) 当函数是由实际问题给出时,其定义域不仅要考虑使其解析式有意义,还要有实际意义.(3)求函数的定义域,一般是转化为解不等式或不等式组的问题,注意定义域是一个集合,其结果必须用集合或区间来表示 .5. 函数值域的求法实际上求函数的值域是个比较复杂的问题,虽然给定了函数的定义域及其对应法则以后,值域就完全确定了,但求值域还是特别要注意讲究方法,常用的方法有:观察法:通过对函数解析式的简单变形,利用熟知的基本函数的值域,或利用函数的图象的“最高点” 和“最低点”,观察求得函数的值域;配方法:对二次函数型的解析式可先进行配方,在充分注意到自变量取值范围的情况下,利用求二次函数的值域方法求函数的值域;判别式法:将函数视为关于自变量的二次方程,利用判别式求函数值的范围,常用于一些“分式”函数等;此外,使用此方法要特别注意自变量的取值范围;换元法:通过对函数的解析式进行适当换元,将复杂的函数化归为几个简单的函数,从而利用基本函数的取值范围来求函数的值域 .求函数的值域没有通用的方法和固定的模式,除了上述常用方法外,还有最值法、数形结合法等 . 总之,求函数的值域关键是重视对应法则的作用,还要特别注意定义域对值域的制约.【典型例题】类型一、函数的概念例 1:下列式子是否能确定y 是x的函数?( 1)x2 y2 2;( 2)x 1 y 1 1;( 3)y x 2 1 x .【答案】( 1)不能(2)能(3)不能【解析】(1)由x2 y2 2, 得 y 2 x2 ,因此由它不能确定y 是x的函数,如当 x 1 时,由它所确定的y 值有两个,即 y= 1 .( 2)由x 1 y 1 1, 得 y (1 x 1) 2 1 ,当 x 在 x | x 1 中任取一个值时,由它可以确定唯一的y 值与之对应,故由它可以确定y 是x的函数 .( 3)由x 2 0,得 x ,1 x 0故由它不能确定y 是x的函数 .【总结升华】判断由一个式子是否能确定y 是x的函数的程序是:对于由式子有意义所确定的x 的取值的集合中任意一个x 的值,由式子是否可确定唯一的一个y 的值与之对应,也可以看由式子解出的x 的解析式是否唯一. 也就是“取元的任意性,取值的唯一性” . 即自变量在定义域内取任意一个值,其函数值必须对应着唯一的值 .【高清课程:函数的概念与定义域356673 例 2】例 2.下列函数 f ( x)与 g( x)是否表示同一个函数,为什么?( 1)f (x) ( x 1)0; g( x) 1( 2)f (x) x ;g( x) x 2( 3)f (x) x 2; g(x ) (x 1)2( 4)f ( x) | x | ;g(x ) x 2【思路点拨】对于根式、分式、绝对值式,要先化简再判断,在化简时要注意等价变形,否则等号不成立.【答案】( 1)不是( 2)不是( 3)不是( 4)是【解析】(1) f ( x)与 g( x) 的定义域不同,前者是x | x 1, x R ,后者是x | x 0, x R ,因此是不同的函数;(2) g (x)| x |,因此 f (x)与 g( x) 的对应关系不同,是不同的函数;(3) f ( x)与 g( x) 的对应关系不同,因此是不相同的函数;(4) f ( x)与 g( x) 的定义域相同,对应关系相同,是同一函数.系的本质特征. 只有当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一函数,换言之就是:(1)定义域不同,两个函数也就不同;(2)对应法则不同,两个函数也是不同的.(3)即使定义域和值域都分别相同的两个函数,它们也不一定是同一函数,因为函数的定义域和值域不能唯一地确定函数的对应法则 .举一反三:【变式 1】判断下列命题的真假x 2 1(1)y=x-1 与y 是同一函数;x 1(2)y x 2与y=|x|是同一函数;(3) y (3 x ) 3与 y ( x ) 2 是同一函数;(4) f (x ) x 2 x (x 0)2 -|x| 是同一函数 . x 2 x(x与 g(x)=x0)【答案】 (1) 、 (3) 是假命题,(2) 、 (4) 是真命题【解析】从函数的定义及三要素入手判断是否是同一函数,有(1) 、 (3) 是假命题, (2) 、 (4) 是真命题 . 类型二、函数定义域的求法例 3. 求下列函数的定义域( 用区间表示 ).(1) f (x) x -1(2) f ( x) 3x -8 ;(3) f ( x) 2 - x1.;x 6 x2 -3【思路点拨】由定义域概念可知定义域是使函数有意义的自变量的取值范围. (1) 是分式,只要分母不为0 即可; (2) 是二次根式,需根式有意义;(3) 只要使得根式和分式都有意义即可.【答案】( 1)( , 3) ( 3, 3) ( 3, )(2)8, ( 3)6,23【解析】(1) f ( x) x 1的定义域为 x2-3 ≠ 0,x 3,定义域为:( , 3) ( 3, 3) (3, );x2 3(2) f ( x) 3x -8,由 3x -8 0得, x 8 , 定义域为8 , ;3 3(3) f ( x) 2 x 1 2 x 0 x 2定义域为6,2. x 6,由6得x -6x 0【总结升华】使解析式有意义的常见形式有①分式分母不为零;②偶次根式中,被开方数非负. 当函数解析式是由多个式子构成时,要使这多个式子对同一个自变量x 有意义,必须取使得各式有意义的各个不等式的解集的交集,因此,要列不等式组求解.举一反三:【变式 1】求下列函数的定义域(用区间表示):(1) f (x) 3 ;(2) f (x) 1 x 3 ;(3) f ( x) 1 x x .| x 1| x 12【解析】(1) 当 |x-1|-2=0 ,即 x=-1 或 x=3 时, 3 无意义,当 |x-1|-2 ≠0,即 x≠ -1 且 x≠ 3 时,分式有意义,1| 2| x所以函数的定义域是(- ∞, -1) ∪ (-1 ,3) ∪ (3 ,+∞ ) ;(2)要使函数有意义,须使(3)要使函数有意义,须使x 1 0x且13,1 (1, ) ;,即,所以函数的定义域是x 3 0 3 x1 x 0,x 0. ,所以函数的定义域为 0,1 .【总结升华】小结几类函数的定义域:(1) 如果 f(x)是整式,那么函数的定义域是实数集R;(2)如果 f(x) 是分式,那么函数的定义域是使分母不等于零的实数的集合;(3)如果 f(x) 是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数的集合;(4) 如果 f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合;( 即求各集合的交集)(5)满足实际问题有意义 .类型三、求函数的值及值域例 4. 已知 f(x)=2x 2-3x-25 , g(x)=2x-5 ,求:(1)f(2) ,g(2) ;(2)f(g(2)) , g(f(2)) ;(3)f(g(x)) , g(f(x))【思路点拨】根据函数符号的意义,可以知道f(g(2)) 表示的是函数f(x) 在 x=g(2) 处的函数值,其它同理可得.【答案】( 1) -23 ,-1 ;( 2) -20 , -51 ;( 3)2 2.8x -46x+40 , 4x -6x-55【解析】(1)f(2)=2 × 22-3 × 2-25=-23 ; g(2)=2 × 2-5=-1 ;(2)f(g(2))=f(-1)=2 × (-1) 2-3 × (-1)-25=-20 ;g(f(2))=g(-23)=2 × (-23)-5=-51 ;(3)f(g(x))=f(2x-5)=2 × (2x-5) 2-3 ×(2x-5)-25=8x 2-46x+40 ;g(f(x))=g(2x 2-3x-25)=2 × (2x 2-3x-25)-5=4x 2-6x-55.【总结升华】求函数值时,遇到本例题中(2)(3)( 这种类型的函数称为复合函数,一般有里层函数与外层函数之分,如 f(g(x)) ,里层函数就是g(x) ,外层函数就是 f(x) ,其对应关系可以理解为x g g( x) f f ( g( x)) ,类似的g(f(x)) 为 x f f ( x) g g( f ( x)) ,类似的函数,需要先求出最里层的函数值,再求出倒数第二层,直到最后求出最终结果.例 5. 求值域(用区间表示):(1)y=x 2-2x+4 ,①x;②x2 ,;4 , 1 3(2)f ( x) x2 - 2x 3; (3) f (x) x - 2 .x 3【答案】(1) [7 ,28] [3 ,12] ;( 2)2, ;(3)(- ∞, 1) ∪(1 ,+∞) .【解析】(1)法一:配方法求值域.y x22x 4 ( x 1)2 3 ,①当x4, 1 时,y max28, y min7 ,∴值域为[7,28];②当x2,3 时, y max12, y min 3 ,∴值域为[3,12].法二:图象法求值域二次函数图象(如下图)的开口向上,对称轴为x 1 ,所以函数在区间,1 上单调递减,在区间1, 上单调递增.所以①当x4, 1 时,值域为[7,28];②当 x2,3 时,值域为[3,12].(2) y x2 - 2 x 3 ( x -1)2 2 2, 值域为2,;(3) y x - 2 x 3 - 5 1- 5 , 5 0, y 1 ,∴函数的值域为(- ∞, 1) ∪ (1 ,+∞ ).x 3 x 3 x 3 x 3【总结升华】( 1)求函数的值域问题关键是将解析式作变形,通过观察或利用熟知的基本函数的值域,逐步推出函数的值域.(2)求函数的值域没有固定的方法和模式,要靠自己经验的积累,掌握规律.求函数的值域不但要重视对应关系(解析式)的作用,而且要注意定义域对值域的制约作用.别忘了,函数的图象在求函数的值域中也起着十分重要的作用.举一反三:【变式 1】求下列函数的值域:( 1)y x 1;(2)y 2x 1;( 3)y1 x2 ;( 4)y 5 4x x2 .x3 1 x2【答案】(1)1, ;( 2)y | y 2 ;( 3)1,1 ;(4) 0,3 .【解析】(1)x 0, x 1 1,即所求函数的值域为1, ;( 2)y 2x 1 2x 6 7 2(x 3) 727,70 , y 2 ,即函数的值域为y | y 2 ;x 3 x 3 x 3 x 3 x 31 x212( 3)yx2 x21 1函数的定义域为Rx2 1 1, 0 2 2, 1 1 2 1 ,y 1,1 ,即函数的值域为1,1 .1 x2 1 x2( 4)y 5 4 x x2 ( x 2)2 90 (x 2)2 9 9所求函数的值域为0,3 .类型四、映射与函数【高清课程:函数的概念与定义域例 1】例 6. 判断下列对应哪些是从集合 A 到集合 B 的映射,哪些是从集合 A 到集合 B 的函数?应.( 2) A={平面内的三角形 } , B={平面内的圆 } ,对应法则是:作三角形的外接圆;( 3) A=N , B={0, 1} ,对应法则是:除以 2 的余数;( 4) A={0 , 1,2} , B={4, 1, 0} ,对应法则是 f : x y x 2 ( 5) A={0 , 1,2} , B={0, 1, 1 } ,对应法则是 f :x1 y2x【思路点拨】根据映射定义分析是否满足“A 中任意”和“B 中唯一”.【解析】(1) 是映射,不是函数,因为集合A 、B 不是数集,是点集;(2) 是映射,集合 A 中的任意一个元素 ( 三角形 ) ,在集合 B 中都有唯一的元素 ( 该三角形的外接圆 ) 与之对应,这是因为不共线的三点可以确定一个圆;不是函数.(3) 是映射,也是函数,函数解析式为f ( x)0,( x 2n).1,(x 2n1)( 4)是映射,也是函数.( 5)对于集合 A 中的元素“ 0”,由对应法则“取倒数”后,在集合B 中没有元素与它对应,所以不是映射,也不是函数.【总结升华】 判断一个对应是不是映射和函数, 要根据映射和函数的定义去判断,函数一定是映射, 反过来,映射不一定是函数,从数集到数集的映射才是函数.举一反三:【变式 1】下列对应哪些是从 A 到 B 的映射?是从 A 到 B 的一一映射吗?是从A 到B 的函数吗?(1)A=N , B={1 ,-1} , f :x y=(-1) x ; (2)A=N , B=N +, f : x y=|x-3| ; (3)A=R , B=R , f : xy 1 x ;(4)A=Z , B=N , f : x y=|x| 1 x; (5)A=N , B=Z , f : x y=|x| ; (6)A=N , B=N , f : x y=|x|.【解析】 (1) 、 (4) 、 (5) 、 (6) 是从 A 到 B 的映射也是从 A 到 B 的函数,但只有 (6) 是从 A 到 B 的一一映射;(2) 、 (3) 不是从 A 到 B 的映射也不是从 A 到 B 的函数 . 类型五、函数解析式的求法例 7. 求函数的解析式(1) 若 f ( x) x 2 2 x ,求 f (2 x 1) ;(2) 若 f ( x1) 2x21,求 f (x) ;(3) 已知 f ( x)2 f ( 1) 3x 2 ,求 f ( x) .x2【答案】( 1) f ( x) 4x 28x 3 ;( 2) f (x) 2x 2 4x 3 ;( 3) f (x)x2 . 【解析】求函数的表达式可由两种途径.x(1) 用代入法, f (2 x 1)(2 x 1)2 2(2 x 1) 4x 2 8x 3.(2) 法一:换元法22即: f ( x) 2x 2 4x 3 .法二:凑配法f ( x 1) 2x 2 1= 2( x 1)24( x 1) 3,所以 f (x) 2x 24x 3 .(3)f ( x) 2 f ( 1 ) 3x 2 ①,用 1代替上式中的 x ,得 f ( 1 ) 2 f ( x)3 2 ②x f ( 1) ,得 x xx由①②联立,消去2xf ( x)x 2x22 .故所求的函数为 f ( x)xx【总结升华】( 1)由 yf ( x) 求 y fg ( x) ,一般使用代入法; (2)凑配法和换元法有时可以并用,而换元法更具有一般性,同时,在使用换元法时一定要注意新元的取值范围;( 3)若解析式中的两个变量具有互为倒数或互为相反数的特征,可联立方程组用消元法解出yf (x) 的解析式.举一反三:【变式 1】已知 f(x+1)=x 2+4x+2,求 f(x) .【答案】 f(x)=x 2+2x-1【解析】 (1)( 法 1)f(x+1)=x2+4x+2=(x+1) 2+2(x+1)-1∴ f(x)=x 2+2x-1 ;( 法 2) 令 x+1=t ,∴ x=t-1 ,∴ f(t)=(t-1) 22+4(t-1)+2=t +2t-1∴ f(x)=x 2+2x-1 ;2( 法 3) 设 f(x)=ax +bx+c 则2f(x+1)=a(x+1) +b(x+1)+c ∴ a(x+1) 2+b(x+1)+c=x 2+4x+2a 1 a 12a b 4 b 2 f (x ) x 2 2x 1 ;a b c 2c1【总结升华】求函数解析式常用方法:(1) 换元法; (2) 配凑法; (3) 定义法; (4) 待定系数法等 . 注意:用换元法解求对应法则问题时,要关注新变元的范围 .类型六、函数的图象例 8. 作出下列函数的图象 .( 1) y1 x(x { 2, 1,0,1,2}) ;(2) y2x1;( 3)y | x 22x | 1 .x 1【思路点拨】先把要画的函数图象进行变形,依据所学习过的基本函数图象,通过函数图象的平移、对称和翻折得到要求的图象。
人教版高中数学知识与巩固·函数及其表示方法(基础)【学习目标】(1)会用集合与对应的语言刻画函数,会求一些简单函数的定义域和值域,初步掌握换元法的简单运用.(2)能正确认识和使用函数的三种表示法:解析法,列表法和图象法.了解每种方法的优点.在实际情境中,会根据不同的需要选择恰当的方法表示函数.(3)求简单分段函数的解析式;了解分段函数及其简单应用.【要点梳理】要点一、函数的概念1.函数的定义设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.要点诠释:(1)A、B集合的非空性;(2)对应关系的存在性、唯一性、确定性;(3)A中元素的无剩余性;(4)B中元素的可剩余性。
2.构成函数的三要素:定义域、对应关系和值域①构成函数的三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全—致,即称这两个函数相等(或为同一函数);②两个函数相等当且仅当它们的定义域和对应关系完全—致,而与表示自变量和函数值的字母无关.3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.区间表示:<<= {x|a≤x≤b}=[a,b];x a x b a b{|}(,);(]{|},≤<=;x a x b a b{|},x a x b a b<≤=;[)(][)≤=∞≤=+∞.x x b b x a x a{|}-,; {|},要点二、函数的表示法1.函数的三种表示方法:解析法:用数学表达式表示两个变量之间的对应关系.优点:简明,给自变量求函数值.图象法:用图象表示两个变量之间的对应关系.优点:直观形象,反应变化趋势.列表法:列出表格来表示两个变量之间的对应关系.优点:不需计算就可看出函数值.2.分段函数:分段函数的解析式不能写成几个不同的方程,而应写函数几种不同的表达式并用个左大括号括起来,并分别注明各部分的自变量的取值情况.要点三、映射与函数1.映射定义:设A、B是两个非空集合,如果按照某个对应法则f,对于集合A中的任何一个元素,在集合B中都有唯一的元素和它对应,这样的对应叫做从A到B的映射;记为f:A→B.象与原象:如果给定一个从集合A到集合B的映射,那么A中的元素a对应的B中的元素b叫做a的象,a叫做b的原象.要点诠释:(1)A中的每一个元素都有象,且唯一;(2)B 中的元素未必有原象,即使有,也未必唯一;(3)a 的象记为f(a).2.如何确定象与原象对于给出原象要求象的问题,只需将原象代入对应关系中,即可求出象.对于给出象,要求原象的问题,可先假设原象,再代入对应关系中得已知的象,从而求出原象;也可根据对应关系,由象逆推出原象.3.函数与映射的区别与联系:设A 、B 是两个非空数集,若f :A →B 是从集合A 到集合B 的映射,这个映射叫做从集合A 到集合B 的函数,记为y=f(x).要点诠释:(1)函数一定是映射,映射不一定是函数;(2)函数三要素:定义域、值域、对应法则;(3)B 中的元素未必有原象,即使有原象,也未必唯一;(4)原象集合=定义域,值域=象集合.4.函数定义域的求法(1)当函数是以解析式的形式给出时,其定义域就是使函数解析式有意义的自变量的取值的集合.具体地讲,就是考虑分母不为零,偶次根号的被开方数、式大于或等于零,零次幂的底数不为零以及我们在后面学习时碰到的所有有意义的限制条件.(2)当函数是由实际问题给出时,其定义域不仅要考虑使其解析式有意义,还要有实际意义.(3)求函数的定义域,一般是转化为解不等式或不等式组的问题,注意定义域是一个集合,其结果必须用集合或区间来表示.5.函数值域的求法实际上求函数的值域是个比较复杂的问题,虽然给定了函数的定义域及其对应法则以后,值域就完全确定了,但求值域还是特别要注意讲究方法,常用的方法有:观察法:通过对函数解析式的简单变形,利用熟知的基本函数的值域,或利用函数的图象的“最高点”和“最低点”,观察求得函数的值域;配方法:对二次函数型的解析式可先进行配方,在充分注意到自变量取值范围的情况下,利用求二次函数的值域方法求函数的值域;判别式法:将函数视为关于自变量的二次方程,利用判别式求函数值的范围,常用于一些“分式”函数等;此外,使用此方法要特别注意自变量的取值范围;换元法:通过对函数的解析式进行适当换元,将复杂的函数化归为几个简单的函数,从而利用基本函数的取值范围来求函数的值域.求函数的值域没有通用的方法和固定的模式,除了上述常用方法外,还有最值法、数形结合法等.总之,求函数的值域关键是重视对应法则的作用,还要特别注意定义域对值域的制约.【典型例题】类型一、函数的概念例1:下列式子是否能确定y 是x 的函数?(1)222;x y +=(21;=(3)y =【答案】(1)不能 (2)能(3)不能【解析】(1)由222,x y +=得y =,因此由它不能确定y 是x 的函数,如当1x =时,由它所确定的y 值有两个,即y=1±.(21,得2(11y =+,∴当x 在{}|1x x ≥中任取一个值时,由它可以确定唯一的y 值与之对应,故由它可以确定y 是x 的函数.(3)由20,10x x -≥⎧⎨-≥⎩得x ∈∅, 故由它不能确定y 是x 的函数.【总结升华】判断由一个式子是否能确定y 是x 的函数的程序是:对于由式子有意义所确定的x 的取值的集合中任意一个x 的值,由式子是否可确定唯一的一个y 的值与之对应,也可以看由式子解出的x 的解析式是否唯一.也就是“取元的任意性,取值的唯一性” .即自变量在定义域内取任意一个值,其函数值必须对应着唯一的值.例2.下列函数f (x )与g (x )是否表示同一个函数,为什么?(1)0)1x ()x (f -=;1)x (g =(2)x )x (f =;2x )x (g =(3)2x )x (f =;2)1x ()x (g +=(4)|x |)x (f =;2x )x (g =【思路点拨】对于根式、分式、绝对值式,要先化简再判断,在化简时要注意等价变形,否则等号不成立.【答案】(1)不是(2)不是(3)不是(4)是【解析】(1) ()()f x g x 与的定义域不同,前者是{}|1,x x x R ≠∈,后者是全体实数,因此是不同的函数;(2)()||g x x =,因此()()f x g x 与的对应关系不同,是不同的函数;(3) ()()f x g x 与的对应关系不同,因此是不相同的函数;(4) ()()f x g x 与的定义域相同,对应关系相同,是同一函数.【总结升华】函数概念含有三个要素,即定义域,值域和对应法则f ,其中核心是对应法则f ,它是函数关系的本质特征.只有当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一函数,换言之就是:(1)定义域不同,两个函数也就不同;(2)对应法则不同,两个函数也是不同的.(3)即使定义域和值域都分别相同的两个函数,它们也不一定是同一函数,因为函数的定义域和值域不能唯一地确定函数的对应法则.举一反三:【变式1】判断下列命题的真假(1)y=x-1与1x 1x y 2+-=是同一函数; (2)2x y =与y=|x|是同一函数; (3)233)x (y )x (y ==与是同一函数;(4)⎪⎩⎪⎨⎧<+≥-=)0x (x x )0x (x x )x (f 22与g(x)=x 2-|x|是同一函数. 【答案】(1)、(3)是假命题,(2)、(4)是真命题【解析】从函数的定义及三要素入手判断是否是同一函数,有(1)、(3)是假命题,(2)、(4)是真命题.类型二、函数定义域的求法例3.求下列函数的定义域:(1)y =;(2)y = (3)0y = 【思路点拨】(1)要使函数y =有意义,则开偶次方根被开方数大于等于0,列出不等式组求出定义域;(2)要使函数y =0,分式的分母不等0,列出不等式组求出定义域;(3)利用x 0有意义需x ≠0,开偶次方根被开方数大于等于0,分母不为0,列出不等式组求出定义域.【答案】(1)[―8,3];(2){-1};(3)(-∞,0)【解析】(1)要使函数y =有意义,则8030x x +≥⎧⎨-≥⎩ , 解得:-8≤x ≤3.故函数的定义域为[―8,3](2)要使函数y = 则22101010x x x ⎧-≥⎪-≥⎨⎪-≠⎩,解得:x =―1.故函数的定义域为{-1}.(3)要使函数0y = 则10||0x x x -≠⎧⎨->⎩, 解得:x <0.故函数的定义域为(-∞,0).【总结升华】使解析式有意义的常见形式有①分式分母不为零;②偶次根式中,被开方数非负.当函数解析式是由多个式子构成时,要使这多个式子对同一个自变量x 有意义,必须取使得各式有意义的各个不等式的解集的交集,因此,要列不等式组求解.举一反三:【变式1】求下列函数的定义域(用区间表示):(1)3f (x)|x 1|2=--; (2)1f (x)x 1=-;(3)()f x =【答案】(1)(-∞,-1)∪(-1,3)∪(3,+∞);(2)[)3,1(1,)-⋃+∞;(3)[]0,1.【解析】(1)当|x-1|-2=0,即x=-1或x=3时,3|x 1|2--无意义,当|x-1|-2≠0,即x ≠-1且x ≠3时,分式有意义,所以函数的定义域是(-∞,-1)∪(-1,3)∪(3,+∞);(2)要使函数有意义,须使x 10x 3x 1x 30-≠⎧≥-≠⎨+≥⎩,即且,所以函数的定义域是[)3,1(1,)-⋃+∞;(3)要使函数有意义,须使1x 0,x 0.-≥⎧⎨≥⎩,所以函数的定义域为[]0,1. 【总结升华】小结几类函数的定义域:(1)如果f(x)是整式,那么函数的定义域是实数集R ;(2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合;(3)如果f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数的集合;(4)如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合;(即求各集合的交集)(5)满足实际问题有意义.类型三、求函数的值及值域例4. 已知f(x)=2x 2-3x-25,g(x)=2x-5,求:(1)f(2),g(2); (2)f(g(2)),g(f(2)); (3)f(g(x)),g(f(x))【思路点拨】根据函数符号的意义,可以知道f(g(2))表示的是函数f(x)在x=g(2)处的函数值,其它同理可得.【答案】(1)-23,-1;(2)-20,-51;(3)8x 2-46x+40,4x 2-6x-55.【解析】(1)f(2)=2×22-3×2-25=-23;g(2)=2×2-5=-1;(2)f(g(2))=f(-1)=2×(-1)2-3×(-1)-25=-20;g(f(2))=g(-23)=2×(-23)-5=-51;(3)f(g(x))=f(2x-5)=2×(2x-5)2-3×(2x-5)-25=8x 2-46x+40;g(f(x))=g(2x 2-3x-25)=2×(2x 2-3x-25)-5=4x 2-6x-55.【总结升华】求函数值时,遇到本例题中(2)(3)(这种类型的函数称为复合函数,一般有里层函数与外层函数之分,如f(g(x)),里层函数就是g(x),外层函数就是f(x),其对应关系可以理解为()(())g f x g x f g x −−→−−→,类似的g(f(x))为()(())f gx f x g f x −−→−−→,类似的函数,需要先求出最里层的函数值,再求出倒数第二层,直到最后求出最终结果.例 5. 求值域(用区间表示):(1)y=x 2-2x+4,①[]4,1x ∈--;②[]2,3x ∈-;-2(2)()()3x f x f x x ==+.【答案】(1)[7,28] [3,12];(2))+∞;(3)(-∞,1)∪(1,+∞).【解析】(1)法一:配方法求值域.2224(1)3y x x x =-+=-+,①当[]4,1x ∈--时,max min 28,7y y ==,∴值域为[7,28];②当[]2,3x ∈-时,max min 12,3y y ==,∴值域为[3,12].法二:图象法求值域二次函数图象(如下图)的开口向上,对称轴为1x =,所以函数在区间(],1-∞上单调递减,在区间[)1,+∞上单调递增.所以①当[]4,1x ∈--时,值域为[7,28];②当[]2,3x ∈-时,值域为[3,12].(2))22-23(-1)22,2,y x x x ⎡=+=+∴+∞⎣值域为; (3)-23-5551-,0,13333x x y y x x x x +===≠∴≠++++,∴函数的值域为(-∞,1)∪(1,+∞). 【总结升华】(1)求函数的值域问题关键是将解析式作变形,通过观察或利用熟知的基本函数的值域,逐步推出函数的值域.(2)求函数的值域没有固定的方法和模式,要靠自己经验的积累,掌握规律.求函数的值域不但要重视对应关系(解析式)的作用,而且要注意定义域对值域的制约作用.别忘了,函数的图象在求函数的值域中也起着十分重要的作用.举一反三:【变式1】 求下列函数的值域:(1)1y x =;(2)213x y x +=-;(3)2211x y x -=+;(4)254y x x =+- 【答案】(1)[)1,+∞;(2){}|2y y ≠;(3)(]1,1-;(4)[]0,3.【解析】(1)0,11x x ≥≥,即所求函数的值域为[)1,+∞; (2)213x y x +=-2672(3)772333x x x x x -+-+===+---,703x ≠-,2y ∴≠,即函数的值域为{}|2y y ≠; (3)2211x y x -=+2211x =-++ 函数的定义域为R22211,021x x ∴+≥∴<≤+,221111x ∴-<-+≤+,(]1,1y ∴∈-,即函数的值域为(]1,1-. (4)25(2)9y x =+=--+20(2)99x ≤--+≤∴所求函数的值域为[]0,3.类型四、映射与函数例6. 判断下列对应哪些是从集合A 到集合B 的映射,哪些是从集合A 到集合B 的函数?(1)A={直角坐标平面上的点},B={(x ,y )|,x R y R ∈∈},对应法则是:A 中的点与B 中的(x ,y )对应.(2)A={平面内的三角形},B={平面内的圆},对应法则是:作三角形的外接圆;(3)A=N ,B={0,1},对应法则是:除以2的余数;(4)A={0,1,2},B={4,1,0},对应法则是f :2x y x =→(5)A={0,1,2},B={0,1,12},对应法则是f :x 1y x =→ 【思路点拨】根据映射定义分析是否满足“A 中任意”和“B 中唯一”.【解析】(1)是映射,不是函数,因为集合A 、B 不是数集,是点集;(2)是映射,集合A 中的任意一个元素(三角形),在集合B 中都有唯一的元素(该三角形的外接圆)与之对应,这是因为不共线的三点可以确定一个圆;不是函数.(3)是映射,也是函数,函数解析式为0,(2)()1,(21)x n f x x n =⎧=⎨=+⎩.(4)是映射,也是函数.(5)对于集合A 中的元素“0”,由对应法则“取倒数”后,在集合B 中没有元素与它对应,所以不是映射,也不是函数.【总结升华】判断一个对应是不是映射和函数,要根据映射和函数的定义去判断,函数一定是映射,反过来,映射不一定是函数,从数集到数集的映射才是函数.举一反三:【变式1】下列对应哪些是从A 到B 的映射?是从A 到B 的一一映射吗?是从A 到B 的函数吗?(1)A=N ,B={1,-1},f :x →y=(-1)x ;(2)A=N ,B=N +,f :x →y=|x-3|;(3)A=R ,B=R ,;x1x 1y x :f -+=→ (4)A=Z ,B=N ,f :x →y=|x|;(5)A=N ,B=Z ,f :x →y=|x|;(6)A=N ,B=N ,f :x →y=|x|.【解析】(1)、(4)、(5)、(6)是从A 到B 的映射也是从A 到B 的函数,但只有(6)是从A 到B 的一一映射;(2)、(3)不是从A 到B 的映射也不是从A 到B 的函数.【变式2】(2015秋 湖南浏阳市月考)已知A ={1,2,3,k },B ={4,7,a 4,a 2+3a },a ∈N *,x ∈A ,y ∈B ,f :x →y =3x +1是从定义域A 到值域B 的一个函数,求a ,k 的值.【答案】a =2,k =5【解析】若x ∈A ,y ∈B ,使B 中元素y =3x +1和A 中的元素x 对应,则当x =1时,y =4;当x =2时,y =7;当x =3时,y =10;当x =k 时,y =3k +1;又由a ∈N *,∴a 4≠10,则a 2+3a =10,a 4=3k +1解得a =2,k =5.类型五、函数解析式的求法例7. 求函数的解析式(1)若2()2f x x x =+,求(21)f x +;(2)若2(1)21f x x +=+,求()f x ;(3)已知1()2()32f x f x x -=+,求()f x .【答案】(1)2()483f x x x =++;(2)2()243f x x x =-+;(3)2()2f x x x=---. 【解析】求函数的表达式可由两种途径.(1)用代入法,22(21)(21)2(21)483f x x x x x +=+++=++.(2)法一:换元法令1t x =+,则1x t =-,所以22()2(1)1243f t t t t =-+=-+即:2()243f x x x =-+.法二:凑配法 2(1)21f x x +=+=22(1)4(1)3x x +-++,所以2()243f x x x =-+. (3)1()2()32f x f x x -=+ ①,用1x代替上式中的x ,得13()2()2f f x x x -=+ ② 由①②联立,消去1()f x,得 2()2f x x x=--- 故所求的函数为2()2f x x x =---. 【总结升华】(1)由()y f x =求[]()y f g x =,一般使用代入法;(2)凑配法和换元法有时可以并用,而换元法更具有一般性,同时,在使用换元法时一定要注意新元的取值范围;(3)若解析式中的两个变量具有互为倒数或互为相反数的特征,可联立方程组用消元法解出()y f x =的解析式.举一反三:【变式1】已知f(x+1)=x 2+4x+2,求f(x).【答案】f(x)=x 2+2x-1【解析】(1)(法1)f(x+1)=x 2+4x+2=(x+1)2+2(x+1)-1∴f(x)=x 2+2x-1;(法2)令x+1=t ,∴x=t-1,∴f(t)=(t-1)2+4(t-1)+2=t 2+2t-1∴f(x)=x 2+2x-1;(法3)设f(x)=ax 2+bx+c 则f(x+1)=a(x+1)2+b(x+1)+c∴a(x+1)2+b(x+1)+c=x 2+4x+21x 2x )x (f 1c 2b 1a 2c b a 4b a 21a 2-+=∴⎪⎩⎪⎨⎧-===⇒⎪⎩⎪⎨⎧=++=+=∴;【总结升华】求函数解析式常用方法:(1)换元法;(2)配凑法;(3)定义法;(4)待定系数法等.注意:用换元法解求对应法则问题时,要关注新变元的范围.类型六、函数的图象例8.作出下列函数的图象.(1)1({21012})y x x =-∈--,,,,;(2)211x y x +=-;(3)2|2|1y x x =-+. 【思路点拨】先把要画的函数图象进行变形,依据所学习过的基本函数图象,通过函数图象的平移、对称和翻折得到要求的图象。