语音识别技术文献综述
- 格式:doc
- 大小:81.00 KB
- 文档页数:7
语音识别技术综述语音识别技术综述电子信息工程2010级1班郭珊珊【摘要】随着计算机处理能力的迅速提高,语音识别技术得到了飞速发展,该技术的发展和应用改变了人们的生产和生活方式,正逐步成为计算机处理技术中的关键技术。
语音技术的应用已经成为一个具有竞争性的新兴高技术产业。
【关键词】语音识别;语音识别原理;语音识别发展;产品语音识别是以语音为研究对象,通过语音信号处理和模式识别让机器人自动识别和理解人类口述的语言。
语音识别技术就是让机器通过识别和理解过程把语音信号转变为相应的命令或文本的高新技术。
1 语音识别的原理语音识别系统本质是一种模式识别系统,包括特征提取、模式匹配、参考模式库等三个基本单位元。
未知语音经过话筒变换成电信号后加载识别系统的输入端,首先经过预处理,再根据人的语音特点建立语音模型,对输入的语音信号进行分析,并抽取所需特征,在此基础上建立语音识别所需的模板。
计算机在识别过程中要根据语音识别的模型,将计算机中存放的语音模板与输入的语音信号的特征进行比较,根据一定的搜索和匹配策略,找出一系列最优的与输入语音匹配的模板。
然后根据此模板的定义,通过查表可给出计算机的识别结果。
这种最优的结果与特征的选择、语音模型的好坏、模板是否准确都有直接的关系。
2 语音识别系统的分类语音识别系统可以根据对输入语音的限制加以分类。
2.1从说话者与识别系统的相关性考虑可以将识别系统分为3类:(1)特定人语音识别系统:仅考虑对于专人的话音进行识别;(2)非特定人语音系统:识别的语音与人无关,通常要用大量不同人的语音数据库对识别系统进行学习;(3)多人的识别系统:通常能识别一组人的语音,或者成为特定组语音识别系统,该系统仅要求对要识别的那组人的语音进行训练。
2.2从说话的方式考虑也可以将识别系统分为3类:(1)孤立词语音识别系统:孤立词识别系统要求输入每个词后要停顿;(2)连接词语音识别系统:连接词输入系统要求对每个词都清楚发音,一些连音现象开始出现;(3)连续语音识别系统:连续语音输入是自然流利的连续语音输入,大量连音和变音会出现。
语音识别技术的现状和发展趋势随着科技的不断发展,各种人工智能产品逐渐走进我们的生活中,其中语音识别技术的应用越来越广泛。
这项技术可以将人类的语言转化为计算机可识别的形式,实现人机交互,让我们的生活更便捷、更智能。
本文从语音识别技术的现状、应用场景、技术难点、发展趋势等方面进行探讨。
一、语音识别技术的现状语音识别已经成为商业化产品,在智能家居、智能手机、智能音箱等设备中得到广泛应用。
其中,智能音箱是应用最广泛的一种形式,如亚马逊Echo、谷歌Home、小米AI音箱等。
这些智能音箱的语音识别技术实现了多种功能,如语音搜索、播放音乐、聊天、控制家庭设备等。
此外,语音助手在智能手机、智能手表、智能车辆等领域也得到了广泛应用。
语音助手可以帮助用户完成电话、短信、导航、音乐播放、天气查询等操作,方便了生活。
二、语音识别技术的应用场景语音识别技术的应用场景非常广泛。
除了上述的智能家居、手机、音箱等领域,语音识别还可以应用于医疗、教育、金融、零售、物流等行业。
在医疗领域,语音识别可以用于病历记录、医嘱输入等操作,提高医生的效率。
在教育领域,语音识别可以用于智能教学,让学生更加深入地了解知识。
在金融领域,语音识别可以用于语音支付、客服问题解答等操作,提高金融服务的效率。
在零售领域,语音识别可以用于语音导航、商品介绍等操作,提高顾客的购物体验。
在物流领域,语音识别可以用于指挥货运,提高货物的配送效率。
三、语音识别技术的技术难点尽管语音识别技术已经得到广泛应用,但是其仍面临着一些技术难点。
一是方言和口音问题。
方言和口音是语音识别的难点之一,由于不同地区人口音差异大,语音识别的准确率也会受到影响。
二是多说者语音识别问题。
在多人场景下,语音识别技术需要识别多个说话者的语音,并对话语进行区分,这对语音识别技术的准确率提出了更高的要求。
三是语言模型问题。
语言模型是语音识别中非常重要的一步,它用于判断用户说的话是否符合语言规范。
浅谈语音识别技术论文语音识别技术研究让人更加方便地享受到更多的社会信息资源和现代化服务,对任何事都能够通过语音交互的方式。
小编整理了浅谈语音识别技术论文,欢迎阅读!浅谈语音识别技术论文篇一语音识别技术概述作者:刘钰马艳丽董蓓蓓摘要:本文简要介绍了语音识别技术理论基础及分类方式,所采用的关键技术以及所面临的困难与挑战,最后讨论了语音识别技术的发展前景和应用。
关键词:语音识别;特征提取;模式匹配;模型训练Abstract:This text briefly introduces the theoretical basis of the speech-identification technology,its mode of classification,the adopted key technique and the difficulties and challenges it have to face.Then,the developing prospect ion and application of the speech-identification technology are discussed in the last part.Keywords:Speech identification;Character Pick-up;Mode matching;Model training一、语音识别技术的理论基础语音识别技术:是让机器通过识别和理解过程把语音信号转变为相应的文本或命令的高级技术。
语音识别以语音为研究对象,它是语音信号处理的一个重要研究方向,是模式识别的一个分支,涉及到生理学、心理学、语言学、计算机科学以及信号处理等诸多领域,甚至还涉及到人的体态语言(如人在说话时的表情、手势等行为动作可帮助对方理解),其最终目标是实现人与机器进行自然语言通信。
不同的语音识别系统,虽然具体实现细节有所不同,但所采用的基本技术相似,一个典型语音识别系统主要包括特征提取技术、模式匹配准则及模型训练技术三个方面。
语音识别参考文献语音识别是一项广泛应用于人机交互、语音翻译、智能助手等领域的技术。
它的目标是将人的语音输入转化为可理解和处理的文本数据。
随着人工智能和机器学习的发展,语音识别技术也得到了极大的提升和应用。
在语音识别领域,有许多经典的参考文献和研究成果。
以下是一些值得参考和研究的文献:1. Xiong, W., Droppo, J., Huang, X., Seide, F., Seltzer, M., Stolcke, A., & Yu, D. (2016). Achieving human parity in conversational speech recognition. arXiv preprintarXiv:1610.05256.这篇文章介绍了微软团队在语音识别方面的研究成果,实现了与人类口语识别准确率相媲美的结果。
2. Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A. R., Jaitly, N., ... & Kingsbury, B. (2012). Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal processing magazine, 29(6), 82-97.这篇文章介绍了深度神经网络在语音识别中的应用和研究进展,对于理解当前主流的语音识别技术有很大的帮助。
3. Hinton, G., Deng, L., Li, D., & Dahl, G. E. (2012). Deep neural networks for speech recognition. IEEE Signal Processing Magazine, 29(6), 82-97.这篇文章是语音识别中的经典之作,介绍了深度神经网络在语音识别中的应用和优势。
语音信号处理的现状和展望作者:指导老师:摘要:文章简要介绍了“语音信号处理这一分支学科形成和发展的历史过程。
指出了它在现代信息科学技术中的地位和作用。
介绍了语音信号处理在应用领域的一些重要课题 ,如语音的低速率编码 ,语音的规则合成和文- 语转换系统 ,语音识别和人-机语音对话等 ,这些仍然是当前研究的热点。
文章最后展望了语音信号处理的发展前景 ,指出在这个领域还有很多难题等待人们去研究探索。
关键词:语音信号处理;语音低速编码;语音识别Current status and prospects of speech signal processingAuthor TutorAbstract: The history of speech signal processing and its status in modern informatics and information technology is reviewed.In practical app lica tions, key techniques such as low bit rate speech encoding, speech synthesis by rule, text to speech conversion, speech recognition, speech dialogue between man and machine are still hot topics for current research.Though much has been achieved in past years, there are many problems to be solved.Future developments of speech signal processing are identified.Key words : speech signal processing;low rate speech coding;speech recognition前言(引言):语音是语言的声学表现,是人类交流信息最自然、最有效、最方便的手段。
语音识别毕业论文语音识别毕业论文语音识别是一项旨在将人类语音转化为可被计算机理解和处理的技术。
它在人工智能领域中扮演着重要的角色,被广泛应用于语音助手、语音控制和语音翻译等领域。
本篇论文将探讨语音识别的原理、应用和未来发展趋势,以及相关的挑战和解决方案。
一、语音识别的原理语音识别的核心原理是将语音信号转化为文本信息。
这个过程可以分为三个主要步骤:信号预处理、特征提取和模型训练。
首先,语音信号经过预处理,包括降噪、去除不相关的信号和语音分割等。
然后,从预处理后的语音信号中提取特征,常用的特征包括梅尔频率倒谱系数(MFCC)和线性预测编码(LPC)。
最后,使用机器学习算法,如隐马尔可夫模型(HMM)和深度学习模型,对提取的特征进行训练和识别,得到最终的文本输出。
二、语音识别的应用语音识别技术在各个领域都有广泛的应用。
其中最为人熟知的是语音助手,如苹果的Siri和亚马逊的Alexa。
通过语音识别,用户可以通过语音指令控制智能设备,进行日常操作,如发送短信、播放音乐和查询天气等。
此外,语音识别还被应用于语音翻译、语音识别课堂、语音控制汽车等领域,极大地方便了人们的生活。
三、语音识别的挑战尽管语音识别技术已经取得了巨大的进步,但仍然存在一些挑战。
首先,语音识别需要处理各种不同的语音信号,如不同的语言、口音和噪声环境等。
这使得模型的训练和适应变得更加困难。
其次,语音识别需要处理大量的数据,这对计算资源和存储空间提出了巨大的要求。
此外,语音识别还需要解决语义理解和上下文推理等问题,以提高识别的准确性和可靠性。
四、语音识别的解决方案为了应对语音识别的挑战,研究者们提出了一系列的解决方案。
首先,通过使用更加先进的特征提取算法和模型训练方法,可以提高语音识别的准确性和鲁棒性。
其次,结合其他的人工智能技术,如自然语言处理和知识图谱,可以进一步提高语音识别的语义理解和上下文推理能力。
此外,利用云计算和分布式计算等技术,可以解决语音识别中的计算和存储问题。
语音辨别技术综述语音辨别技术综述电子信息工程2010 级 1 班郭珊珊【纲要】跟着计算机办理能力的快速提升,语音辨别技术获得了飞快发展,该技术的发展和应用改变了人们的生产和生活方式,正逐渐成为计算机办理技术中的要点技术。
语音技术的应用已经成为一个拥有竞争性的新兴高技术家产。
【要点词】语音辨别;语音辨别原理;语音辨别发展;产品语音辨别是以语音为研究对象,经过语音信号办理和模式辨别让机器人自动辨别和理解人类口述的语言。
语音辨别技术就是让机器经过辨别和理解过程把语音信号转变成相应的命令或文本的高新技术。
1语音识其余原理语音辨别系统本质是一种模式辨别系统,包含特色提取、模式般配、参照模式库等三个基本单位元。
未知语音经过话筒变换成电信号后加载识别系统的输入端,第一经过预办理,再依据人的语音特色成立语音模型,对输入的语音信号进行剖析,并抽取所需特色,在此基础上成立语音辨别所需的模板。
计算机在辨别过程中要依据语音识其余模型,将计算机中寄存的语音模板与输入的语音信号的特色进行比较,依据必定的搜寻和般配策略,找出一系列最优的与输入语音般配的模板。
而后依据此模板的定义,经过查表可给出计算机的辨别结果。
这类最优的结果与特色的选择、语音模型的利害、模板能否正确都有直接的关系。
2语音辨别系统的分类语音辨别系统能够依据对输入语音的限制加以分类。
2.1 从说话者与辨别系统的有关性考虑能够将辨别系统分为 3 类: (1) 特定人语音辨别系统:仅考虑关于专人的话音进行识别; (2) 非特定人语音系统:识其余语音与人没关,往常要用大批不一样人的语音数据库对识别系统进行学习; (3) 多人的辨别系统:往常能辨别一组人的语音,或许成为特定组语音辨别系统,该系统仅要求对要识其余那组人的语音进行训练。
2.2 从说话的方式考虑也能够将辨别系统分为 3 类: (1) 孤立词语音辨别系统:孤立词辨别系统要求输入每个词后要停留; (2) 连结词语音辨别系统:连结词输入系统要求对每个词都清楚发音,一些连音现象开始出现; (3) 连续语音辨别系统:连续语音输入是自然流畅的连续语音输入,大批连音和变音会出现。
语音识别技术的现状及发展趋势目录1.弓I言 (1)2.语音识别技术的现状 (1)3.语音识别技术面临的挑战 (1)4.语音识别技术的发展趋势 (2)5.结论 (2)1.引言语音识别技术是一种将人类语音转化为计算机可读文本的技术,它在许多领域都有广泛的应用,如智能助手、智能家居、医疗诊断等。
本文将探讨语音识别技术的现状、挑战和未来发展。
随着科技的快速发展,语音识别技术得到了广泛应用。
语音识别技术是一种人机交互的关键技术,它使得计算机能理解和解析人类语言。
本文将探讨语音识别技术的现状及未来的发展趋势。
2.语音识别技术的现状1深度学习驱动的语音识别:深度学习已经在语音识别领域取得了显著的成果。
特别是循环神经网络(RNN)和长短期记忆网络(1STM)的应用,使得语音识别的精度和效率大大提高。
2.多语种和多模态语音识别:语音识别技术已经不再局限于单一语种或单一模态。
现在的语音识别系统可以处理多种语言,甚至可以结合多种信息模态,如语音和视觉,以提高识别精度。
3.个性化语音识别:针对不同用户发音习惯和口音的差异,现在的语音识别系统可以通过个性化定制来提高识别精度,满足不同用户的需求。
3.语音识别技术面临的挑战1噪声干扰和口音差异:现实环境中的噪声干扰和不同用户的口音差异是语音识别面临的主要挑战。
如何在复杂的现实环境中提高语音识别的精度是亟待解决的问题。
2.语言覆盖面:尽管现有的语音识别技术已经可以处理多种语言,但仍然有许多小众语言和方言无法得到很好的支持。
如何扩大语音识别的语言覆盖面是未来的一个重要研究方向。
3.隐私和安全:随着语音识别技术的广泛应用,隐私保护问题也日益突出。
如何在保证语音识别精度的同时,保护用户的隐私数据,是当前需要解决的一个重要问题。
4.语音识别技术的发展趋势1)隐私保护技术的进步:随着隐私保护技术的不断发展,如差分隐私等,可以期待未来的语音识别技术将在保护用户隐私的同时,实现更高的识别精度和效率。
语音识别技术综述The summarization of speech recognition张永双苏州大学摘要本文回顾了语音识别技术的发展历史,综述了语音识别系统的结构、分类及基本方法,分析了语音识别技术面临的问题及发展方向。
关键词:语音识别;特征;匹配AbstactThis article review the courses of speech recognition technology progress ,summarize the structure,classifications and basic methods of speech recognition system and analyze the direction and the issues which speech recognition technology development may confront with. Key words: speech recognition;character;matching引言语音识别技术就是让机器通过识别和理解过程把语音信号转变为相应的文本或命令的高技术。
语音识别是一门交叉学科,所涉及的领域有信号处理、模式识别、概率论和信息论、发声机理和听觉机理、人工智能等等,甚至还涉及到人的体态语言(如人民在说话时的表情手势等行为动作可帮助对方理解)。
其应用领域也非常广,例如相对于键盘输入方法的语音输入系统、可用于工业控制的语音控制系统及服务领域的智能对话查询系统,在信息高度化的今天,语音识别技术及其应用已成为信息社会不可或缺的重要组成部分。
1.语音识别技术的发展历史语音识别技术的研究开始二十世纪50年代。
1952年,AT&Tbell实验室的Davis等人成功研制出了世界上第一个能识别十个英文数字发音的实验系统:Audry系统。
60年代计算机的应用推动了语音识别技术的发展,提出两大重要研究成果:动态规划(Dynamic Planning,DP)和线性预测分析(Linear Predict,LP),其中后者较好的解决了语音信号产生模型的问题,对语音识别技术的发展产生了深远影响。
70年代,语音识别领域取得突破性进展。
线性预测编码技术(Linear Predict Coding,LPC)被Itakura成功应用于语音识别;Sakoe和Chiba将动态规划的思想应用到语音识别并提出动态时间规整算法,有效的解决了语音信号的特征提取和不等长语音匹配问题;同时提出了矢量量化(VQ)和隐马尔可夫模型(HMM)理论。
在同一时期,统计方法开始被用来解决语音识别的关键问题,这为接下来的非特定人大词汇量连续语音识别技术走向成熟奠定了重要的基础。
80年代,连续语音识别成为语音识别的研究重点之一。
Meyers和Rabiner研究出多级动态规划语音识别算法(Level Building,LB)这一连续语音识别算法。
80年代另一个重要的发展是概率统计方法成为语音识别研究方法的主流,其显著特征是HMM模型在语音识别中的成功应用。
1988年,美国卡内基-梅隆大学(CMU)用VQ/HMM方法实现了997词的非特定人连续语音识别系统SPHINX。
在这一时期,人工神经网络在语音识别中也得到成功应用。
进入90年代后,随着多媒体时代的来临,迫切要求语音识别系统从实验走向实用,许多发达国家如美国、日本、韩国以及IBM、Apple、AT&T、NTT等著名公司都为语音识别系统实用化的开发研究投以巨资。
最具代表性的是IBM的ViaVoice和Dragon公司的Dragon Dectate系统。
这些系统具有说话人自适应能力,新用户不需要对全部词汇进行训练便可在使用中不断提高识别率。
当前,美国在非特定人大词汇表连续语音隐马尔可夫模型识别方面起主导作用,而日本则在大词汇表连续语音神经网络识别、模拟人工智能进行语音后处理方面处于主导地位。
国在七十年代末就开始了语音技术的研究,但在很长一段时间内,都处于缓慢发展的阶段。
直到八十年代后期,国内许多单位纷纷投入到这项研究工作中去,其中有中科院声学所,自动化所,清华大学,四川大学和西北工业大学等科研机构和高等院校,大多数研究者致力于语音识别的基础理论研究工作、模型及算法的研究和改进。
但由于起步晚、基础薄弱,计算机水平不发达,导致在整个八十年代,我国在语音识别研究方面并没有形成自己的特色,更没有取得显著的成果和开发出大型性能优良的实验系统。
但进入九十年代后,我国语音识别研究的步伐就逐渐紧追国际先进水平了,在“八五”、“九五”国家科技攻关计划、国家自然科学基金、国家863计划的支持下,我国在中文语音技术的基础研究方面也取得了一系列成果。
在语音合成技术方面,中国科大讯飞公司已具有国际上最领先的核心技术;中科院声学所也在长期积累的基础上,研究开发出颇具特色的产品:在语音识别技术方面,中科院自动化所具有相当的技术优势:社科院语言所在汉语言学及实验语言科学方面同样具有深厚的积累。
但是,这些成果并没有得到很好的应用,没有转化成产业;相反,中文语音技术在技术、人才、市场等方面正面临着来自国际竞争环境中越来越严峻的挑战和压力。
2.语音识别系统的结构主要包括语音信号的采样和预处理部分、特征参数提取部分、语音识别核心部分以及语音识别后处理部分,图2-1给出了语音识别系统的基本结构。
图2-1 语音识别系统的基本结构图语音识别的过程是一个模式识别匹配的过程。
在这个过程中,首先要根据人的语音特点建立语音模型,对输入的语音信号进行分析,并抽取所需的特征,在此基础上建立语音识别所需的模式。
而在识别过程中要根据语音识别的整体模型,将输入的语音信号的特征与已经存在的语音模式进行比较,根据一定的搜索和匹配策略,找出一系列最优的与输入的语音相匹配的模式。
然后,根据此模式号的定义,通过查表就可以给出计算机的识别结果。
3.语音识别系统的分类根据识别的对象不同,语音识别任务大体可分为3类,即孤立词识别(isolated word recognition),关键词识别(或称关键词检出,keyword spotting)和连续语音识别。
其中,孤立词识别的任务是识别事先已知的孤立的词,如“开机”、“关机”等;连续语音识别的任务则是识别任意的连续语音,如一个句子或一段话;连续语音流中的关键词检测针对的是连续语音,但它并不识别全部文字,而只是检测已知的若干关键词在何处出现,如在一段话中检测“计算机”、“世界”这两个词。
根据针对的发音人,可以把语音识别技术分为特定人语音识别和非特定人语音识别,前者只能识别一个或几个人的语音,而后者则可以被任何人使用。
显然,非特定人语音识别系统更符合实际需要,但它要比针对特定人的识别困难得多。
另外,根据语音设备和通道,可以分为桌面(PC)语音识别、电话语音识别和嵌入式设备(手机、PDA等)语音识别。
不同的采集通道会使人的发音的声学特性发生变形,因此需要构造各自的识别系统。
4.语音识别系统的基本识别方法一般来说,语音识别的方法有三种:基于声道模型和语音知识的方法、模式匹配的方法以及利用人工神经网络的方法。
4.1基于语音学和声学的方法该方法起步较早,在语音识别技术提出的开始,就有了这方面的研究,但由于其模型及语音知识过于复杂,现阶段还没有达到实用的阶段。
4.2模式匹配的方法模式匹配方法的发展比较成熟,目前已达到实用阶段。
在模式匹配方法中,需经过四个步骤:特征提取、模式训练、模式识别和判决。
4.2.1特征提取特征提取方法主要采用以下三种:基于LPC的倒谱参数(LPCC)分析法,基于Mel系数的Mel频标倒谱系数(MPCC)分析法,基于现代处理技术的小波变换系数分析法。
在这些方法中,MFCC方法比LPCC方法的识别效果稍好一些,而且MFCC符合人们的听觉特性,在有信道噪声和频谱失真的情况下具有较好的稳健性,其不足之处是MFCC方法中多次用到FFT,故算法的复杂程度远大于LPCC方法。
因此,在安静的环境下,目前比较成熟和最常用的语音特征提取方法还是LPCC方法。
在条件不好的环境下,则宜选用M FCC方法。
而小波变换法则是一种新兴的理论工具,要获得较高的识别率还有许多问题有待研究,但与经典的方法相比,小波变换法有着计算量小、复杂程度低、识别效果好等许多优点,研究前景十分乐观,是研究发展的一个方向。
4.2.2模式识别模式识别常用技术有三种:动态时间规整(DTW)、隐马尔可夫模型(HMM)、矢量量化(VQ)。
(1)动态时间规整(DTW)语音信号的端点检测是进行语音识别中的一个基本步骤,它是特征训练和识别的基础。
所谓端点检测就是在语音信号中的各种段落(如音素、音节、词素) 的始点和终点的位置,从语音信号中排除无声段。
在早期,进行端点检测的主要依据是能量、振幅和过零率。
但效果往往不明显。
上世纪6 0 年代日本学者Itakura 提出了动态时间规整算法。
算法的思想就是把未知量均匀地伸长或缩短,直到与参考模式的长度一致。
在这一过程中,未知单词的时间轴要不均匀地扭曲或弯折,以使其特征与模型特征对正。
在连续语音识别中仍然是主流方法。
同时,在小词汇量、孤立字(词) 识别系统中,也已有许多改进的DTW 算法提出。
(2)隐马尔可夫模型(HMM)隐马尔可夫模型是20世纪70年代引入语音识别理论的,它的出现使得自然语音识别系统取得了实质性的突破。
目前大多数大词汇量、连续语音的非特定人语音识别系统都是基于HMM 模型的。
HMM是对语音信号的时间序列结构建立统计模型,将之看作一个数学上的双重随机过程:一个是用具有有限状态数的Markov链来模拟语音信号统计特性变化的隐含的随机过程,另一个是与Markov链的每一个状态相关联的观测序列的随机过程。
前者通过后者表现出来,但前者的具体参数是不可测的。
人的言语过程实际上就是一个双重随机过程,语音信号本身是一个可观测的时变序列,是由大脑根据语法知识和言语需要(不可观测的状态) 发出的音素的参数流。
可见HMM合理地模仿了这一过程,很好地描述了语音信号的整体非平稳性和局部平稳性,是较为理想的一种语音模型。
(3)矢量量化(VQ)矢量量化是一种重要的信号压缩方法。
与HMM 相比,矢量量化主要适用于小词汇量、孤立词的语音识别中。
其过程是:将语音信号波形的k 个样点的每一帧,或有k 个参数的每一参数帧,构成k维空间中的一个矢量,然后对矢量进行量化。
量化时,将k 维无限空间划分为M 个区域边界,然后将输入矢量与这些边界进行比较,并被量化为“距离”最小的区域边界的中心矢量值。
矢量量化器的设计就是从大量信号样本中训练出好的码书,从实际效果出发寻找到好的失真测度定义公式,设计出最佳的矢量量化系统,用最少的搜索和计算失真的运算量,实现最大可能的平均信噪比。