逆向工程技术
- 格式:doc
- 大小:186.00 KB
- 文档页数:7
逆向工程技术的原理与应用逆向工程是一种通过对已有的产品进行分析、逆推和改进的技术,它涉及多个学科领域,如材料、机械、自动控制、计算机科学等,是一种多学科交叉的综合性技术。
逆向工程可以帮助企业更好地了解自己的产品和竞争对手的产品,提高产品的质量和性能,缩短产品的研发周期,降低研发成本,增强企业的市场竞争力。
一、逆向工程技术的原理逆向工程技术的主要原理是通过对已有的产品进行反复的分析、逆推和改进,获得该产品的详细信息和知识,以便更好地理解和改进该产品,甚至开发出具有类似功能的新产品。
逆向工程技术的主要步骤包括以下几个方面:1.前期调研:了解已有产品的基本情况、机械原理、电控系统、构造设计等相关信息,为后续的分析和研究打下基础。
2.基本情况分析:对已有产品的尺寸、材质、结构、设计等进行深入分析,了解其性能特点和优缺点。
3.产品逆向设计:通过三维扫描和数字化建模等方法,将已有产品转换为计算机模型,实现对该产品的复原和仿真分析。
4.材质分析:通过化学分析、金相分析等方法分析样品的成分、结构和性质,快速确定材质类型和性能。
5.性能测试:通过试验方法对样品的力学性能、热学性能、电学性能等进行测试和分析。
6.产品改进:根据分析结果和测试数据,针对已有产品的不足之处进行改进和优化,提高产品的性能和质量。
二、逆向工程技术的应用逆向工程技术的应用范围广泛,具体包括以下几个方面:1.产品改进和优化:逆向工程可以对已有产品进行分析和改进,提高产品的性能和质量,满足市场需求。
2.产品仿制和生产:逆向工程可以帮助企业快速复制和生产类似的产品,降低生产成本和提高效率。
3.产品维修和维护:逆向工程可以对已有产品进行分析和诊断,帮助维修人员更快地找到故障和进行修理,缩短停机时间和降低维修成本。
4.产权保护和反盗版:逆向工程可以帮助企业对自己的专利技术进行保护和维护,防止被盗版和侵权。
5.文化艺术保护和修复:逆向工程可以对文化遗产、艺术品等进行分析和修复,保护和传承人类的文化遗产。
1 逆向工程技术概述
逆向工程技术概述
随着科技的进步和信息时代的到来,逆向工程技术已经
成为一种十分重要的技术手段。
逆向工程技术指的是一种对制造出的产品或者其中的某个部件进行分析、研究和重构的过程,主要是从已有的物体中获得信息,使得这种物体能够被重复制造、升级维修、改进、以及相应的法律维权等。
逆向工程技术的应用领域非常广泛,包括汽车、机械、
航空、电子、医疗、军事等多个领域。
通过逆向工程技术的手段,可以迅速掌握已有产品结构、性能、制造工艺等信息,从而更便利地进行产品的创新设计、性能优化和工艺优化;同时,也可以对不同品牌之间的产品进行对比、评测、以及互相仿制,以此降低研发成本,增加市场竞争力。
逆向工程技术主要有以下几个步骤:收集源数据、分析
数据、建模、以及再设计和重构。
源数据一般包括可获得的立体模型、零部件、组成部分、详细技术资料和制造工艺等。
在获得源数据之后,需要进行数据的分析,找到该产品的设计构思以及实现方式。
分析数据是非常重要的一步,因为它将决定后续数据建模和再设计的成功与否。
数据建模是逆向工程的核心工作之一,通过建立立体模型,对该产品的设计、构造和性能等方面进行详细分析和模拟。
最后,再设计和重构将会根据数据建模的结果进行,实现逆向工程的目的。
总的来说,逆向工程技术是现代工程设计和技术创新的
重要手段之一,它已经在各种领域得到广泛应用。
虽然逆向工
程技术在某些情况下可能会侵犯商业秘密,但是如果在遵循相应法律法规和道德规范的情况下进行,就能够更好地促进技术的发展和交流。
逆向工程技术逆向工程技术是一项研究和应用逆向思维的技术,旨在通过研究和分析已有的产品或系统,以及相关的工艺和工程技术,来揭示其设计原理并获取相关技术信息。
逆向工程技术在各个领域都有广泛的应用,如电子产品、机械制造、软件开发等等。
本文将介绍逆向工程技术的概念、应用领域、方法和发展前景。
逆向工程技术的概念最早出现在上世纪60年代,起初是指通过研究法律手续之外的证据,来寻找和重建重大事件的真相。
后来,逆向工程技术逐渐发展成一门独立的学科,成为从产品和系统的功能、结构、制造工艺等方面进行反向研究和分析的技术手段。
逆向工程技术的应用领域非常广泛。
在电子产品领域,逆向工程技术常用于破解电子设备的加密算法或保护机制。
例如,黑客可以使用逆向工程技术破解智能手机的操作系统,从而获取系统的漏洞或潜在的安全隐患。
在机械制造领域,逆向工程技术常用于产品改进和优化。
企业可以通过对竞争对手产品的逆向研究,了解其设计和制造工艺,并进行产品性能的改进和升级。
此外,在软件开发领域,逆向工程技术也被广泛应用于软件逆向分析和破解。
逆向工程技术的研究和应用通常需要通过一系列的方法和工具来完成。
首先,逆向工程技术研究者需要收集和获取相关产品或系统的样本,并进行初步的调研和分析。
然后,通过逆向工程技术手段,对产品或系统的功能、结构和制造工艺进行深入研究。
这可能涉及到软件反汇编、硬件解剖、工艺分析等一系列技术手段。
最后,根据研究结果,逆向工程技术研究者可以获得设计原理和技术信息,并进一步应用于改进、开发或评估之中。
逆向工程技术的发展前景非常广阔。
随着科技的不断进步和产品的不断更新换代,逆向工程技术正变得越来越重要和广泛应用。
不仅仅是在商业领域,逆向工程技术也在创新和学术研究中起到了重要的作用。
逆向工程技术通过研究和分析现有产品和系统,为新产品的设计和开发提供了宝贵的经验和技术支持。
同时,逆向工程技术也为创新和学术研究提供了重要的数据和实验基础。
简单阐述逆向工程技术及其流程
标题:逆向工程技术概述及其流程
一、逆向工程技术概述
逆向工程技术,又称反求工程,是一种产品设计技术手段,其基本原理是从已存在的产品或部件出发,通过对实物的测量、分析和研究,获取产品的几何形状、材料特性、制造工艺等设计信息,进而重构出原始的设计模型或者创新设计新的产品。
逆向工程广泛应用于产品改型设计、技术创新、质量检测、侵权分析等领域,是现代工业设计与制造中不可或缺的重要技术手段。
二、逆向工程的主要流程
1. 数据采集阶段:
这是逆向工程的第一步,通常采用三维扫描仪、CMM(三坐标测量机)等精密测量设备对实物进行精确的数据采集,获取物体表面的点云数据或几何特征数据。
2. 数据处理阶段:
对采集到的大量离散数据进行预处理,包括噪声过滤、数据平滑、点云拼接等操作,将其转化为可供后续建模使用的高质量数据集。
3. 曲面重构阶段:
根据处理后的数据,利用逆向工程软件如Geomagic, Rapidform等构建曲面模型,通过拟合、插值、光顺等方法,生成能准确反映实物表面特性的三维曲面模型。
4. 设计优化阶段:
在得到初步的三维模型后,设计师会对模型进行进一步的修改和完善,包括结构优化、尺寸调整、细节补充等,以满足设计需求和加工要求。
5. 制造阶段:
逆向工程的最后阶段是将优化后的三维模型转换为适合加工的二维图纸或CAM代码,提供给数控机床、3D打印设备等进行生产制造。
总结,逆向工程技术不仅能够帮助我们理解并复制现有的复杂产品,更能在原有产品的基础上进行创新设计和改进,对于推动产品更新换代和技术进步具有重大意义。
《逆向工程技术》课程标准一、课程简介逆向工程技术是一门融合了机械设计、测量技术、计算机技术、数据处理等多学科的综合性技术,广泛应用于制造、设计、测量等领域。
本课程旨在让学生了解逆向工程的基本概念、原理和方法,掌握逆向工程的实践技能,培养其在实际工作中运用逆向工程技术解决复杂问题的能力。
二、课程目标1. 掌握逆向工程的基本原理和方法,包括三维测量、数据处理、模型重构等;2. 学会使用逆向工程相关软件,如3D扫描仪、Geomagic、Imageware 等;3. 能够独立完成简单的逆向工程设计任务;4. 培养良好的团队协作和沟通能力,能够在实际工作中与其他专业人员有效配合。
三、教学内容1. 基础知识:介绍逆向工程的基本概念、原理和方法,包括三维测量技术、数据处理方法、模型重构技术等;2. 软件操作:学习使用逆向工程相关软件,如3D扫描仪、Geomagic、Imageware等,掌握软件的安装、使用方法和基本操作技巧;3. 实践操作:通过实际案例,让学生独立完成简单的逆向工程设计任务,包括数据采集、模型重构、后处理等;4. 综合应用:结合实际生产案例,培养学生运用逆向工程技术解决复杂问题的能力,提高其在实际工作中的应变能力和创新能力。
四、教学方法与手段1. 理论讲授与实践操作相结合:采用案例教学、互动教学等方式,让学生在学习过程中逐步掌握逆向工程的基本原理和方法,并能够熟练运用相关软件进行实践操作;2. 小组合作:将学生分成若干小组,通过实际案例的实践操作,培养学生的团队协作和沟通能力,提高其实践操作能力和解决问题的能力;3. 定期考核:通过定期的考核和评估,及时了解学生的学习情况,发现问题并及时调整教学策略,确保教学质量。
五、课程评估本课程的评估方法包括平时作业、实践操作、小组作品展示和期末考试等。
平时作业主要考察学生对逆向工程基本原理和方法的掌握情况;实践操作主要考察学生运用逆向工程相关软件进行实践操作的能力;小组作品展示则是让学生以小组为单位,展示实际案例的实践操作成果,考察学生的团队协作和沟通能力;期末考试则主要考察学生对本课程知识的综合运用能力。
软件开发中的逆向工程技术在软件开发过程中,逆向工程技术一直是备受关注的话题。
这种技术旨在破解已有的软件,分析其代码结构以及功能实现,并且可以将其反向工程为源代码。
逆向工程技术的应用非常广泛,包括反盗版、软件保护、调试分析等等。
在本文中,我们将深入探讨逆向工程技术在软件开发中的应用。
1.逆向工程技术的基本概念逆向工程技术是指将现有的软件逆向分析,以便抽取更多的信息和技术知识。
逆向工程技术包含多种类型,其中最常见的是反汇编、反编译和反调试。
反汇编是将机器代码转化为汇编代码的过程,反编译是将机器代码转化为高级语言的过程,反调试则是指通过防御措施来防止调试软件。
2.逆向工程技术在软件保护中的应用逆向工程技术在软件保护中扮演者重要的角色。
通过反编译软件,破解者可以获取到软件的源代码,从而可以发现软件中的漏洞并修改其功能。
为了防止这种情况发生,软件开发者通常会使用加密和保护软件的方法,而逆向工程技术的应用也可以加强软件的保护。
3.逆向工程技术在软件开发中的应用逆向工程技术可以对软件进行分析和改进,从而提高软件的质量和性能。
通过反编译软件,开发者可以了解软件的框架和设计,从而可以更好地理解代码,并且可以为软件添加新的功能。
4.逆向工程技术的挑战尽管逆向工程技术有着广泛的应用前景,但在实践中,它也存在一些挑战。
例如,某些软件开发者使用了防御措施,从而使逆向工程变得更加困难。
同时,逆向工程技术本身也需要专业技能和实践经验,只有具有一定的专业知识和技能的人才能有效地使用该技术。
5.结论逆向工程技术在软件开发中具有广泛的应用前景,无论是在软件保护还是软件改进方面,其都可以为软件开发者提供帮助。
然而,要发挥该技术的作用,开发者需要具有专业知识和技能并且需要了解其挑战。
只有这样,才能在软件开发过程中充分发挥逆向工程技术的价值。
逆向工程技术及应用逆向工程是指将制造对象进行解构、分析、破解并拆解出知识产权内容,在此基础上进行再设计、制造的过程,是现代工业技术发展的一个重要组成部分。
逆向工程可以应用于多个领域,如汽车、机械、电子、航空航天、数字化文物保护等。
逆向工程的方法有很多种,常见的包括逆向分析方法、点云扫描技术、CT扫描技术、数字测量与建模技术等。
逆向分析方法是指通过对物体的形态、材料、特征进行逆向分析,从而获得物体的知识产权内容,包括设计图纸、结构参数、功能特征等。
逆向分析方法通常需要对被分析的物体进行拆解和测量,得到数据后进行统计分析,最终获得物体的知识产权内容。
点云扫描技术是指通过对物体表面进行点云数据采集,然后使用软件进行三维重建,得到物体的三维模型。
点云扫描技术通常使用激光测距、相位测量、结构光扫描等方法,将采集到的点云数据进行预处理和后处理,最终得到高精度的三维模型。
CT扫描技术是指通过对物体进行计算机断层扫描,得到物体在空间上的各个断面的扫描图像,然后将图像进行合成,得到物体的三维模型。
CT扫描技术的优点是可以非常精确地测量物体内部的结构和组织,而且无需拆解物体。
数字测量与建模技术是指通过使用数字化测量仪器对物体进行测量,然后根据测量数据进行三维建模。
数字测量仪器包括三坐标测量机、激光测距仪、数字量规等,可以快速地获得物体的测量数据,并进行精确的三维建模。
逆向工程可以应用于多个领域,如汽车制造、数字化文物保护、新材料开发等。
在汽车制造领域,逆向工程可以用于解析竞争对手的产品和技术,并进行仿制和优化。
在数字化文物保护领域,逆向工程可以用于对文物进行数字化重建,实现文物数码化保护和传承。
在新材料开发领域,逆向工程可以用于研究材料的成分和组织结构,设计出更优质的新材料。
逆向工程技术的发展对于现代工业的发展具有重要意义。
随着逆向工程技术的不断推广和改进,逆向工程在商业和工业领域的利用越来越广泛,同时也面临着知识产权保护等问题。
逆向工程名词解释
逆向工程(Reverse Engineering,也称为逆向技术)是一种产品设计再现过程。
它通过对目标产品进行逆向分析和研究,推导出该产品的处理流程、组织结构、功能特性以及技术规格等设计要素,并在此基础上制作出功能相近,但又不完全相同的新产品。
这种技术的来源可以追溯到商业和军事领域的硬件分析。
其主要目的在于,在不能轻易获得必要的生产信息的情况下,直接从成品分析中推导出产品的设计原理。
逆向工程可能会被误认为是严重侵害知识产权的行为,但在实际应用中,它也可以被用于保护知识产权所有者。
例如,在集成电路领域,如果怀疑某公司侵犯知识产权,可以使用逆向工程技术来寻找证据。
以上内容仅供参考,如需更多信息,建议查阅相关文献或咨询专业工程师。
逆向工程技术研究引言逆向工程技术是指通过对产品、设备或软件进行逆向分析、研究和重建的一种技术手段。
在信息时代的浪潮下,逆向工程技术得到了广泛应用,并在各行各业中发挥着重要作用。
本文将对逆向工程技术进行深入研究,并从几个不同的方面进行探讨和讨论。
一、逆向工程技术的概念和发展逆向工程技术的概念最早出现在20世纪50年代,起初主要应用于军事领域。
然而,随着计算机技术和软件技术的迅猛发展,逆向工程技术逐渐向其他领域渗透。
现代逆向工程技术是一种多层次、多学科的综合技术,包括计算机科学、材料科学、机械工程、电子工程等多个专业领域。
由于逆向工程技术的重要性和广泛适用性,很多国家开始将其列为战略性技术,并投入大量资源用于研究和应用。
逆向工程技术的发展已经从最初的软件分析扩展到硬件分析,如逆向设计芯片、逆向分析电路板等。
同时,逆向工程技术在工业设计、产品研发、制造业等领域也得到广泛应用。
二、逆向工程技术的主要方法和应用1. 逆向工程技术的主要方法逆向工程技术的主要方法包括:静态分析、动态分析、结构分析、材料分析、数据恢复、逻辑分析等。
静态分析主要通过反汇编和反编译等手段,对程序进行解析和研究;动态分析则通过执行和调试目标软件,跟踪程序的执行流程,寻找其中的漏洞和脆弱点;结构分析用于分析目标产品的内部结构和组成;材料分析则主要用于分析目标产品所采用的材料的性质和特性;数据恢复则通过恢复被删除或丢失的数据,以获取有用信息;逻辑分析主要用于研究目标软件的逻辑结构和功能。
2. 逆向工程技术的应用逆向工程技术的应用范围广泛。
在软件领域,逆向工程技术可以用于软件程序的优化和改进、病毒检测和分析、版权保护等方面。
在制造业中,逆向工程技术可以用于产品设计、品质检测、工艺改进等。
在信息安全领域,逆向工程技术可以用于漏洞分析、攻击溯源等。
此外,逆向工程技术还在法医学、文化遗产保护等领域有着重要应用。
三、逆向工程技术的挑战与前景逆向工程技术的应用带来了巨大的经济和社会效益,但也面临着一些挑战。
1 逆向工程技术概述1逆向工程技术概述1逆向工程技术概述1逆向工程技术详述逆向工程也称反求工程,是指用一定的测量手段对实物或模型进行测量,根据测量数据通过三维几何建模方法,重构实物的cad模型,从而实现产品设计与制造的过程。
逆向工程技术普遍用于汽车工业,特别是汽车车身的设计与开发。
与传统的设计制造方法不同,其主要是在没有设计图纸或图纸不完整而有样品的情况下,利用三维扫描测量仪,准确快速地测量样品或轮廓外形的表面数据,加以点数据处理、曲面创建、三维实体模型重构,再通过数控加工或快速成型来制造试制样品,然后通过cam数控系统编程加工产品。
通俗说道,从某种程度上说道,逆向工程就是仿制。
这里的前提就是预设我们传统的设计生产为“正向工程。
软件的逆向工程就是分析程序,力图在比源代码更高抽象层次上创建程序的则表示过程,逆向工程就是设计的恢复正常过程。
逆向工程工具可以从已存有的程序中提取数据结构、体系结构和程序设计信息。
imgaware由德国siemens集团旗下的ugs公司出品,是最著名的逆向工程软件,正被广泛应用于汽车、航空、航天、消费家电、模具、计算机零部件等设计与制造领域。
该软件拥有广大的用户群,国外有bmw、boeing、gm、chrysler、ford、raytheon、toyota等著名国际大公司,国内则有上海大众、上海交大、上海delphi、成都飞机制造公司等大企业。
以前该软件主要被应用于航空航天和汽车工业,因为这两个领域对空气动力学性能要求很高,在产品开发的开始阶段就要认真考虑空气动力性。
常规的设计流程首先根据工业造型需要设计出结构,制作出油泥模型之后将其送到风洞实验室去测量空气动力学性能,然后再根据实验结果对模型进行反复修改直到获得满意结果为止,如此所得到的最终油泥模型才是符合需要的模型。
如何将油泥模型的外形精确地输入计算机成为电子模型,这就需要采用逆向工程软件。
首先利用三坐标测量仪器测出模型表面点阵数据,然后利用逆向工程软件(例如:imagewaresurfacer)进行处理即可获得class1曲面。
逆向工程关键技术及应用实例介绍了逆向工程技术的定义及其工作流程,整个流程分为数据采集、数据处理和曲面重构三个部分。
根据理论学习和自身实践经验对逆向工程的关键技术做了一些探讨。
并以摩托车装饰板模型的曲面重建为例,用激光扫描仪获取三维点云数据,在CATIA中对点云进行数据处理,实现曲面重构,说明了逆向工程的整个设计应用流程。
1 引言逆向工程技术是一门新兴的技术,它是在获得实物模型信息的基础上,通过一些软件如CATIA, Surfacer, Pro/E等,在消化、吸收实物原型的前提下,对实物模型进行修改和再设计,从而创造新产品。
因此它是一项开拓性、实用性和综合性很强的技术,目前已经得到了广泛的应用,如飞机、汽车等行业。
逆向工程一般包括以下几个阶段:数据采集、数据处理、曲面重构。
其一般流程如图1所示。
其中数据采集是前提,数据处理和曲面重构是逆向工程的关键,曲面重构尤为重要。
图1基于实物模型重建的逆向工程技术流程图2 数据采集数据采集又称模型数字化,即指通过坐标测量机(Coordinate Measuring Machine,简称CMM)或激光扫描仪等测量装置获取实物表面特征点三维坐标值的过程。
数据采集是逆向工程的第一环节,也是非常重要的一个环节,数据采集的质量和效率直接影响着后期的模型重建的进程,关系着整个逆向工程的成败。
数据采集的流程如图2所示。
图2 数据采集流程图随着科学技术的不断进步,数据采集出现了多种方法,如图3所示。
3 数据处理三维测量系统可采集到复杂曲面上大量密集的原始测量数据,这些数据是物体表面各点坐标,这些数据之间通常没有相应的显式拓扑关系,其中还包含大量无用的数据,同时由于环境的影响如噪声、振动等会出现一些误差数据,因此在进行曲面重构前必须进行数据处理。
图3 数据采集方法分类数据处理一般包括以下几个方面:数据重定位、噪声去除、数据精简、数据插补、数据分割。
有时由于被测对象无法一次测全数据,可能需要分几次测量,每次测量都是在不同的坐标系下进行。
数据重定位就是将在不同定位状态(即不同的坐标系)下测得的数据整合到一个坐标系下。
由于受测量设备精度、扫描速度、操作者的经验和被测零件表面质量等诸多因素的影响,会产生测量误差数据点,习惯上称为噪声点。
在进行曲面构造之前必须去除噪声点,否则最后构建出来的实体形状将由于噪声点的存在而与原实体大相径庭。
最简单的噪声去除方法是人机交互,通过图形显示,判别明显坏点,在数据序列中将这些点删除。
此种方法简单,但是对于数量比较大的点云就不适宜了。
国内出现了很多关于去除噪声点的算法,主要有高斯滤波、均值滤波和中值滤波等方法。
数字化实物模型得到的是大量离散数据的集合,数据量非常巨大,并且存在大量的冗余数据。
对于曲面重构来说,没有必要需要这么多的数据,而且如此庞大的测量点集,有时候会严重影响曲面重建的效率和质量,因此非常有必要进行数据精简。
对于不同类型的点云可采用不同的精简方式。
散乱点云可以通过随机采样的方法来精简;对于扫描线点云和多边形点云可采用等间距缩减、倍率缩减、等量缩减、弦高差等方法;网格化点云可用等分布密度和最小包围区域法进行数据缩减。
数据插补就是利用周围点的信息插值出缺损处的坐标最大限度获得样件模型的数据信息,希望数据点间有一定的拓扑关系。
逆向工程的数据插补方法主要有实物填充法、造型设计法以及曲线、曲面插值补充法。
数据分割(Point Data Segmentation)是根据组成实物外形曲面的子曲面的类型,将属于同一子曲面类型的数据分为一组,这样全部数据将划分成代表不同曲面类型的数据域,为后续的曲面模型重构提供方便。
通常情况下,被测样件模型都是由若干个自由曲面、基本曲面组成的,故在进行曲面重构之前需要进行数据分割,以便可以根据不同部分采用合理的方法构造曲面,最后再将所有曲面进行拼接、缝合。
数据分割一般分为测量过程中的分割和测量后的分割。
测量过程中的分割指在测量过程中,操作者根据被测样件模型的外形特征进行划分,以此规划测量路径,将不同部分的测量保存为不同的点云,这种方法要依赖操作者的经验和被测样件模型外观的复杂程度。
测量后的分割指测.量J束,在对点云数据进行噪声去除、精简数据、数据光顺以后进行的分割。
这种分割需要进行复杂的理论推算。
4 曲面重构曲面重构就是根据数据采集信息来恢复原始曲面的几何模型。
但是它和普通的曲面建模又有很大的区别。
逆向曲面建模是通过大量的点云数据来获得曲面的信息,所以说它所面向的对象是海量的点云数据,是一种非参数化建模。
逆向曲面模型的光顺性与拟合精度始终是一对难以调和的矛盾。
如果过高地追求曲面的精度,保证曲面通过绝大多数点云,必然导致曲面的光顺性较差。
因此,曲面重构是逆向工程中最为重要的一部分。
曲面建模步骤:首先从点云数据中提取“特征线”,建好曲面模型的“骨架”;其次根据“特征线”构建决定产品外观的基础大曲面,并且根据实际所要求的精度和光顺程度反复调整曲面,使最终得到的曲面质量达到所要求的最佳状态;再次通过倒圆角、裁剪完成曲面建模,并进行最后一次总体的质量检查和评估;最后将曲面拼接、加厚,这样就可以进入产品结构设计阶段。
整个设计过程可以用图4清晰明了地表达出来。
图4 曲面建模流程图5 逆向工程关键技术探讨通过理论学习和自身实践对逆向工程技术中的数据采集、数据处理、曲面重构做一些探讨。
5.1 数据采集数据采集是逆向工程的比较重要的一步,在采集数据时应注意以下几点。
(1)针对模型选择适当正确的测量方法。
接触式测量方法不能对易碎材料、软质材料、弹性材料、腐蚀性材料,或其它超薄型材料进行测量,而且不易测量具有复杂内部型腔、特征几何尺寸少及特征曲面较多的样件模型。
非接触式磁学测量可以获取样件内部及内表面的截面数据,但是被测样件不能是磁铁物质;光学测量要求环境光线不应过强,且光照应均匀,样件表面粗糙度小、倾角小、起伏不太大等。
同时被测件表面不应反光,不满足此要求时可采用着色渗透探伤剂对被测件表面进行喷涂着色处理,喷涂时应保证涂层的均匀。
(2)在采集数据时应建立统一的坐标系,且测量区域应该有一定的重叠,以保证数据的完整性。
(3)对曲面比较复杂的模型,要将其外形划分为规则部分和不规则两部分,分别制定测量方案。
如对自由曲面部分,利用扫描测量获得密集的扫描数据;对平面部分,可以只测量几条扫描线即可;重要部位精确采,次要部位适当取点;复杂部位密集采,简单部位稀疏取点;先采外轮廓数据,后采内部数据;对小孔部分单独测量,包括孔的位置和直径等参数。
(4)对形状复杂的自由曲面,尽量一次扫描完整张曲面,如果不能一次扫描完,应在同一平面上尽量划分曲面形状特征类似,并尽量减少测量分块数目,以减少重复定位和重复建立测量坐标系的误差。
同时一些局部曲线或曲面(如曲面边界、内孔轮廓线、过渡圆角的脊线及复杂曲面所包含的局部平面、二次曲面等)对曲面的形状和品质有关键性的影响,这就是所谓的特征曲线、特征曲面。
测量区域内特征线的走向应尽可能一致即尽量使测量区域内拥有一个特征线走向。
5.2 数据处理数据处理是逆向工程中关键技术,数据处理的好坏直接影响着曲面重构的品质。
数据处理的好则曲面特征易于识别,且曲面光顺,曲面质量好,反之曲面特征不易识别,曲面粗糙,曲面质量差。
数据处理有多种方法,具体使用哪种方法应视具体建模对象而定。
处理过程中可交叉综合运用各种方法。
数据处理的最终目的是使得点云数据精简、模型特征易于识别,有利于后续曲面构建。
5.3 曲面重构曲面重构是逆向工程中最关键的技术,也是最困难的技术。
尤其是自由曲面的重构,自由曲面一般由多个非规则曲面构成,它是曲面重构的“瓶颈”。
在重构曲面的过程中应注意以下几点。
(1)根据样件模型的结构特点,以模型的主要轮廓线如特征线、中心线等作为曲面分块的边界,分块曲面一般要保持单凸单凹,以便后续的光顺处理,且分块的数目应尽可能的少,这将有利于后续曲面的调整和处理。
(2)曲率分布要有规律,对于单凸单凹的曲面,沿半径方向的截面线的曲率半径方向必须一致。
(3)先构建基础大曲面,后构造过渡曲面,过渡曲面多采用曲线构建曲面的方法,对于过渡曲面的构造可不必过分拘泥于点云拟合,可以采用相邻基础曲面的边界作为约束进行直接曲面建构。
(4)允许T型相切曲面,尽量避免交叉曲面。
(5)在最后倒圆角、裁剪阶段的时候应先进行倒圆角后进行裁剪。
倒圆角应“先大后小、先少后多”,也就是说先倒大圆弧,再倒小圆弧;对于多个曲面相交处,应先倒出相交面少的圆弧,再倒出相交面多的圆弧。
6 逆向工程实例本文结合摩托车装饰板模型的曲面重构简单的说明逆向工程的全过程。
本次设计中数据采集采用的是由美国Faro公司生产的Faro激光测量臂和法国的Kreon 激光扫描系统(近距扫描)组成的激光扫描设备,见图5。
三维软件使用的是CATIA。
CATIA是由法国Dassault开发并由IBM公司负责销售的CAD/CAM/PDM应用系统。
图5激光扫描系统图6是激光扫描系统得到的数据,图7是进行数据处理后的数据。
从图6可以看出得到的数据是海量的,同时由于受装饰板表面影响、环境影响以及扫描仪的误差,使得到的点云数据存在很大的误差。
从图7看出经过定位、移除、过滤、合并等操作处理,数据精简了很多,数据质量也有了很大的提高,且装饰板的大致轮廓也已经可以看出,可以用来构建曲面。
图6 采集的数据图7 处理后的数据图8是点云渲染图,可以看出曲面还是有点复杂,需要进行曲面分块,分别构建,最后再进行缝合等操作。
图9是最终曲面模型。
图8 渲染图图9 最终曲面7 结束语逆向工程技术能快速建立新产品的数据化模型,大大缩短新产品研发周期,提高企业生产效率,在汽车、飞机等行业都有着广泛的应用。
近几年逆行工程技术发展比较迅速,但数据处理和曲面重构仍是需要不断进行深入研究的两个方面。