2014二次函数中考指南
- 格式:ppt
- 大小:379.00 KB
- 文档页数:14
二次函数的综合问题【教学目标】(一)培养学生灵活掌握和运用二次函数知识的能力;(二)提高分析问题和解决问题的能力.【重点、难点】重点:使学生初步会把二次函数概念和性质综合在一起灵活运用;熟悉数与形的相互联系,相辅相成.难点:善于选择恰当的解法;善于把问题与函数的有关性质联系起来.【知识要点】1.二次函数y=ax2+bx+c图象的顶点坐标是____.2.y=ax2+bx+c图象的顶点坐标公式.3.y=ax2+bx+c图象的画法.4.用待定系数法求二次函数的解析式.5.图象法解ax2+bx+c>0的几何意义.6.有关二次函数的最大值、最小值问题【经典例题】例1.已知y=x2-4x-9(1)把它配方成y=a(x+h)2+k形式;(2)写出它的开口方向、顶点M的坐标、对称轴方程和最值;(3)求出图象与y轴、x轴的交点坐标;(4)作出函数图象;(5)x取什么值时y>0,y<0;(6)设图象交x轴于A,B两点,求△AMB面积.例2.已知图22是二次函数y=ax2+bx+c的图象,判断以下各式的值是正值还是负值.(1)a;(2)b;(3)c;(4)b2-4ac;(5)2a+b;(6)a+b+c;(7)a-b+c.例3 .k取什么值时,对于任意实数x,二次不等式(4-k)x2-3x+k+4>0都成立.例4 .k取什么值时,对于任意实数x,二次不等式(4-k)x2-3x+k+4>0都成立.例5.如图32有一个半径为R的圆的内接等腰梯形,其下底是圆的直径.(1)写出周长y与腰长x的函数关系及自变量x的范围;(2)腰长为何值时周长最大,最大值是多少?例6.抛物线c+=2与x轴交于A、B两点,抛物线的顶点为P.axbxy+(1)若ABP∆为等边三角形,则∆= .(2)若ABP∆为等腰直角三角形,则∆= .例7.如图所示,ABC ∆为直角三角形,D AC BC C ,4,3,90==︒=∠为AC 上任意一点,E 在BC 上,G 、F 在AB 上,四边形DEFG 为矩形,设x CD =,四边形DEFG 的面积为y ,则y 与x 的函数关系式为 .例8.如图,抛物线2812y mx mx n =++与x 轴交于A 、B 两点(点A 在点B 的左边),在第二象限内抛物线上的一点C ,使△OCA ∽△OBC ,且:AC B C =,若直线AC 交y 轴于P 。
二次函2ax y =的图象【教学目标】1.会用描点法画出二次函数()02≠=a ax y 的图象,知道抛物线的有关概念; 2.了解抛物线()02≠=a ax y 的顶点、对称轴的概念; 3.理解二次函数()02≠=a ax y 的最值;4.了解二次函数()02≠=a ax y ,函数值y 随自变量x 变化的变化规律.【重点、难点】重点:会用描点法画出二次函数()02≠=a ax y 的图象.难点:由抛物线的图象直观得到二次函数()02≠=a ax y 的有关性质.【知识要点】1.二次函数2x y =的图象.用描点法画出二次函数2x y =的图象,如图, 它是一条关于y 轴对称的曲线,这样的曲线叫做抛物线.2.二次函数2x y =的有关性质.因为抛物线2x y =关于y 轴对称,所以y 轴是这条抛物线的对称轴,对称轴与抛物线的交点是抛物线的顶点,从图上看,抛物线2x y =的顶点是图象的最低点,因为抛物线2x y =有最低点,所以函数2x y =有最小值,它的最小值就是最低点的纵坐标. 3.二次函数2ax y =的图象画法.用描点画二次函数2ax y =的图象时,应在顶点的左、右两侧对称地选取自变量x 的值,然后计算出对应的y 值,这样的对应值选取越密集,描出的图象越准确。
4.二次函数2ax y =的性质.2(2).抛物线2ax y =的对称轴是y 轴,顶点是原点,当0>a 时,抛物线开口向上,在对称轴左侧部分,y 随x 的增大而减小;在对称轴右侧部分,y 随x 的增大而增大.当0<a 时,抛物线开口向下,在对称轴左侧部分,y 随x 的增大而增大;在对称轴右侧部分,y 随x 的增大而减小;a 的大小决定抛物线2ax y =的开口大小,a 越大,抛物线开口越小;a 越小,抛物线开口越大.【典型例题】例1 画图.在同一坐标系内,画出下列函数的图象(1)y=2x 2 (2)y=-2x 2例2 填空1.函数y=31x 2的图象开口 ,顶点坐标为 ,对称轴为 ,当x=时,y 有最 值。
二次函数综合板块一:旋转、翻折、平移1、点P为抛物线y=x2-2mx+m2(m为常数,m>0)上任一点,将抛物线绕顶点G逆时针旋转90°后得到的新图象与y轴交于A、B两点(点A 在点B的上方),点Q为点P旋转后的对应点.(1)当m=2,点P横坐标为4时,求Q点的坐标;(2)设点Q(a,b),用含m、b的代数式表示a;(3)如图,点Q在第一象限内,点D在x轴的正半轴上,点C为OD的中点,QO平分∠AQC,AQ=2QC,当QD=m时,求m的值.2、已知抛物线L1:23212-+=x x y 的顶点为C ,与x 轴交于A 、B ,将抛物线L1沿x 轴翻折得到抛物线L2(1)求抛物线L2的解析式及顶点M 的坐标. (2)点P 为y 轴右侧的抛物线L2上一点点Q 为抛物线L1上一点若以M 、C 、P 、Q 为顶点的四边形为矩形求点P 、Q 的坐标.(3)N 点在抛物线L2上以MN 为斜边作等腰直角三角形其直角顶点E 正好在x 轴上求N 点坐标.3、如图,直线33y x b =+经过点B(3-,2),且与x 轴交于点A .将抛物线213y x=沿x 轴作左右平移,记平移后的抛物线为C ,其顶点为P .(1)求∠BAO 的度数;(2)抛物线C 与y 轴交于点E ,与直线AB 交于两点,其中一个交点为F .当线段EF ∥x 轴时,求平移后的抛物线C 对应的函数关系式; (3)在抛物线213y x=平移过程中,将△PAB 沿直线AB 翻折得到△DAB ,点D 能否落在抛物线C 上?如能,求出此时抛物线C 顶点P 的坐标;如不能,说明理由.OABxyOABxy213y x =4、已知抛物线C1:y=-x2-2x+3与x轴的正半轴交于B,交y轴于C,将C1绕平面内的一点旋转180得到抛物线C2,且所得抛物线经过B,C两点.(1)求C2的解析式(2)将C2沿x轴平移得到抛物线C3,设C2的顶点为D,C3的顶点为E,抛物线 C3与C2交于M,若△MDE为等腰直角三角形。
2014年中考数学一轮复习讲义:二次函数的图象与性质【考纲要求】1.理解二次函数的有关概念.2.会用描点法画二次函数的图象,能从图象上认识二次函数的性质.3.会运用配方法确定二次函数图象的顶点、开口方向和对称轴,并会求解二次函数的最值问题.4.熟练掌握二次函数解析式的求法.【命题趋势】二次函数图象与性质是中考的重点内容,题型主要有选择题、填空题及解答题,而且常与方程、不等式、几何知识等结合在一起综合考查,中考命题常考查二次函数的概念、图象和性质等基础知识.【知识梳理】知识点一:二次函数的定义一般地,如果是常数,,那么叫做的二次函数.注意问题:如果y=ax2+bx+c(a,b,c是常数,a≠0),那么y叫做x的二次函数.这里,当a=0时就不是二次函数了,但b、c可分别为零,也可以同时都为零.a 的绝对值越大,抛物线的开口越小。
知识点二:二次函数的图象与性质1.二次函数由特殊到一般,可分为以下几种形式:①;②;③;④,其中;⑤.(以上式子a≠0)几种特殊的二次函数的图象特征如下:(轴)当(轴)(,)2.抛物线的三要素: 开口方向、对称轴、顶点.(1)的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛物线的开口大小、形状相同. (2)平行于轴(或重合)的直线记作.特别地,轴记作直线.3.抛物线y=ax 2+bx+c(a,b,c 是常数,a≠0)中,a,b,c 的作用: (1)决定开口方向及开口大小,这与中的完全一样.(2)和共同决定抛物线对称轴的位置.由于抛物线的对称轴是直线, 故:①时,对称轴为轴;②(即、同号)时,对称轴在轴左侧;③(即 、异号)时,对称轴在轴右侧.(3)的大小决定抛物线与轴交点的位置. 当时,,∴抛物线与轴有且只有一个交点(0,):①,抛物线经过原点; ②,与轴交于正半轴;③,与轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,则 .4.用待定系数法求二次函数的解析式: (1)一般式:(a≠0).已知图象上三点或三对、的值,通常选择一般式.(2)顶点式:(a≠0).已知图象的顶点或对称轴,通常选择顶点式.(可以看成的图象平移后所对应的函数.)(3)“交点式”:已知图象与轴的交点坐标、,通常选用交点式:(a≠0).(由此得根与系数的关系:)。
2014中考数学专题复习教案--二次函数(1)复习目标:1、理解二次函数和抛物线的有关概念2、会用描点法画出二次函数的图象,能结合图象认识二次函数的性质3、能正确确定二次函数的顶点、开口方向及其对称轴、最值、与坐标轴的交点坐标4、能根据图象的大致位置确定各项系数及ac b 42-的符号5、能结合图象理解二次函数的平移规律复习重点:二次函数的图象及性质复习难点:二次函数的平移规律复习过程:一、知识梳理:1、二次函数的定义:形如c bx ax y ++=2 (a 、b 、c 为常数,a ≠0)的函数叫做二次函数。
2、二次函数的三种形式:(1)、一般式:c bx ax y ++=2 (a 、b 、c 为常数,a ≠0) (2)、顶点式:hd x a y ++=2)( (a 、d 、h 为常数,a ≠0)(3)、交点式:))((21x x x x a y --= (a ≠0,其中21x x 是抛物线与x 轴的两个交点的横坐标)3、二次函数的图象及性质:4、二次函数图象的平移二、经典例题:1、图象及性质:已知抛物线c bx ax y ++=2 (a>0)的对称轴为直线x=1,且经过点(-1,1y ),(2,2y ),试比较1y 和2y 的大小:1y ___>___2y 。
(填“>”,“<”或“=”)方法总结:此题宜画出草图,数形结合进行比较。
2、二次函数关系式的确定已知抛物线经过(0,1)顶点坐标为(1,3),求抛物线的关系式.1422++-=x x y 方法总结:用待定系数法求二次函数解析式,需根据已知条件,灵活选择解析式:若已知图象上三个点的坐标,可设一般式;若已知二次函数图象与x 轴两个交点的横坐标,可设交点式;若已知抛物线顶点坐标或对称轴与最值,可设顶点式。
3、图象的平移把抛物线y=-2x 2-4x-3向右平移2个单位,再向上平移4个单位,求所得抛物线的关系式; 方法总结:(1)平移后开口方向,开口大小不变,形状不变,只是位置发生了变化;(2)旋转后开口方向相反,开口大小不变,二次项系数是原来的相反数,顶点不变;(3)关于x 轴对称的点横坐标相等,纵坐标互为相反数;三、作业:1、《考试指南》P65-662、《新中考》P35-36。
2014中考数学基础知识总结:二次函数图像与性质
中考频道在考试后及时公布各科中考试题答案和中考作文及试卷专家点评。
请广大考生家长关注,祝福广大考生在2013年中考中发挥出最佳水平,考出好成绩!同时祝愿决战2014中考的新初三学员能倍加努力,在2014年中考中也能取得优异的成绩。
二次函数图像与性质口诀:
二次函数抛物线,图象对称是关键;
开口、顶点和交点,它们确定图象现;
开口、大小由a断,c与Y轴来相见,b的符号较特别,
符号与a相关联;顶点位置先找见,Y轴作为参考线,
左同右异中为0,牢记心中莫混乱;顶点坐标最重要,
一般式配方它就现,横标即为对称轴,纵标函数最值见。
若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换。
反比例函数图像与性质口诀:
反比例函数有特点,双曲线相背离的远;k为正,
图在一、三(象)限,k为负,图在二、四(象)限;
图在一、三函数减,两个分支分别减。
图在二、四正相反,两个分支分别添;
线越长越近轴,永远与轴不沾边。
三角函数的增减性:
正增余减特殊三角函数值记忆:。
2014年中考数学一轮复习讲义:二次函数的应用【考纲要求】1.熟练掌握二次函数解析式的求法,并能用它解决有关的实际问题.2.建立平面直角坐标系,把代数问题与几何问题进行互相转化,充分结合三角函数、解直角三角形、相似、全等、圆等知识解决问题,求二次函数的解析式是解题关键【命题趋势】二次函数应用是中考的重点内容,而且常与方程、不等式、几何知识等结合在一起综合考查,且一般为压轴题,而且注重多个知识点的综合考查以及对学生应用二次函数解决实际问题能力的考查.【知识梳理】知识点一:利用二次函数解决实际问题:利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义.利用二次函数解决实际问题的一般步骤是:(1)建立适当的平面直角坐标系;(2)把实际问题中的一些数据与点的坐标联系起来;(3)用待定系数法求出抛物线的关系式;(4)利用二次函数的图象及其性质去分析问题、解决问题.题型分类、深度剖析:考点一:二次函数的应用:【例1】我市某镇的一种特产由于运输原因,长期只能在当地销售.当地政府对该特产的销售投资收益为:每投入x万元,可获得利润P=-1100(x-60)2+41(万元).当地政府拟在“十二·五”规划中加快开发该特产的销售,其规划方案为:在规划前后对该项目每年最多可投入100万元的销售投资,在实施规划5年的前两年中,每年都从100万元中拨出50万元用于修建一条公路,两年修成,通车前该特产只能在当地销售;公路通车后的3年中,该特产既在本地销售,也在外地销售.在外地销售的投资收益为:每投入x万元,可获利润Q =-99100(100-x )2+2945(100-x )+160(万元). (1)若不进行开发,求5年所获利润的最大值是多少;(2)若按规划实施,求5年所获利润(扣除修路后)的最大值是多少; (3)根据(1)、(2),该方案是否具有实施价值?解:(1)当x =60时,P 最大且为41万元,故五年获利最大值是41×5=205(万元). (2)前两年:0≤x ≤50,此时因为P 随x 的增大而增大,所以x =50时,P 值最大且为40万元,所以这两年获利最大为40×2=80(万元).后三年:设每年获利为y 万元,当地投资额为x 万元,则外地投资额为(100-x )万元,所以y =P +Q =⎣⎢⎡⎦⎥⎤-1100x -602+41+⎝⎛⎭⎪⎫-99100x 2+2945x +160=-x 2+60x +165=-(x -30)2+1 065,表明x =30时,y 最大且为1 065,那么三年获利最大为1 065×3=3 195(万元),故五年获利最大值为80+3 195-50×2=3 175(万元).(3)有极大的实施价值.方法总结 运用二次函数的性质解决生活和实际生产中的最大值和最小值问题是最常见的题目类型,解决这类问题的方法是:1.列出二次函数的关系式,列关系式时,要根据自变量的实际意义,确定自变量的取值范围.2.在自变量取值范围内,运用公式法或配方法求出二次函数的最大值和最小值. 触类旁通1 一玩具厂去年生产某种玩具,成本为10元/件,出厂价为12元/件,年销售量为2万件.今年计划通过适当增加成本来提高产品档次,以拓展市场.若今年这种玩具每件的成本比去年成本增加0.7x 倍,今年这种玩具每件的出厂价比去年出厂价相应提高0.5x 倍,则预计今年年销售量将比去年年销售量增加x 倍(本题中0<x ≤11).(1)用含x 的代数式表示,今年生产的这种玩具每件的成本为__________元,今年生产的这种玩具每件的出厂价为__________元;(2)求今年这种玩具的每件利润y (元)与x 之间的函数关系式;(3)设今年这种玩具的年销售利润为w 万元,求当x 为何值时,今年的年销售利润最大?最大年销售利润是多少万元?注:年销售利润=(每件玩具的出厂价-每件玩具的成本)×年销售量. 考点二:二次函数综合题:【例2】(2013• 德州压轴题)如图,在直角坐标系中有一直角三角形AOB ,O 为坐标原点,OA=1,tan ∠BAO=3,将此三角形绕原点O 逆时针旋转90°,得到△DOC ,抛物线y=ax 2+bx+c 经过点A 、B 、C .(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其坐标为t,①设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求出当△CEF与△COD相似点P的坐标;②是否存在一点P,使△PCD得面积最大?若存在,求出△PCD的面积的最大值;若不存在,请说明理由.BAO=,解得:﹣解得:﹣+2,.触类旁通2(2013泰安压轴题)如图,抛物线y=x2+bx+c与y轴交于点C(0,﹣4),与x轴交于点A,B,且B点的坐标为(2,0)(1)求该抛物线的解析式.(2)若点P是AB上的一动点,过点P作PE∥AC,交BC于E,连接CP,求△PCE面积的最大值.(3)若点D为OA的中点,点M是线段AC上一点,且△OMD为等腰三角形,求M 点的坐标.。
二次函数y=ax 2+bx+c 的图象 【教学目标】1、使学生会用公式求抛物线y=ax 2+bx+c 的对称轴与顶点。
2、了解抛物线的另一种形式y=a (x-x 1)(x-x 2)【重点、难点】重点:用公式求抛物线y=ax 2+bx+c 的对称轴与顶点坐标;难点:抛物线y=ax 2+bx+c 的对称轴与顶点的求法及有关性质。
【知识要点】1.二次函数解析式的一般形式是2(0)y ax bx c a =++≠经过配方得到:22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中对称轴为直线2b x a =-,顶点坐标为(2b a -,244ac b a -),当已知顶点坐标或对称轴时,可设顶点为2()(0),(,)y a x h k a h k =-+≠是顶点坐标。
2.当240b ac -≥,图象与x 轴有交点,其中12,x x 是方程20(0)ax bx c a ++=≠的两个根,于是二次函数解析式又可写为2212()()b c y ax bx c a x x a x x x x a a ⎛⎫=++=++=-- ⎪⎝⎭即12()()y a x x x x =--,即两根式。
【典型例题】例1.指出下列抛物线的开口方向、求出它的对称轴、顶点坐标、与y 轴的交点坐标、与x 轴的交点坐标。
(1)322++-=x x y (2) 1432-+=x x y(3) 852+-=x x y (4)1542-+-=x x y例2.已知抛物线12212+-=x x y , (1)当x 为何值时 y>0, y=0, y<0?(2)当x 为何值时,函数y 随x 的增大而增大?(3)当x 为何值时,函数y 随x 的增大而减小?(4)当x 为何值时,函数y 有最大值或最小值?是多少?例3.已知二次函数的图象经过(-1,10),(1,4),(2,7)三点,求二次函数解析式例4已知二次函数的图象的顶点坐标是(-1,2),且过点(2,-3),求二次函数解析式例5.已知二次函数的图象与x轴交点的横坐标分别是-4,6,且过点(2,2),求二次函数解析式例6.已知二次函数的图象与x轴交点坐标分别(-2,0),(5,0),在y轴上的截距是-2,求二次函数解析式例7 已知二次函数2=++的最大值为2,顶点在直线1y ax bx c=+上,并且图象经过点(3,y x-6),求解析式。
二次函数专题复习考点1:二次函数的图象和性质一、考点讲解: 1.二次函数的定义:形如c bx ax y ++=2(a ≠0,a ,b ,c 为常数)的函数为二次函数.2.二次函数的图象及性质:⑴ 二次函数y=ax 2 (a ≠0)的图象是一条抛物线,其顶点是原点,对称轴是y 轴;当a >0时,抛物线开口向上,顶点是最低点;当a <0时,抛物线开口向下,顶点是最高点;a 越小,抛物线开口越大.y=a(x -h)2+k 的对称轴是x=h ,顶点坐标是(h ,k )。
⑵ 二次函数c bx ax y ++=2的图象是一条抛物线.顶点为(-2b a ,244ac b a -),对称轴x=-2b a ;当a >0时,抛物线开口向上,图象有最低点,且x >-2b a ,y 随x 的增大而增大,x <-2ba ,y 随x 的增大而减小;当a <0时,抛物线开口向下,图象有最高点,且x >-2b a ,y 随x 的增大而减小,x <-2b a ,y 随x 的增大而增大.注意:分析二次函数增减性时,一定要以对称轴为分界线。
首先要看所要分析的点是否是在对称轴同侧还是异侧,然后再根据具体情况分析其大小情况。
解题小诀窍:二次函数上两点坐标为(y x ,1),(y x ,2),即两点纵坐标相等,则其对称轴为直线221x x x +=。
⑶ 当a >0时,当x=-2b a 时,函数有最小值244ac b a -;当a <0时,当 x=-2b a 时,函数有最大值244ac b a -。
3.图象的平移:将二次函数y=ax 2 (a ≠0)的图象进行平移,可得到y=ax 2+c ,y=a(x -h)2,y=a(x -h)2+k 的图象.⑴ 将y=ax 2的图象向上(c >0)或向下(c< 0)平移|c|个单位,即可得到y=ax 2+c 的图象.其顶点是(0,c ),形状、对称轴、开口方向与抛物线y=ax 2相同.⑵ 将y=ax 2的图象向左(h<0)或向右(h >0)平移|h|个单位,即可得到y=a(x -h)2的图象.其顶点是(h ,0),对称轴是直线x=h ,形状、开口方向与抛物线y=ax 2相同.⑶ 将y=ax 2的图象向左(h<0)或向右(h >0)平移|h|个单位,再向上(k>0)或向下(k<0)平移|k|个单位,即可得到y=a(x -h)2 +k 的图象,其顶点是(h ,k ),对称轴是直线x=h ,形状、开口方向与抛物线y=ax 2相同. 注意:二次函数y=ax 2 与y =-ax 2 的图像关于x 轴对称。
第十四讲 二次函数的图象和性质【基础知识回顾】一、二次函数的定义:一般地如果y= (a 、b 、c 是常数a≠0)那么y 叫做x 的二次函数【名师提醒: 二次函数y=kx 2+bx+c(a≠0)的结构特征是:1、等号左边是函数,右边是 关 于 自 变 量x 的 二 次 式,x 的 最 高 次 数 是 , 按 一次排列 2、强调二次项系数a 0】二、二次函数的同象和性质:1、二次函数y=kx 2+bx+c(a≠0)的同象是一条 ,其定点坐标为 对称轴式2、在抛物y=kx 2+bx+c(a≠0)中:①、当a>0时,y 口向 ,当x<ab2-时,y 随x 的增大而 ,当x 时,y 随x 的增大而增大,②、当a<0时,开口向 当x<ab2-时,y 随x 增大而增大,当x 时,y 随x 增大而减小【名师提醒:注意几个特殊形式的抛物线的特点 1、y=ax 2 ,对称轴 定点坐标2、y= ax 2 +k ,对称轴 定点坐标3、y=a(x-h) 2对称轴 定点坐标4、y=a(x-h) 2 +k 对称轴 定点坐标 】 三、二次函数同象的平移【名师提醒:二次函数的平移本质可看作是定点问题的平移,固然要掌握整抛物线的平移,只要关键的顶点平移即可】四、二次函数y= ax 2+bx+c 的同象与字母系数之间的关系:a:开口方向 向上则a 0,向下则a 0 |a |越大,开口越 b:对称轴位置,与a 联系一起,用 判断b=0时,对称轴是c:与y 轴的交点:交点在y 轴正半轴上,则c 0负半轴上则c 0,当c=0时,抛物点过 点【名师提醒:在抛物线y = ax 2+bx+c 中,当x=1时,y= 当x=-1时y= ,经常根据对应的函数值判考a+b+c 和a-b+c 的符号】 【重点考点例析】考点一:二次函数图象上点的坐标特点例1 (2012•常州)已知二次函数y=a (x-2)2+c (a >0),当自变量x 、3、0时,对应的函数值分别:y 1,y 2,y 3,,则y 1,y 2,y 3的大小关系正确的是( ) A .y 3<y 2<y 1 B .y 1<y 2<y 3 C .y 2<y 1<y 3 D .y 3<y 1<y 2点评:本题考查了二次函数图象上点的坐标特征.解题时,需熟悉抛物线的有关性质:抛物线的开口向上,则抛物线上的点离对称轴越远,对应的函数值就越大. 对应训练1.(2012•衢州)已知二次函数y=12-x 2-7x+152,若自变量x 分别取x 1,x 2,x 3,且0<x 1<x2<x3,则对应的函数值y1,y2,y3的大小关系正确的是()A.y1>y2>y3B.y1<y2<y3C.y2>y3>y1D.y2<y3<y1考点二:二次函数的图象和性质例2 (2012•咸宁)对于二次函数y=x2-2mx-3,有下列说法:①它的图象与x轴有两个公共点;②如果当x≤1时y随x的增大而减小,则m=1;③如果将它的图象向左平移3个单位后过原点,则m=-1;④如果当x=4时的函数值与x=2008时的函数值相等,则当x=2012时的函数值为-3.其中正确的说法是.(把你认为正确说法的序号都填上)考点:二次函数的性质;二次函数图象与几何变换;抛物线与x轴的交点.点评:本题考查了二次函数的性质、二次函数的图象与几何变换、抛物线与x轴的交点,综合性较强,体现了二次函数的特点.对应训练2.(2012•河北)如图,抛物线y1=a(x+2)2-3与y2=12(x-3)2+1交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.则以下结论:①无论x取何值,y2的值总是正数;②a=1;③当x=0时,y2-y1=4;④2AB=3AC;其中正确结论是()A.①② B.②③ C.③④ D.①④考点三:抛物线的特征与a、b、c的关系例3 (2012•玉林)二次函数y=ax2+bx+c(a≠0)的图象如图所示,其对称轴为x=1,有如下结论:①c<1;②2a+b=0;③b2<4ac;④若方程ax2+bx+c=0的两根为x1,x2,则x1+x2=2,则正确的结论是()A.①② B.①③ C.②④ D.③④点评:此题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a决定抛物线的开口方向,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点,抛物线与y轴交于(0,c).对应训练3.(2012•重庆)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示对称轴为x=12 .下列结论中,正确的是()A.abc>0 B.a+b=0 C.2b+c>0 D.4a+c<2b考点四:抛物线的平移例4 (2012•桂林)如图,把抛物线y=x2沿直线y=x个单位后,其顶点在直线上的A处,则平移后的抛物线解析式是()A.y=(x+1)2-1 B.y=(x+1)2+1 C.y=(x-1)2+1 D.y=(x-1)2-1点评:此题主要考查了二次函数图象的几何变换,关键是求出A点坐标,掌握抛物线平移的性质:左加右减,上加下减.对应训练4.(2012•南京)已知下列函数①y=x2;②y=-x2;③y=(x-1)2+2.其中,图象通过平移可以得到函数y=x2+2x-3的图象的有(填写所有正确选项的序号).4.①③【聚焦山东中考】1.(2012•泰安)二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限2.(2012•济南)如图,二次函数的图象经过(-2,-1),(1,1)两点,则下列关于此二次函数的说法正确的是()A.y的最大值小于0 B.当x=0时,y的值大于1C.当x=-1时,y的值大于1 D.当x=-3时,y的值小于03.(2012•菏泽)已知二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=bx+c和反比例函数ayx在同一平面直角坐标系中的图象大致是()A.B.C.D.4.(2012•泰安)设A(-2,y1),B(1,y2),C(2,y3)是抛物线y=-(x+1)2+a上的三点,则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y2 5.(2012•烟台)已知二次函数y=2(x-3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x=-3;③其图象顶点坐标为(3,-1);④当x<3时,y随x的增大而减小.则其中说法正确的有()A.1个B.2个C.3个D.4个6.(2012•日照)二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出下列结论:①b2-4ac>0;②2a+b<0;③4a-2b+c=0;④a:b:c=-1:2:3.其中正确的是()A.①②B.②③C.③④D.①④7.(2012•泰安)将抛物线y=3x2向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为()A .y=3(x+2)2+3B .y=3(x-2)2+3C .y=3(x+2)2-3D .y=3(x-2)2-3 8.(2012•潍坊)许多家庭以燃气作为烧水做饭的燃料,节约用气是我们日常生活中非常现实的问题.某款燃气灶旋转位置从0度到90度(如图),燃气关闭时,燃气灶旋转的位置为0度,旋转角度越大,燃气流量越大,燃气开到最大时,旋转角度为90度.为测试燃气灶旋转在不同位置上的燃气用量,在相同条件下,选择燃气灶旋钮的5个不同位置上分别烧开一壶水(当旋钮角度太小时,其火力不能够将水烧开,故选择旋钮角度x 度的范围是18≤x≤90),(1)请你从所学习过的一次函数、反比例函数和二次函数中确定哪种函数能表示所用燃气量y 升与旋钮角度x 度的变化规律?说明确定是这种函数而不是其它函数的理由,并求出它的解析式;(2)当旋钮角度为多少时,烧开一壶水所用燃气量最少?最少是多少?(3)某家庭使用此款燃气灶,以前习惯把燃气开到最大,现采用最节省燃气的旋钮角度,每月平均能节约燃气10立方米,求该家庭以前每月的平均燃气量.【备考真题过关】一、选择题1. .(2013•昭通)已知二次函数y = ax 2+bx +c (a ≠ 0)的图象如图5所示,则下列结论中正确的是( )A .a >0B .3是方程ax 2+bx +c =0的一个根C .a +b +c =0D .当x <1时,y 随x 的增大而减小2.(2013•包头)已知二次函数y =ax 2+bx +c (c ≠0)的图像如图所示,下列结论 ①b <0 ;②4a +2b +c <0; ③a —b +c >0; ④(a +b )²<b ² 其中正确的结论是( )x =1xy O-1A .①②B .①③C .①③④D .①②③④ 3. ( 2013•牡丹江)抛物线y=2ax +bx+c (a <0)如图所示,则关于x 的不等式2ax +bx+c >0的解集是( )A.x <2B.x >-3C.-3<x <1D.x <-3或x >1 4. (2013•怀化)下列函数是二次函数的是( )A .y =2x +1B . y =-2x +1C .y =x 2+2D . y =12x -2 5. (2013•岳阳)二次函数2=++y ax bx c 的图象如图所示,对于下列结论:①<0;a ②<0;b ③0;>c ④20;+=b a ⑤0++<a b c .其中正确的个数是( ) A .1个 B .2个 C .3个D .4个6.(2013•鄂州)下列命题正确的个数是( )x 的取值范围为x≤1且x≠0.②我市生态旅游初步形成规模,2012年全年生态旅游收入为302 600 000元,保留三个有效数字用科学计数法表示为3.03×108元.③若反比例函数my x=(m 为常数),当x >0时,y 随x 增大而增大,则一次函数y =-2 x + m 的图像一定不经过第一象限.④若函数的图像关于y 轴对称,则函数称为偶函数,下列三个函数:y =3,y =2x+1,y =x 2中偶函数的个数为2个.A .1B .2C .3D .47. (2013•鄂州)小轩从如图所示的二次函数y = ax 2+bx +c (a ≠0)的图象中,观察得出了下面五条信息:①ab > 0;②a +b +c < 0;③b +2c >0;④a-2b +4c >0;⑤32a b =。