(完整版)分数裂项与整数列项
- 格式:doc
- 大小:681.51 KB
- 文档页数:7
裂项与通项本讲知识点属于计算大板块内容,其实分数裂项很大程度上是发现规律、利用公式的过程,可以分为观察、改造、运用公式等过程。
很多时候裂项的方式不易找到,需要进行适当的变形,或者先进行一部分运算,使其变得更加简单明了。
本讲是整个奥数知识体系中的一个精华部分,列项与通项归纳是密不可分的,所以先找通项是裂项的前提,是能力的体现,对学生要求较高。
一、裂项综合(1)、“裂差”型运算将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。
遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。
(1)对于分母可以写作两个因数乘积的分数,即1a b ⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b=-⨯- (2)对于分母上为3个或4个连续自然数乘积形式的分数,即:1(1)(2)n n n ⨯+⨯+,1(1)(2)(3)n n n n ⨯+⨯+⨯+形式的,我们有: 1111[](1)(2)2(1)(1)(2)n n n n n n n =-⨯+⨯+⨯+++ 1111[](1)(2)(3)3(1)(2)(1)(2)(3)n n n n n n n n n n =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+ (2)裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。
(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”(3)分母上几个因数间的差是一个定值。
二、“裂和”型运算: 常见的裂和型运算主要有以下两种形式: (1)11a b a b a b a b a b b a +=+=+⨯⨯⨯ (2)2222a b a b a b a b a b a b b a+=+=+⨯⨯⨯ 裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。
分数裂项求和方法总结一、简单分数裂项法:1.若分数的分母为n,则可将该分数表示为n等分之和,即如下形式:\(\frac{a}{n}=\frac{1}{n}+\frac{1}{n}+\frac{1}{n}+...+\frac{ 1}{n}\)这种情况下,裂项个数为分母的值。
2.若分数的分母为n,且分子a能被n整除,则可以将该分数表示为n等分之和,裂项个数为分子的值,即如下形式:\(\frac{a}{n}=\frac{a}{n}+\frac{a}{n}+...+\frac{a}{n}\)二、特殊分数裂项法:1.若分母为n(n≥2),分子为1,则可用连续的n-1个分数之和表示,如:\(\frac{1}{n}=\frac{1}{n+1}+\frac{1}{n(n+1)}\)若此时n=2,则该分数可表示为:\(\frac{1}{2}=\frac{1}{3}+\frac{1}{6}\)2.若分母为n(n≥3),分子为1,则可用连续的n-1个分数之和表示,如:\(\frac{1}{n}=\frac{1}{(n+1)(n+2)}+\frac{1}{n+1}\)若此时n=3,则该分数可表示为:\(\frac{1}{3}=\frac{1}{12}+\frac{1}{4}\)三、通用分数裂项法:1.若分数的分子是一个较大的整数a,分母是一个较小的整数b,则可以通过转换分母的形式,将该分数表示为分解后的两个分数之和,如:\(\frac{a}{b}=\frac{a+b}{b}+\frac{-b}{b}\)如将 \(\frac{7}{3}\) 进行裂项,可得:\(\frac{7}{3}=\frac{7+3}{3}+\frac{-3}{3}=\frac{10}{3}+\frac{-1}{3}\)2.若分数的分子是一个较大的整数a,分母是一个较小的整数b的平方,则可以通过转换分母的形式,将该分数表示为分解后的两个分数之和,如:\(\frac{a}{b^2}=\frac{a}{b^2}+\frac{a}{b^2}+...+\frac{a}{b^2}\)裂项的个数为分子的值。
小学数学分数裂项考试要求(1) 能熟练运算常规裂和型题目; (2) 复杂整数裂项运算; (3) 分子隐蔽的裂和型运算。
(4) 4、通项归纳知识结构一、“裂差”型运算将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。
遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。
1、 对于分母可以写作两个因数乘积的分数,即1a b⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b=-⨯- 2、 对于分母上为3个或4个自然数乘积形式的分数,我们有: 1111[]()(2)2()()(2)n n k n k k n n k n k n k =-⨯+⨯+⨯+++1111[]()(2)(3)3()(2)()(2)(3)n n k n k n k k n n k n k n k n k n k =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+3、 对于分子不是1的情况我们有:⎪⎭⎫ ⎝⎛+-=+k n n k n n k 11)(()11h h n n k k n n k ⎛⎫=- ⎪++⎝⎭()()()()()21122k n n k n k n n k n k n k =-+++++()()()()()()()()31123223k n n k n k n k n n k n k n k n k n k =-++++++++()()()()()11222hh n n k n k kn n k n k n k ⎡⎤=-⎢⎥+++++⎣⎦()()()()()()()()11233223h hn n k n k n k kn n k n k n k n k n k ⎡⎤=-⎢⎥++++++++⎣⎦()()()221111212122121n n n n n ⎛⎫=+- ⎪-+-+⎝⎭二、裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。
本讲知识点属于计算大板块内容,其实分数裂项很大程度上是发现规律、利用公式的过程,可以分为观察、改造、运用公式等过程。
很多时候裂项的方式不易找到,需要进行适当的变形,或者先进行一部分运算,使其变得更加简单明了。
本讲是整个奥数知识体系中的一个精华部分,列项与通项归纳是密不可分的,所以先找通项是裂项的前提,是能力的体现,对学生要求较高。
一、裂项综合 (1)、“裂差”型运算将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。
遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。
(1)对于分母可以写作两个因数乘积的分数,即1a b⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b=-⨯- (2)对于分母上为3个或4个连续自然数乘积形式的分数,即: 1(1)(2)n n n ⨯+⨯+,1(1)(2)(3)n n n n ⨯+⨯+⨯+形式的,我们有:1111[](1)(2)2(1)(1)(2)n n n n n n n =-⨯+⨯+⨯+++1111[](1)(2)(3)3(1)(2)(1)(2)(3)n n n n n n n n n n =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+知识点拨教学目标1-2-3裂项与通项归纳(2)裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。
(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接” (3)分母上几个因数间的差是一个定值。
二、“裂和”型运算:常见的裂和型运算主要有以下两种形式:(1)11a b a b a b a b a b b a +=+=+⨯⨯⨯ (2)2222a b a b a b a b a b a b b a +=+=+⨯⨯⨯裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。
小学数学分数裂项考试要求(1) 能熟练运算常规裂和型题目; (2) 复杂整数裂项运算; (3) 分子隐蔽的裂和型运算。
(4) 4、通项归纳知识结构一、“裂差”型运算将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。
遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。
1、 对于分母可以写作两个因数乘积的分数,即1a b⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b=-⨯- 2、 对于分母上为3个或4个自然数乘积形式的分数,我们有: 1111[]()(2)2()()(2)n n k n k k n n k n k n k =-⨯+⨯+⨯+++1111[]()(2)(3)3()(2)()(2)(3)n n k n k n k k n n k n k n k n k n k =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+3、 对于分子不是1的情况我们有:⎪⎭⎫ ⎝⎛+-=+k n n k n n k 11)(()11h h n n k k n n k ⎛⎫=- ⎪++⎝⎭()()()()()21122k n n k n k n n k n k n k =-+++++()()()()()()()()31123223k n n k n k n k n n k n k n k n k n k =-++++++++()()()()()11222hh n n k n k kn n k n k n k ⎡⎤=-⎢⎥+++++⎣⎦()()()()()()()()11233223h hn n k n k n k kn n k n k n k n k n k ⎡⎤=-⎢⎥++++++++⎣⎦()()()221111212122121n n n n n ⎛⎫=+- ⎪-+-+⎝⎭二、裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。
本讲知识点属于计算大板块内容,其实分数裂项很大程度上是发现规律、利用公式的过程,可以分为观察、改造、运用公式等过程。
很多时候裂项的方式不易找到,需要进行适当的变形,或者先进行一部分运算,使其变得更加简单明了。
本讲是整个奥数知识体系中的一个精华部分,列项与通项归纳是密不可分的,所以先找通项是裂项的前提,是能力的体现,对学生要求较高。
分数裂项一、“裂差”型运算 将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。
遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。
(1)对于分母可以写作两个因数乘积的分数,即1a b ⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b=-⨯- (2)对于分母上为3个或4个连续自然数乘积形式的分数,即:1(1)(2)n n n ⨯+⨯+,1(1)(2)(3)n n n n ⨯+⨯+⨯+形式的,我们有: 1111[](1)(2)2(1)(1)(2)n n n n n n n =-⨯+⨯+⨯+++ 1111[](1)(2)(3)3(1)(2)(1)(2)(3)n n n n n n n n n n =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+ 裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。
(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”(3)分母上几个因数间的差是一个定值。
二、“裂和”型运算:常见的裂和型运算主要有以下两种形式:知识点拨教学目标分数裂项计算(1)11a b a b a b a b a b b a +=+=+⨯⨯⨯ (2)2222a b a b a b a b a b a b b a +=+=+⨯⨯⨯ 裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。
分数裂项
分数裂项知识点属于计算大板块内容,其实分数裂项很大程度上是发现规律、利用公式的过程,可以分为观察、改造、运用公式等过程。
很多时候裂项的方式不易找到,需要进行适当的变形,或者先进行一部分运算,使其变得更加简单明了.
分数裂项是整个奥数知识体系中的一个精华部分,列项与通项归纳是密不可分的,所以先找通项是裂项的前提,是能力的体现,对学生要求较高。
将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。
遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。
考试要求(1)能熟练运算常规裂和型题目;(2)复杂整数裂项运算;(3)分子隐蔽的裂和型运算。
知识结构一、复杂整数裂项型运算复杂整数裂项特点:从公差一定的数列中依次取出若干个数相乘,再把所有的乘积相加。
其巧解方法是:先把算式中最后一项向后延续一个数,再把算式中最前面一项向前伸展一个数,用它们的差除以公差与因数个数加1的乘积。
整数裂项口诀:等差数列数,依次取几个。
所有积之和,裂项来求作。
后延减前伸,差数除以N。
N 取什么值,两数相乘积。
公差要乘以,因个加上一。
需要注意的是:按照公差向前伸展时,当伸展数小于0时,可以取负数,当然是积为负数,减负要加正。
对于小学生,这时候通常是把第一项甩出来,按照口诀先算出后面的结果再加上第一项的结果。
此外,有些算式可以先通过变形,使之符合要求,再利用裂项求解。
二、“裂和”型运算常见的裂和型运算主要有以下两种形式:(1)11a b a ba b a b a b b a+=+=+⨯⨯⨯(2)2222a b a b a ba b a b a b b a+=+=+⨯⨯⨯裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。
整数裂项与分数裂和重难点(1)复杂整数裂项的特点及灵活运用(2)分子隐蔽的裂和型运算。
例题精讲一、整数裂项【例1】计算:1324354699101⨯+⨯+⨯+⨯++⨯ 欢迎关注:奥数轻松学余老师薇芯:69039270【巩固】计算:355779979999101⨯+⨯+⨯++⨯+⨯ 【例2】计算101622162228707682768288⨯⨯+⨯⨯++⨯⨯+⨯⨯【例3】计算1×1+2×2+3×3+……+99×99+100×100【巩固】333444797979⨯⨯+⨯⨯++⨯⨯ 【例4】计算:111222333999999100100100⨯⨯+⨯⨯+⨯⨯++⨯⨯+⨯⨯ 【例5】()()()()1121231234123100+++++++++++++++ 【巩固】()()()33636936300++++++++++二、分数裂和【例6】填空:()+=2165,()+=31127,()+=41209()+=513011,()+=614213,()+=715615【巩固】计算:90197217561542133011209127651+-+-+-+-欢迎关注:奥数轻松学余老师薇芯:69039270【例7】5667788991056677889910+++++-+-+⨯⨯⨯⨯⨯【巩固】36579111357612203042++++++【例8】计算:132579101119 3457820212435 ++++++++=【巩固】12379111725 3571220283042 +++++++【例9】111112010263827 2330314151119120123124 +++++++++欢迎关注:奥数轻松学余老师薇芯:69039270【巩固】3549637791105311 6122030425688⎡⎤⎛⎫-+-+--÷ ⎢⎥⎝⎭⎣⎦【例10】22222222 122318191920 122318191920 ++++ ++⋯⋯++⨯⨯⨯⨯【巩固】333222333322223332223322322621262143214321321321212111+⋯+++⋯++-⋯+++++++-+++++++-课堂检测1、14477104952⨯+⨯+⨯++⨯ =_________2、计算:57911131517191612203042567290-+-+-+-+3、11798175451220153012++++++4、222222221223200420052005200612232004200520052006++++++++⨯⨯⨯⨯5、2221111112131991⎛⎫⎛⎫⎛⎫+⨯+⨯⨯+ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭家庭作业1、1122335050⨯+⨯+⨯++⨯2、2464689698100⨯⨯+⨯⨯++⨯⨯3、123791121313571220284056+++++++4、12389 (1)(2)(3)(8)(9)234910 -⨯-⨯-⨯⨯-⨯-5、12123123412350 2232342350 ++++++++++⨯⨯⨯⨯++++++教学反馈学生对本次课的评价○特别满意○满意○一般家长意见及建议家长签字:。
第二讲分数 1.2NT1.2 分数计算(裂项法)知要点和基本方法分数算是小学数学的重要内容,也是数学的重要内容之一。
分数算同整数算一既有知要求又有能力要求。
法、定律、性是行算的依据,要使算快速、准确,关是掌握运算技巧。
算式真察,剖析算是的特点及个数之的关系,巧妙、灵活的运用运算定律,合理改运算序,使算便易行,启迪思,培养合分析、推理能力和灵活的运算能力,都有很大的帮助。
公式:( 1)平方差公式:a2 b2 ( a b) ( a b)( 2)等差数列求和公式:a1 a2 a3 an 1 a n1a1 a n n2( 3)分数的拆分公式:① 11) =1- 1n(n n n 1② 1d) =1×(1- 1 )n(n d n n d 裂项法:例1. 算: 1 + 1 + 1 +⋯⋯+99 11 2 2 3 3 4 10011 1例4.算:++⋯⋯+10×1111×1219× 20例2.1 1 1算:10× 11+11×12+⋯⋯+59× 60例5.1 1 1 1算2×3+3×4 +⋯⋯+6× 7+7× 8例3.算:21+16+121+201+301+421六年级第一学期NT例6. 算: 1+1+1+1+126 12 20例 10. 算:22 2 2 23 15 35 63 99例7. 算:1 1 1 1 1 1 16+12+20+30+42+56+72例 11. 算:11 1 1 1 18 24 48 80 120 168例 8.算:1+1+1+1+1+1 315 3563 99 143例 9. 算:14 1711011311 4 7 10 13 16例 12. 算:1+1+2+1+1+2+3+2+1+⋯⋯+ 1 +2+⋯⋯+100 +99+⋯⋯+ 1 1 2 2 2 3 3 3 3 3 100 100 100 100 100例 13. 算: 1+ 1 +1 1 +113+⋯⋯+1 2 311 2 2 3 2 4 2005例 14.算: 2×( 1- 1 2)×( 1- 1 2)×( 1-12)×⋯⋯×(1-12)2005 2004 2003 2第二讲分数 1.2NT六年级 第一学期NT综合计算例 1.计算 : 2005120032003 2004例 2. 计算 : ( 1 5 × 1 1 × 6 )÷( 3 × 6 × 5)7 9 11 11 7 9例 3.计算 : 98+ 99 8 + 999 8+⋯⋯+ 9999899999个 9例 4.计算 : ( 1+1)×( 1+1)×( 1+1)×( 1+1)×( 1-1)×( 1- 1 )×( 1-1)×( 1- 1)2468357 9例 5. 计算 : 2004 1 - 1 1 +2002 1 -3 1 +2000 1 -5 1 +⋯⋯+ 4 1 -2001 1 +2 1 - 200312 3 2 3 2 3 2 3 2 3例 6.计算 : ( 1+ 1 +1 + 1 )÷( 1 + 1 + 1 + 1 )979797979797 97979797868686868686 86868686第二讲 分数 1.2NT例 7.计算 : 11 1 11 111 111 11 1=.2 4 610359例 8.计算 :567345 566 =.567 345 222例 9.计算 : 7116 61 1 5 511 4 41 1 3 31 12 = .6 7 5 6 4 5 3 4 2 3例 10. 计算 :11 1 1 1 1 1 1 = .3 6 10 15 21 28 36 451 29 1 29 1 291 29 1 29例 11. 计算 :2 3 30 31 = .1 31 1 31 1 311 31 1 312 328 29计算 :12 3 4 5 6 21 2 3 4 5 6 1例 12.2 3 4 5 6 72 3 4 5 6 7211 2 3 4 5 6 2 3 4 5 62 345 673 456 =7六年级第一学期NT能力训练:1、分数化成最分数:12 =18 = 4 =13 =8 = 2 =18 27 20 65 32 82、小数化成最分数:0.75= 4.8= 1.25=0.36= 3.2= 5.4=3、算:1) 51 2 ÷1 2 + 71 3÷1 3 + 914÷1 4 2005 2005 2005 20053 34 45 51 2 + 2 3 + 3 4 +⋯⋯+ 2004 20054)2)1 1 1 156 +72 +90+1102222 25)21 + 77 + 165 +⋯⋯+ 1677 + 20213) 1 1 1 1 18+24+48+80+120 1 5 11 19 1096) 2 + 6 + 12 + 20 +⋯⋯+ 1101111111 17)1+ 26+ 312+ 420+ 530+ 642+ 756+ 872+ 990第二讲分数 1.2NT137 1531 631272555118) 2 + 4 + 8 + 16 + 32 + 64 + 128 + 256 + 5121 1 1 1 1 19) 3 45 + 4 56 + 5 67 + 6 78 + 7 89 + 8 9 10。
本讲知识点属于计算大板块内容,其实分数裂项很大程度上是发现规律、利用公式的过程,可以分为观察、改造、运用公式等过程。
很多时候裂项的方式不易找到,需要进行适当的变形,或者先进行一部分运算,使其变得更加简单明了。
本讲是整个奥数知识体系中的一个精华部分,列项与通项归纳是密不可分的,所以先找通项是裂项的前提,是能力的体现,对学生要求较高。
分数裂项一、“裂差”型运算 将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。
遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。
(1)对于分母可以写作两个因数乘积的分数,即1a b ⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b=-⨯- (2)对于分母上为3个或4个连续自然数乘积形式的分数,即:1(1)(2)n n n ⨯+⨯+,1(1)(2)(3)n n n n ⨯+⨯+⨯+形式的,我们有: 1111[](1)(2)2(1)(1)(2)n n n n n n n =-⨯+⨯+⨯+++ 1111[](1)(2)(3)3(1)(2)(1)(2)(3)n n n n n n n n n n =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+ 裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。
(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”(3)分母上几个因数间的差是一个定值。
二、“裂和”型运算:常见的裂和型运算主要有以下两种形式:知识点拨教学目标分数裂项计算(1)11a b a b a b a b a b b a +=+=+⨯⨯⨯ (2)2222a b a b a b a b a b a b b a +=+=+⨯⨯⨯ 裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。