高一数学必修3《概率》公式总结以及例题
- 格式:pdf
- 大小:261.56 KB
- 文档页数:8
概率必然事件: 不可能事件: 随机事件:练:判断下列事件哪些是必然事件,哪些是不肯能事件,哪些是随机事件?(1)掷一枚骰子两次,所得点数之和大于12.(2)如果b a >,那么0>-b a ;(3)掷一枚硬币,出现正面向上;(4)从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签;(5)某电话机在1分钟内接到2次呼叫;(6)没有水分,种子能发芽.1,概率概念:思考:(1)抛掷一枚质量均匀的硬币20次,字面向上的频率和概率是试验前知道还是试验后知道?(2)如何用频率来研究事件发生的概率?(3)如果随机事件A 在n 次试验中发生了m 次,则事件A 的概率一定是nm ? 随机事件的频率:随机事件的概率:概率与频率的区别与联系:例1:抛掷10次硬币,是否一定是5次“正面朝上”和5次“5次反面朝上”?例2:有四个阉,其中两个分别代表两件奖品,四个人按排序依次抓阉来决定这两件奖品的归属.先抓的人中奖率一定大吗?例3:一次抽奖活动中,中奖的概率为0.3,解释该概率的含义;例4.为了增强学生对世园会的了解和认识,某校决定在全校3000名学生中随机抽取10名学生举行一次考核,小明认为被选取的可能性为3001,不可能抽到他,所以他就不做备考,他的想法对吗?为什么? 2,对立、互斥事件:对立事件: 互斥事件:问题1:互斥事件与对立事件有何异同?问题2:对于任意两个事件A ,B ,P(A ⋃B)=P(B)+P(B)是否一定成立?例1.某公司部门有男职工4名,女职工3名,由于工作需要,需从中任选3名职工出国洽谈业务,判断下列每对事件是否为互斥事件,是否为对立事件:(1)至少1名女职工与全是男职工;(2)至少1名女职工与至少1名男职工;(3)恰有1名女职工与恰有1名男职工;(4)至多1名女职工与至多1名男职工。
例2.判断下列给出的每对事件是否为互斥事件,是否为对立事件,并说明理由。
从40张扑克牌(红桃、黑桃、方块、梅花点数从1~10各10张)中,任取一张。
高一数学必修概率公式总结以及例题事件:随机事件(),确立性事件 :必定事件 ()和不行能事件 ()随机事件的概率 (统计定义 ):一般的,假如随机事件 A 在n次实验中发生了m 次,当实验的次数 n 很大时,我们称事件发生的概率为P A m n说明:① 一个随机事件发生于拥有随机性,但又存在统计的规律性,在进行大批的重复事件时某个事件能否发生,拥有频次的稳固性,而频次的稳固性又是必定的,所以有时性和必定性对峙一致② 不行能事件和确立事件能够当作随机事件的极端状况③ 随机事件的频次是指事件发生的次数和总的试验次数的比值,它拥有必定的稳固性,总在某个常数邻近摇动,且跟着试验次数的不停增加,这个摇动的幅度愈来愈小,而这个靠近的某个常数,我们称之为概事件发生的概率④ 概率是有巨大的数据统计后得出的结果,讲的是一种大的整体的趋向,而频次是详细的统计的结果⑤ 概率是频次的稳固值,频次是概率的近似值概率一定知足三个基本要求:① 对随意的一个随机事件 A ,有0P A1② 用和分别表示必定事件和不可能事件 , 则有 P1, P0 ③假如事件A和B互斥,则有 :P A B P A P B古典概率():① 全部基本领件有限个②每个基本领件发生的可能性都相等满足这两个条件的概率模型成为古典概型假如一次试验的等可能的基本领件的个数为个n ,则每一个基本领件发生的概率都是1,假如某个事件 A 包括了此中的m 个等可能的基本领件,则事件 A 发生的概率为nmP An几何概型():一般地,一个几何地区 D 中随机地取一点,记事件“改点落在其内部的一个地区 d 内”为事件 A ,则事件 A 发生的概率为d的侧度(这里要求 D 的侧度不为,此中侧度的意义由 D 确立,一般地,线P AD的侧度段的侧度为该线段的长度;平面多变形的侧度为该图形的面积;立体图像的侧度为其体积)几何概型的基本特色:① 基本领件等可性② 基本领件无穷多说明:为了便于研究互斥事件,我们所研究的地区都是指的开地区,即不含界限,在地区内随机地取点,指的是该点落在地区 D 内任何一处都是等可能的,落在任何部分的可能D 性大小只与该部分的侧度成正比,而与其形状没关。
高中数学必修3 第三章 概率 知识点总结及强化训练一、 知识点总结3.1.1 —3.1.2随机事件的概率及概率的意义 1、基本概念:(1)必然事件:在条件S 下,一定会发生的事件,叫相对于条件S 的必然事件; (2)不可能事件:在条件S 下,一定不会发生的事件,叫相对于条件S 的不可能事件; (3)确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件;(4)随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件;(5)频数与频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A出现的次数nA 为事件A 出现的频数;称事件A 出现的比例fn(A)=n n A为事件A 出现的概率:对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率fn(A)稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率。
(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA 与试验总次数n 的比值n n A,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。
我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。
频率在大量重复试验的前提下可以近似地作为这个事件的概率3.1.3 概率的基本性质 1、基本概念:(1)事件的包含、并事件、交事件、相等事件(2)若A ∩B 为不可能事件,即A ∩B=ф,那么称事件A 与事件B 互斥;(3)若A ∩B 为不可能事件,A ∪B 为必然事件,那么称事件A 与事件B 互为对立事件;(4)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B)2、概率的基本性质:1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1; 2)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);3)若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B);4)互斥事件与对立事件的区别与联系,互斥事件是指事件A 与事件B 在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A 发生且事件B 不发生;(2)事件A 不发生且事件B 发生;(3)事件A 与事件B 同时不发生,而对立事件是指事件A 与事件B 有且仅有一个发生,其包括两种情形;(1)事件A 发生B 不发生;(2)事件B 发生事件A 不发生,对立事件互斥事件的特殊情形。
高中数学概率公式大全一、常用概率公式及应用1、概率定义:概率是指某件事情发生的可能性,以及该事件发生后,另一个事件发生的可能性,都是以概率来衡量的。
2、贝叶斯公式:P(A|B)=P(A)* P(B|A)/P(B),p(A|B)表示的是在已知事件B发生的情况下,事件A发生的概率,P(A)表示事件A发生的概率,P(B|A)表示在A发生时事件B也发生的概率,而P(B)表示事件B发生的概率。
3、全概率公式:P(A)= ∑P(A|B)*P(B),全概率公式是通过对一个事件进行分类求其总概率,表示事件A发生的概率,P(A|B)表示事件在A发生时事件B也发生的概率,而P(B)表示事件B发生的概率。
4、乘法公式:P(A∩B)=P(A)*P(B|A),乘法定理是用来描述概率的一种方式,也叫做“独立性原理”,通常使用来计算两个不相关事件A和B发生的概率,P(A∩B)表示A和B同时发生的概率,而P (B|A)表示在A发生的情况下B发生的概率,P(A)表示事件A发生的概率。
5、条件概率公式:P(A|B)=P(A∩B)/P(B),P(A|B)表示在事件B发生的情况下事件A发生的概率,也可以理解为在B中发生A的条件概率。
P(A∩B)指的是两个事件A和B同时发生的概率,而P (B)表示的是事件B发生的概率。
二、重要定理1、条件概率定理:P(A)= ∑P(A|B)*P(B)。
概率世界中,条件概率定理是一个不可或缺的定理,它捕捉了一个核心思想,就是通过对某个条件下求出另一个条件的概率,从而可以计算事件A发生的概率。
2、独立性定理:P(A∩B)=P(A)*P(B),当两个事件没有任何关系时,也就是说,事件A和事件B相互独立,那么他们同时发生的概率等于各自发生的概率的乘积。
3、期望定理:期望就是某种随机变量X的取值的数学期望,通常以<X>表示,它是服从该随机变量X分布的概率密度函数或概率分布函数的函数,也可以是某个给定概率发生的概率分布期望。
新课标必修3概率部分知识点总结◆ 事件:随机事件( random event ),确定性事件: 必然事件( certain event )和不可能事件( impossible event )❖ 随机事件的概率(统计定义):一般的,如果随机事件 A 在n 次实验中发生了m 次,当实验的次数n 很大时,我们称事件A 发生的概率为()nm A P ≈ 说明:① 一个随机事件发生于具有随机性,但又存在统计的规律性,在进行大量的重复事件时某个事件是否发生,具有频率的稳定性 ,而频率的稳定性又是必然的,因此偶然性和必然性对立统一 ② 不可能事件和确定事件可以看成随机事件的极端情况 ③ 随机事件的频率是指事件发生的次数和总的试验次数的比值,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这个摆动的幅度越来越小,而这个接近的某个常数,我们称之为概事件发生的概率 ④ 概率是有巨大的数据统计后得出的结果,讲的是一种大的整体的趋势,而频率是具体的统计的结果 ⑤ 概率是频率的稳定值,频率是概率的近似值♦ 概率必须满足三个基本要求:① 对任意的一个随机事件A ,有()10≤≤A P② ()()0,1,=Φ=ΩΦΩP P 则有可能事件分别表示必然事件和不和用③如果事件()()()B P A P B A P B A +=+:,则有互斥和⌧ 古典概率(Classical probability model ):① 所有基本事件有限个 ② 每个基本事件发生的可能性都相等 满足这两个条件的概率模型成为古典概型如果一次试验的等可能的基本事件的个数为个n ,则每一个基本事件发生的概率都是n1,如果某个事件A 包含了其中的m 个等可能的基本事件,则事件A 发生的概率为 ()nm A P = ⍓ 几何概型(geomegtric probability model ):一般地,一个几何区域D 中随机地取一点,记事件“改点落在其内部的一个区域d 内”为事件A ,则事件A 发生的概率为()的侧度的侧度D d A P = ( 这里要求D 的侧度不为0,其中侧度的意义由D 确定,一般地,线段的侧度为该线段的长度;平面多变形的侧度为该图形的面积;立体图像的侧度为其体积 )几何概型的基本特点:① 基本事件等可性 ② 基本事件无限多颜老师说明:为了便于研究互斥事件,我们所研究的区域都是指的开区域,即不含边界,在区域D 内随机地取点,指的是该点落在区域D 内任何一处都是等可能的,落在任何部分的可能性大小只与该部分的侧度成正比,而与其形状无关。
高中数学概率知识点公式大全概率统计是一种非常重要的数学课程,它不仅可以让学生更好地理解和掌握概率知识,而且还可以解决实际生活中的问题。
在本文中,我们将介绍高中数学概率知识点公式大全,并且为您讲解概率知识点的运用。
首先,让我们来看看概率知识点里最基本的公式:概率论,也就是常见的中心极限定理,其公式如下:$$P(X leq x) = frac{1}{sqrt{2pi}sigma} int_{-infty}^{x} e^{frac{-(t-mu)^2}{2 sigma^2}} dt$$在这个公式中,$X$表示概率变量,$x$表示随机变量的值,$mu$表示平均水平,$sigma$表示标准差。
其次,让我们来看看高中数学计算概率的公式,它是最常用的计算概率的公式,它可以用来计算某事件发生的概率,公式如下:$$P(A) = frac{m}{n}$$在这个公式中,$P(A)$表示事件A发生的概率,$m$表示满足事件A的样本总数,$n$表示样本总数。
紧接着,让我们来看看最常用的概率分布公式,它可以用来描述一系列随机变量的取值。
概率分布公式有很多,但是最常用的是正态分布,它可以用下面的公式表示:$$f(x) = frac{1}{sqrt{2pi}sigma}e^{frac{-(x-mu)^2}{2 sigma^2}}$$在这个公式中,$x$表示随机变量值,$mu$表示平均水平,$sigma$表示标准差。
接下来,让我们来看看最重要的概率知识点,也就是假设检验的公式,它可以用来检验两个或多个样本的均值是否有显著的差异,公式如下:$$t = frac{bar{x_1} - bar{x_2}}{sqrt{frac{s_1^2}{n_1} + frac{s_2^2}{n_2}}}$$在这个公式中,$bar{x_1}$和$bar{x_2}$分别表示两个样本的均值,$s_1$和$s_2$分别表示两个样本的标准差,$n_1$和$n_2$分别表示两个样本的样本量。
3.2.2 概率的一般加法公式
加法公式
定理1 若事件A 、B 互不相容,则 ()()().P A B P A P B +=+
解释:如右图,A+B :12m m +个等概基本事件
1212()()().m m m m P A B P A P B n n n
++==+=+ 推论1 若有限个事件12,,,n A A A L 互不相容,则
1212()()()()n n P A A A P A P A P A +++=+++L L
推论2 若事件 12,,,n A A A L 互不相容,且12n A A A U +++=L ,则
12()()()1n P A P A P A +++=L
推论3 对立事件的概率满足 ()1()P A P A =-
例1 袋中装有2个红球,3个白球,4个黑球. 从中每次任取一个,并放回,连取两次,求
(1) 取得的两球中无红球的概率.
(2) 取得的两球中无白球的概率.
(3) 取得的两球中无红球或无白球的概率.
解: 设A =“无红球”,B =“无白球”,则 (1) 22749()981
P A == (2) 22636()981
P B == (3) A B + =“无红球或无白球”
()()()P A B P A P B +==+ 定理2 设A 、B
解释:看右图,AB 基本事件个数为k ,A B +基本事件个数为12m m k +-。
因此()P A B +=1212m m k m m k n n n n +-=+-()()()P A P B P AB =+- ?。
高中数学公式大全概率与条件概率的计算公式高中数学公式大全:概率与条件概率的计算公式数学中的概率和条件概率是高中数学中较为重要的概念,在各类数学问题中都有广泛的应用。
为了更好地理解和应用概率与条件概率,掌握相关的计算公式是必不可少的。
本文将为您全面介绍高中数学中概率与条件概率的计算公式,帮助您更好地学习和运用这一重要的数学知识。
一、概率的计算公式1.基本概率公式:在随机试验中,若S是随机试验的样本空间,E是S的某个事件,P(E)表示事件E发生的概率,则基本概率公式如下:P(E) = n(E) / n(S)其中,n(E)表示事件E的样本点个数,n(S)表示样本空间的样本点个数。
2.加法公式:若事件A与事件B互不相容(即A与B不同时发生),则加法公式如下:P(AUB) = P(A) + P(B)3.减法公式:若事件A发生,则事件B的非发生记作A-B,减法公式如下: P(A-B) = P(A) - P(A∩B)4.乘法公式:若事件A与事件B相继发生,则乘法公式如下:P(A∩B) = P(A) × P(B|A)其中,P(B|A)表示在事件A发生的条件下,事件B发生的概率。
5.全概率公式:对于一事件B,若B能由有限个互不相容的事件A1、A2、...、An组成,并且B=A1∪A2∪...∪An,则全概率公式如下: P(B) = P(A1)×P(B|A1) + P(A2)×P(B|A2) + ... + P(An)×P(B|An)二、条件概率的计算公式1.条件概率公式:在随机试验中,设A,B是两个事件,且P(A) > 0,则事件B在事件A发生的条件下发生的概率用条件概率表示为:P(B|A) = P(A∩B) / P(A)2.独立事件的条件概率:若事件A与事件B相互独立,则条件概率公式如下:P(B|A) = P(B)3.乘法公式(条件概率的推广):若事件A、B同时发生的概率用条件概率表示为:P(A∩B) = P(A) × P(B|A)4.贝叶斯定理:在全概率公式的基础上,根据条件概率的定义,可以推导出贝叶斯定理:P(A|B) = P(A) × P(B|A) / [P(A) × P(B|A) + P(A') × P(B|A')]三、总结通过学习和掌握上述概率与条件概率的计算公式,我们能够更好地理解和应用概率与条件概率的相关概念。