2020高考电磁感应专题
- 格式:wps
- 大小:877.94 KB
- 文档页数:12
重点1 电磁感应现象楞次定律【要点解读】1.磁通量变化的常见情况弹性线圈在向外拉的过程中(1)楞次定律中“阻碍”的含义(2)判断感应电流方向的两种方法方法一用楞次定律判断方法二用右手定则判断该方法适用于切割磁感线产生的感应电流。
判断时注意掌心、拇指、四指的方向:①掌心——磁感线垂直穿入;②拇指——指向导体运动的方向;③四指——指向感应电流的方向。
4.楞次定律、左手定则、右手定则、安培定则的综合应用(1)“三个定则一个定律”的比较①因电而生磁(I→B)→安培定则;②因动而生电(v、B→I安)→右手定则;③因电而受力(I、B→F安)→左手定则;④因磁而生电(Φ、B→I安)→楞次定律。
(3)相互联系①应用楞次定律,一般要用到安培定则。
②研究感应电流受到的安培力,一般先用右手定则确定电流方向,再用左手定则确定安培力的方向,有时也可以直接应用楞次定律的推论确定。
5.利用“因果关系法”分析电磁感应现象(物理思想)(1)方法概述因果关系分析法是指在解题过程中依据事物之间的前后相连,先行后续的因果关系去分析,推断事物的原因或结果的一种思维方法。
(2)利用因果关系分析法进行主观性推断的两种情形①据因推果:根据某种原因,预见它可能产生的结果。
②执果索因:根据某种结果,探究产生或导致这种结果的原因。
(3)电磁感应中常见因果关系的例析①阻碍原磁通量变化——“增反减同”②阻碍相对运动——“来拒去留”③)使回路面积有扩大或缩小的趋势——“增缩减扩”④阻碍原电流的变化——“增反减同”【考向1】电磁感应现象【例题】(多选)如图所示,矩形闭合线圈abcd竖直放置,OO′是它的对称轴,通电直导线AB与OO′平行。
若要在线圈中产生感应电流,可行的做法是()A.AB中电流I逐渐增大B.AB中电流I先增大后减小C.以AB为轴,线圈绕AB顺时针转90°D.线圈绕OO′轴逆时针转动90°(俯视)【审题指导】(1)AB中电流变化,能否在线圈中产生感应电流?提示:只要AB中电流变,线圈中磁通量就变,就有感应电流产生。
2020年高考物理100考点最新模拟题千题精练(选修3-2)第四部分电磁感应专题4.电磁感应-2020高考真题一.选择题1.(2020高考全国理综I)如图,U形光滑金属框abcd置于水平绝缘平台上,ab和dc边平行,和bc边垂直。
ab、dc足够长,整个金属框电阻可忽略。
一根具有一定电阻的导体棒MN置于金属框上,用水平恒力F向右拉动金属框,运动过程中,装置始终处于竖直向下的匀强磁场中,MN与金属框保持良好接触,且与bc边保持平行。
经过一段时间后A.金属框的速度大小趋于恒定值B.金属框的加速度大小趋于恒定值C.导体棒所受安培力的大小趋于恒定值D.导体棒到金属框bc边的距离趋于恒定值【参考答案】BC【命题意图】本题考查法拉第电磁感应定律、闭合电路欧姆定律、安培力及其相关知识点,考查的核心素养是运动和力的物理观念、科学思维。
【解题思路】用水平恒力F向右拉动金属框,bc边切割磁感线产生感应电动势,回路中有感应电流i,bc 边受到水平向左的安培力作用,设金属框的质量为M,加速度为a1,由牛顿第二定律,F-BiL=Ma1;导体棒MN受到向右的安培力向右加速运动,设导体棒的质量为m,加速度为a2,由牛顿第二定律,BiL=ma2,二者运动的速度图像如图所示。
设金属框bc边的速度为v时,导体棒的速度为v’,则回路中产生的感应电动势为E=BL(v-v’),由闭合电路欧姆定律I=E/R=()'BL v vR-,F安=BIL可得金属框ab边所受的安培力和导体棒MN所受的安培力都是F安=B 2L 2(v-v’)/R ,即金属框所受的安培力随着速度的增大而增大。
对金属框,由牛顿运动定律,F - F 安=Ma 1,对导体棒MN ,由牛顿运动定律, F 安=ma 2,二者加速度之差△a= a 1- a 2=(F - F 安)/M- F 安/m=F/M- F安(1/M+1/m ),随着所受安培力的增大,二者加速度之差△a 减小,当△a 减小到零时,即F/M=()22'B L v v R-(1/M+1/m ),所以金属框和导体棒的速度之差△v=(v-v’)=()22FRmB L m M +保持不变。
2020高考物理精品习题:电磁感应(全套含解析)高中物理第I 课时 电磁感应现象?楞次定律1如图12- 1 — 9所示,在同一平面内有四根彼此绝缘的直导线,分不通有大小相同 如图的电流,要使由四根直导线所围成的面积内的磁通量增加,那么应切断哪一根导 的电流〔〕A 、切断i i ;B 、切断i 2;C 、切断i 3;D 、切断i 4.【解析】i 1产生的的磁场在导线所围的面积内的磁感应强度的方向垂直纸面向里; 围的面积内的磁感应强度的方向垂直纸面向里;i 3产生的磁场在导线所围的面积内的磁感应强度的方向垂直纸面向里;i 4产生的磁场在导线所围的面积内的磁感应强度的方向垂直纸面向外;因此四根导线产生的 磁场叠加后在导线所围的面积内的磁场方向向里•故要使由四根直导线所围成的面积内的磁通量增加,只 要将磁场方向相反的i 4去除就能够了. 【答案】D2、磁悬浮列车是在车辆底部安装电磁铁,在轨道两旁铺设一系列的铝环•当列车运行时,电磁铁产生的 磁场相对铝环运动,列车凌空浮起,使车与轨道间的摩擦减小到专门小,从而提高列车的速度.以下讲法 正确的选项是〔〕A 、 当列车通过铝环时,铝环中有感应电流, 感应电流产生的磁场的方向与电磁铁产生的磁场的方向相同.B 、 当列车通过铝环时,铝环中有感应电流,感应电流产生的磁场的方向与电磁铁产生的磁场的方向相反.C 、 当列车通过铝环时,铝环中通有电流,铝环中电流产生的磁场的方向与电磁铁产生的磁场的方向相同.D 、 当列车通过铝环时,铝环中通有电流,铝环中电流产生的磁场的方向与电磁铁产生的磁场的方向相反. 【解析】列车通过铝环时,铝环中磁通量增大,铝环中产生感应电流,由楞次定律可知,铝环中感应电流 的磁场方向与电磁铁的磁场方向相反,从而使电磁铁受到向上的力,使列车悬浮. 【答案】B3、如图12— 1 — 10所示,一闭合的金属环从静止开始由高处下落通过条形磁铁后连续下落,空气阻力不 计,那么在圆环运动过程中,以下讲法正确的选项是〔A 、 圆环在磁铁的上方时,圆环的加速度小于B 、 圆环在磁铁的上方时,圆环的加速度小于C 、 圆环在磁铁的上方时,圆环的加速度小于D 、 圆环在磁铁的上方时,圆环的加速度大于【解析】一闭合的金属环从静止开始由高处下落通过条形磁铁的过程中,闭合金属环的磁通量先增大,而 后减小,依照楞次定律它增大时,不让它增大即阻碍它增大;它要减小时,不让它减小即阻碍它减小,因此下落时圆环在磁铁的上方和下方,圆环所受的安培力都向上,故加速度都小于 【答案】B4、如图12— 1 — 11所示,螺线管CD 的导线绕法不明.当磁铁 AB 插入螺线 电路中有图示方向的感应电流产生.以下关于螺线管极性的判定正确的选项 〔 〕A 、C 端一定是N 极B 、C 端的极性一定与磁铁 B 端的极性相同甘方向B3 12^1—?i 2产生的磁场在导线所〕 g ,在下方时大于 g g ,在下方时也小于 g g ,在下方时等于gg ,在下方时小于 g场必定g .国 12-1-11管时, 是C、C端一定是S极D、无法判定,因螺线管的绕法不明确【解析】磁铁AB插入螺线管时,在螺线管中产生感应电流,感应电流的磁阻碍AB 插入,故螺线管的 C 端和磁铁的B 端极性相同. 【答案】B5、如图12- 1 - 12所示,平行导体滑轨 MM 〈 NN ,水平放置,固定在匀强磁场中•磁场的方向与水平面垂 直向下.滑线 AB 、CD 横放其上静止,形成一个闭合电路.当 AB 向右滑动时,电路中感应电流的方向及8、如图12- 1 - 15所示,边长为h 的正方形金属导线框,从图示的位置由静止开 落,通过一匀强磁场区域, 磁场方向水平,且垂直于线框平面, 磁场区域宽度为 边界如图中虚线所示, H h .从线框开始下落到完全穿过磁场区域的全过程中, 判定正确的选项是〔 〕 ①线框中总有感应电流存在②线框受到磁场力的合力方向有时向上有时向下③线 动方向始终是向下的④线框速度的大小不一定总是在增加 A 、①②B 、③④C 、①④D 、②③【解析】因H h ,故能够分为三个过程:①从下边开始进入磁场到全部进入磁场;②从全部开始进入磁场到下边开始离开磁场;③下边开始离开磁场到全部离开磁场.再由楞次定律和左手定那么能够判定明 白.可能会使线框离开磁场时线框所受的安培力大于线框的重力,从而使线框的速度减小. 【答案】B9、如图12- 1- 16所示,A 、B 是两个相互垂直的线框, 两线框相交点恰 线框的中点,两线框互相绝缘, A 线框中有电流,当线框 A 的电流强度 时,线框B 中 _________ 感应电流.〔填”有无"〕【解析】A 线框中尽管有电流, 同时产生了磁场,但磁感应强度的方向与滑线CD 受到的磁场力的方向分不为〔 A 、 电流方向沿 B 、 电流方向沿 C 、 电流方向沿 D 、 电流方向沿 ABCDA , ABCDA , ADCBA , ADCBA , 受力方向向右; 受力方向向左; 受力方向向右; 受力方向向左.【解析】此题用右手定那么和楞次定律都能够解决, 但用楞次定律比较快捷.由于AB 滑线向右运动,ABCD 所构成的回路面积将要增大,磁通量将增大,依照楞次定律要阻碍它 增大,因此产生的感应电流方向沿 ADCBA , CD 滑线将向右滑动,故受力方向向右.【答案】C6、如图12- 1- 13所示,在绝缘圆筒上绕两个线圈 P 和Q ,分不与 E 和电阻R 构成闭合回路,然后将软铁棒迅速插入线圈 P 中,那么 入的过程中〔〕A 、电阻R 上有方向向左的电流B 、电阻R 上没有电流C 、电阻R 上有方向向右的电流D 、条件不足,无法确定【解析】 软铁棒被磁化,相当于插入一根跟 P 的磁场同向的条形磁铁,使 P 、Q 线圈中的磁通量增加.由 楞次定律得,在 Q 中产生的感应电流向右通过电阻R .【答案】C7、如图12- 1 — 14所示,一有限范畴的匀强磁场,宽度为 形导线框以速度 时刻应等于〔A 、d/ ud ,将一个边长为L 的U 匀速地通过磁场区域,假设 d>L ,那么在线框中不产生感应电 〕 B 、L/ uC 、(d - L)/; uD 、(d - 2L)/; ux x >—X XJ & —》S 12-1-14【解析】线框中不产生感应电流,那么要求线框所组成的闭合回路内的磁通量不变化,即线框全部在磁场中匀速运动时没有感应电流.因此线框从左边框进入磁场时开始到线框的右边框 将要离开磁场时止,那个过程中回路中将没有感应电流.【答案】C正方流的发生f X X X Hx BX X j_X_ X X始下 上下 以下 框运左右DS 12-1-12阳 12-1-13是两 增大A 线50框的平面相垂直,即与 B 线框平行•因此不管 A 线框中的电流如何变化, B 线框中始终没有磁通量,即无 磁通量变化. 【答案】无210、与磁感应强度B 0.8T 垂直的线圈面积为 0.05m ,现在线圈的磁通量是多大?假设那个线圈绕有 匝时,磁通量多大?线圈位置假如转过530时磁通量多大?【解析】依照磁通量的定义:磁感应强度 B 与面积S 的乘积,叫做穿过那个面的磁通量,但要注意rE BL 0,而它相当于一个电源,同时其内阻为;金属棒两端电势差相当于外电路的端电压.外电S 是与磁感应强度 B 相垂直的那部分面积.即 BS 故:① 1 BS 10.8 0.05Wb4 10 2Wb②线圈绕有 50匝,但与磁感应强度 B 垂直的面积依旧 20.05m ,故穿过那个面的磁感线条数不变.磁通量也可明白得为穿过那个面的磁感线的条数.因此仍旧为 24 10 2Wb③依照磁通量的定义: 3BS COS 530 0.8 0.05 0.6Wb 2.4 10 2Wb 【答案】①14 10 2Wb ②2 4 10 2Wb ③32.4 10 2Wb第H 课时 法拉第电磁感应定律?自感1、如图12-2 — 12所示,粗细平均的电阻为 r 的金属圆环,放在图示的匀强磁场中,磁感应强度为r环直径为d ,长为L ,电阻为一的金属棒ab 放在圆环上,以速度 2金属棒两端电势差为〔 C 、^BL 0 ;20向左匀速运动,棒运动到图示虚线位置时, A 、0;B 、 BLD 1BL 0 .B ,圆 当ab【解析】当金属棒 ab以速度 °向左运动到图示虚线位置时, 依照公式可得产生的感应电动势为路半个圆圈的电阻为 -,而这两个半个圆圈的电阻是并联关系,故外电路总的电阻为 -,因此外电路电压23BL 0 .为U ba【答案】 1E3D 12-2- 13所示,竖直向下的匀强磁场中,将一水平放置的金属棒ab 以水 平的初速0抛出,设在整个过程中棒的取向不变且不计空气阻力,那么在金属动过程中产生的感应电动势大小变化情形是〔 〕A 、越来越大;B 、越来越小;C 、保持不变;D 、无法判定. 【解析】金属棒做切割磁感线的有效速度是与磁感应强度 B 垂直的那个分速度,金属棒做切割磁感线的水平分速度不变,故感应电动势不变.B 12-2—12棒运图 12^2-13【解析】线框在A 、C 位置时只受重力作用, 加速度a A = a C = g .线框在B 、D 位置时均受两个力的作用,【答案】C3、〔 2003年杭州模拟题〕如图 12-2 — 14所示为日光灯的电路图,以 法中正确的选项是〔〕①日光灯的启动器是装在专用插座上的,当日光灯正常发光后,取下启 器,可不能阻碍灯管发光•②假如启动器丢失,作为应急措施,能够用 段带绝缘外皮的导线启动日光灯•③日光灯正常发光后,灯管两端的电 220V .④镇流器在日光灯启动时,产生瞬时高压A 、①②B 、③④C 、①②④D 、②③④ 【解析】日光灯正常发光后,由于镇流器的降压限流作用,灯管两端的 要低于220V . 电压【答案】C4、〔 2002年全国高考卷〕如图 12— 2 — 15中EF 、GH 为平行的金属导轨,其电阻可不计, R 为电阻器, 表示图中该处导线中的电流,那么当横杆 AB 〔 〕 EAF A 、匀速滑动时,h 0 ,丨2 0B 、匀速滑动时11 0 , 120 A:XRXC 、加速滑动时,I 10 , I 2 0D 、加速滑动时,丨10,丨2C-k > XB【解析】横杆匀速滑动时,由于 EBL 不变,故I ? 0 , I 1 0 •加国 12-2-L5动时,由于E BL 逐步增大,电容器不断充电,故 I 1 0 , I 20 .【答案】D5、如图12— 2 — 16所示,线圈由A 位置开始下落,假设它在磁场中受到的磁场 于重力,那么在 A 、B 、C 、D 四个位置〔B 、D 位置恰好线圈有一半在磁场中〕 度的关系为〔 〕A 、 a A >aB >a c >a DB 、 a A = aC > a B > aD C 、 a A = a c > a D > a BD 、 a A = a C > a B = a DA D---B pTL ___XXX c[x\ XX •哂0 12-2—15力总小 时加速其中安培力向上 重力向下由于重力大于安培力,因此加速度向下,大小B 2l 2〔吨飞ma 丨又线框在 D 点时速度大于 B 点时速度,即 F D F B ,因此a B > a D .因此加速度的关系为a A = a c >a B >a D .【答案】B6、如图12— 2 — 17所示,将长为1m 的导线从中间折成约为 1060的角,磁感应 为0.5T 的匀强磁场垂直于导线所在的平面.为使导线产生 4V 的感应电动势,导线切割磁感线的最小速度约为 ___________ .下讲动 一小 压为C 为电容器,AB 为可在EF 和GH 上滑动的导体横杆,有平均磁场垂直于导轨平面•假设用 丨1和丨2分不速滑强度 那么国 12-2-17mgRsinB 2L 2【答案】〔1〕ab 杆受到一个竖直向下的重力;垂直斜面向上的支持力;沿斜面向上的安培力【解析】 欲使导线获得4V 的感应电动势,而导线的速度要求最小,依照 形下,L 最大且 与L 垂直时速度最小. BL 可知:E 、B 一定的情故依照E BL 得: minBL4m/s 10m/s0.5 0.8【答案】10m/s7、如图12- 2- 18所示,匀强磁场的磁感应强度为C 100 F , ab 长为 20cm ,当 ab 以10m/s 的速度向右匀速运动时,中的电流为【解析】 ,电容器上板带 感应电动势E BL0.4 ________ 电,电荷量为 _________ C .0.2 10V0.8V ,极板上的电荷量k x xh]XX k X XT电路Q CE100 10 6 0.8C10 5C .由于感应电动势一定, 电容器的带电荷量因此电路中无电流.【答案】 零;正;8 10 5C8、〔 2004年北京高考试卷〕如图 角为的绝缘斜面上,两导轨间距为 杆ab 放在两导轨上,并与导轨垂直. 下•导轨和金属杆的电阻可忽略•让 间的摩擦. (1)由b 向a 方向看到的装置如图 12-2- 19 所示,请在此图中画出 ab 杆下滑过程中某的受力示意图;〔2〕在加速下滑的过程中,当 ab 杆的速度 为 时,求现在ab 杆中的电流及其加速度 小; 〔3〕求在下滑过程中,ab 杆能够达到的速 大值.【解析】〔1〕ab 杆受到一个竖直向下的重力; 得所受的安培力沿斜面向上.12-2- 19〔 1〕所示,两根足够长的直金属导轨 L . M 、P 两点间接有阻值为 整套装置处于磁感应强度为 ab 杆沿导轨由静止开始下滑,MN 、PQ 平行放置在倾R 的电阻•一根质量为 m 的平均直金属 B 的匀强磁场中,磁场方向垂直斜面向 导轨和金属杆接触良好,不计它们之(画图略)〔2〕当ab 杆的速度大小为时,产生的感应电动势为 E BL ,现在杆ab 的电流为IBLR ;受到的 安培力为F BILB 2 L 2依照牛顿第二定律得 mg sinB 2 L 2 Rma即a gsin 『L 2 mR〔3〕当加速度为零时速度达到最大即疋,0.4T , R 100函 12-2-1S度最團 12-2-19垂直斜面向上的支持力;依照楞次定律的”阻碍 作用可大小 的大〔2〕2 2r 、B2 L2〔2〕a g sin 〔3〕mmR mgRsi n B2L29、〔2003年北京海淀区模拟题〕如图12—2—20所示,MN和PQ是固定在水平面内间距L = 0.2m的平行金属导轨,轨道的电阻忽略不计.金属杆ab垂直放置在轨道上.两轨道间连接有阻值为R0 1.5的电阻,ab杆的电阻R 0.5 . ab杆与导轨接触良好并不计摩擦,整个装置放置在磁感应强度为 B 0.5T的匀强磁场中,磁场方向垂直轨道平面向下.对ab杆施加一水平向右力,使之以5m/s速度在金属轨道上向右匀速运动.求:〔1〕通过电阻R o的电流;〔2〕对ab杆施加的水平向右的拉力大小;〔3〕ab杆两端的电势差. Mr ---------- N轨XXEXbl函12-2-3D【解析】〔1〕a、b杆上产生的感应电动势为E BL0.5V .依照闭合电路欧姆定律,通过R o的电流ER R o0.25A〔2〕由于ab杆做匀速运动,拉力和磁场对电流的安培力F大小相等,即卩拉=F BIL 0.025N〔3〕依照欧姆定律,ab杆两端的电势差U ab -ER°BL Ro0.375V R R o R R0【答案】〔1〕0.25A〔2〕0.025N〔3〕0.375V10、〔2004年上海高考卷〕水平向上足够长的金属导轨平定放置,间距为L, 一端通过导线与阻值为R的电阻连接;上放一质量为m的金属杆〔如图12-2 —21所示〕,金属导轨的电阻忽略不计;平均磁场竖直向下.用与导轨平行定拉力F作用在金属杆上,杆最终将做匀速运动. 当改变大小时,相对应的匀速运动速度也会变化,和F的关—* F X X行固导轨杆与的恒拉力系如图12— 2 —22所示.〔取重力加速度g 10m/s2〕〔1〕金属杆在匀速运动之前做什么运动?〔2〕假设m 0.5kg, L 0.5m, R 0.5 ;磁感应强度B为多大?〔3〕由一F图线的截距可求得什么物理量?其值为多少?【解析】〔1〕假设金属棒与导轨间是光滑的,那么平稳时必有恒定拉力与安培力平稳,即B2从而得到RB2L2 F,即与F成线性关系且通过坐标原点.而此题的图像坐标没有通过原点,讲明金等.故金属棒在匀速运动之前做变速运动〔加速度越来越小〕. 圈12-2—21属棒与导轨间有摩擦•金属棒在匀速运动之前 F F f + F安,随着速度的增加,安培力越来越大,最后相B 2 L 2〔2〕设摩擦力为F f ,平稳时有F = F f + F 安=F f + 皂上.选取两个平稳状态,得到两个方程组,从而R求解得到•如当 F = 4N 时, =4m/s ;当F = 10N 时,解得:B = 1T , F f 2N 〔3〕由以上分析得到:一F 图线的截距可求得金属棒与导轨间的摩擦力,大小为 2N .【答案】〔1〕金属棒在匀速运动之前做变速运动〔加速度越来越小〕;〔 2〕B = 1T ;〔 3〕 — F 图线的截距可求得金属棒与导轨间的摩擦力,大小为2N .第皿课时 电磁感应和电路规律的综合应用1如图12-3 — 7所示,闭合导线框的质量能够忽略不计,将它从图示位置匀速拉出匀强磁场,假设第 次用0.3s 时刻拉出,外力做的功为 W 1,通过导线截面的电量为为W 2,通过导线截面的电量为 q 2,那么〔 〕;X A 、W 1 W , q 1 q 2 B 、W 1 W 2 , q 1 q 2 :X ilC 、W 1 W 2, q 1 q 2D 、W 1 W 2 , q 1 q 2:X 1. N 4【解析】 设矩形线框的竖直边为 a ,水平边为 b ,线框拉出匀强磁场时的速度为 框拉出匀强磁场时产生的感应电动势为 E Ba ,产生的感应电流为丨| X I X X X : I —► 齟 12-3^7 ,线框电阻为R •那么线B a R 依照平稳条件得:作用的外力等于安培力即 F 安=Bia将线框从磁场中拉出外力要做功 W F b B 2ba 2R 由那个表达式可知: B 2b a 2 B-b ^两种情形都一样, R 拉出的速度越大,做的功就越多. 第一次速度大,故W 1 E t R 在磁场中的面积变化有关,即从磁场中拉出的线框面积•由于两次都等于整个线框的面积即两次拉出在磁 依照q 11 ,由这一推导过程可知两次拉出磁场通过导线截面的电量只与 场中的面积变化相等•故通过导线截面的电量两次相等•即 q i q 2【答案】C 2、如图12— 3 — 8所示,在磁感应强度为 B 的匀强磁场中,有半径为 r 的光滑 形导体框,OC 为一能绕O 在框架上滑动的导体棒, Ob 之间连一个电阻 R ,导 架与导体电阻均不计,假设要使 OC 能以角速度 匀速转动,那么外力做功的 是〔 〕R国 12-3-&X 0X半圆 体框 功率B 2 L 216m/s •代入 F = F f + B 一—Rq i ,第二次用0.9s 时刻拉出,外力做的功2R 【解析】由于导体棒匀速转动, 1 律得:E B I B- I I 2 4R 8R 因此外力的功率与产生的感应电流的电功率相等.依照法拉第电磁感应定 (1B I 2)2RI 2,因此电功率为P E 2 4R 【答案】C 3、用同种材料粗细平均的电阻丝做成 在电阻可忽略的光滑的平行导轨上, ef 较长,分 ab 、cd 、ef 三根导线, 如图12-3-9所示,磁场是平均的, ,而且每次 力使导线水平向右作匀速运动 〔每次只有一根导线在导轨上〕 做功功率相同,那么以下讲法正确的选项是〔 〕 A 、ab 运动得最快 B 、ef 运动得最快 C 、导线产生的感应电动势相等 D 、每秒钟产生的热量不相等磁感应定律得产生的感应电动势为 i C e:X 」; 乂 X X >X x乂、A] Xb d f国 L2-3-9不放 用外 外力l 〕•依照法拉第电 E B l ,由于匀速运动,因此外力做功的功率与电功率相等即 .B 2l 2 由图可知导线ef 最长,ab 最短, 因此有R ef R cd R ab 故ef 运动得最快. 由E B l 和ef 的速度最大可知导线 ef 产生的感应电动势最大. 由于三根导线产生的电热功率相等,由 Q Pt 得每秒钟产生的热量相等. 【答案】B 4、如图12-3- 10所示,光滑导轨倾斜放置,其下端连接一个灯泡,匀强磁场垂直于导轨所在平面,当ab 棒下滑到稳固状态时,小灯泡获得的功率为 P o ,除灯泡外,其它电阻不计,要使灯泡的功率变为2P 。
2020届高考物理小题专题狂练18:电磁感应中的动力学与能量问题(附解析)一、考点内容(1)导体棒切割磁感线运动时的动力学问题;(2)电磁感应中的能量转化问题;(2)电磁感应中的动量与能量问题。
二、考点突破1.如图所示装置,电源的电动势E=8 V,内阻r1=0.5 Ω,两光滑金属导轨平行放置,间距d=0.2 m,导体棒ab用等长绝缘细线悬挂并刚好与导轨接触,ab左侧为水平直轨道,右侧为半径R=0.2 m的竖直圆弧导轨,圆心恰好为细线悬挂点,整个装置处于竖直向下的、磁感应强度B=0.5 T的匀强磁场中。
闭合开关后,导体棒沿圆弧运动,已知=0.5 Ω,g取10 m/s2,不考虑运动过程中产生的反电导体棒的质量m=0.06 kg,电阻r2动势,则()A.导体棒ab所受的安培力方向始终与运动方向一致B.导体棒在摆动过程中所受安培力F=8 NC.导体棒摆动过程中的最大动能0.8 JD.导体棒ab速度最大时,细线与竖直方向的夹角θ=53°2.(多选)如图所示,间距为l=1 m的导轨PQ、MN由电阻不计的光滑水平导轨和与水平面成37°角的粗糙倾斜导轨组成,水平导轨和倾斜导轨都足够长。
导体棒ab、cd的质量均为m=1 kg、长度均为l=1 m、电阻均为R=0.5 Ω,ab棒静止在水平导轨上,cd棒静止在倾斜导轨上,整个装置处于方向竖直向下的匀强磁场中,磁感应强度的大小B= 2 T。
现ab棒在水平外力F作用下由静止开始沿水平导轨运动,当ab棒的运动速度达到一定值时cd棒开始滑动。
已知cd棒与倾斜导轨间的动摩擦因数为μ=0.8,且cd棒受到的最大静摩擦力等于滑动摩擦力,两导体棒与导轨始终接触良好,重力加速度g =10 m/s2,sin 37°=0.6,cos 37°=0.8。
关于该运动过程,下列说法正确的是()A.cd棒所受的摩擦力方向始终沿倾斜导轨向上B.cd棒所受的摩擦力方向先沿倾斜导轨向上后沿倾斜导轨向下C.cd棒开始滑动时,ab棒的速度大小为19.375 m/sD.cd棒开始滑动时,ab棒的速度大小为9.375 m/s3.(多选)如图所示,在光滑的水平面上,有一竖直向下的匀强磁场,分布在宽度为L滑过磁的区域内,现有一边长为d(d<L)的正方形闭合线框以垂直于磁场边界的初速度v场,线框刚好能穿过磁场,运动过程中线框靠近磁场左边界的一边始终与磁场边界平行,下列说法正确的是()A.线框在滑进磁场的过程与滑出磁场的过程均做变加速直线运动B.线框在滑进磁场的过程中与滑出磁场的过程中通过线框横截面的电荷量相同C.线框在滑进磁场的过程中速度的变化量与滑出磁场的过程中速度的变化量不同D.线框在滑进与滑出磁场的过程中产生的热量Q1与Q2之比为3∶14.(多选)在如图所示的倾角为θ的光滑斜面上,存在着两个磁感应强度大小均为B的匀强磁场区域,区域Ⅰ的磁场方向垂直斜面向上,区域Ⅱ的磁场方向垂直斜面向下,磁场宽度HP及PN均为L,一个质量为m、电阻为R、边长也为L的正方形导线框abcd,由静止开始沿斜面下滑,t时刻ab边刚越过GH进入磁场Ⅰ区域,此时导线框恰好以速1度v 1做匀速直线运动;t 2时刻ab 边下滑到JP 与MN 的中间位置,此时导线框又恰好以速度v 2做匀速直线运动。
专题09 电磁感应的综合应用(能量问题、动量问题、杆+导轨模型)考点分类:考点分类见下表考点内容常见题型及要求考点一电磁感应中的能量问题选择题、计算题考点二电磁感应中的动量问题选择题、计算题考点三电磁感应中的“杆+导轨”模型选择题、计算题考点一: 电磁感应中的能量问题1.能量转化及焦耳热的求法(1)能量转化(2)求解焦耳热Q的三种方法2.解题的一般步骤(1)确定研究对象(导体棒或回路);(2)弄清电磁感应过程中,哪些力做功,哪些形式的能量相互转化;(3)根据功能关系或能量守恒定律列式求解.3.方法技巧求解电能应分清两类情况(1)若回路中电流恒定,可以利用电路结构及W=UIt或Q=I2Rt直接进行计算.(2)若电流变化,则①利用安培力做的功求解:电磁感应中产生的电能等于克服安培力所做的功;②利用能量守恒求解:若只有电能与机械能的转化,则机械能的减少量等于产生的电能.③利用功能关系求解:若除重力、安培力做功外,还有其他力做功,则其他力做功等于增加的机械能和电能.学科#网考点二电磁感应中的动量问题电磁感应问题往往涉及牛顿定律、动量守恒、能量守恒、电路的分析和计算等许多方面的物理知识,试题常见的形式是导体棒切割磁感线,产生感应电流,从而使导体棒受到安培力作用.导体棒运动的形式有匀速、匀变速和非匀变速3种,对前两种情况,容易想到用牛顿定律求解,对后一种情况一般要用能量守恒和动量守恒定律求解,但当安培力变化,且又涉及位移、速度、电荷量等问题时,用动量定理求解往往能巧妙解决.方法技巧动量在电磁感应中的应用技巧(1)在电磁感应中,动量定理应用于单杆切割磁感线运动,可求解变力的时间、速度、位移和电荷量.①求电荷量或速度:B I lΔt=mv2-mv1,q=I t.③求位移:-BIlΔt=-22B l v tR总=0-mv0,即-22B lR总x=m(0-v0).(2)电磁感应中对于双杆切割磁感线运动,若双杆系统所受合外力为零,运用动量守恒定律结合能量守恒定律可求解与能量有关的问题.考点三:电磁感应中的“杆+导轨”模型模型概述“导轨+杆”模型是电磁感应问题在高考命题中的“基本道具”,也是高考的热点,考查的知识点多,题目的综合性强,物理情景变化空间大,是我们复习中的难点.“导轨+杆”模型又分为“单杆”型和“双杆”型;导轨放置方式可分为水平、竖直和倾斜;杆的运动状态可分为匀速运动、匀变速运动、非匀变速运动或转动等;磁场的状态可分为恒定不变、均匀变化和非均匀变化等等,情景复杂,形式多变常见类型单杆水平式(导轨光滑)设运动过程中某时刻棒的速度为v,加速度为a=Fm-22B L vmR,a,v同向,随v的增加,a减小,当a=0时,v最大,I=BLvR恒定单杆倾斜式(导轨光滑)杆释放后下滑,开始时a=gsin α,速度v↑→E=BLv↑→I=ER↑→F=BIL↑→a↓,当F=mgsin α时,a=0,v最大双杆切割式(导轨光滑)杆MN做变减速运动,杆PQ做变加速运动,稳定时,两杆的加速度均为零,以相等的速度匀速运动.对系统动量守恒,对其中某杆适用动量定理学科&网光滑不等距导轨杆MN做变减速运动,杆PQ做变加速运动,稳定时,两杆的加速度均为零,两杆以不同的速度做匀速运动含“源”水平光滑导轨(v0=0)S闭合,ab杆受安培力F=BLEr,此时a=BLEmr,速度v↑⇒E感=BLv↑⇒I↓⇒F=B IL↓⇒加速度a↓,当E感=E时,v最大,且v m=EBL含“容”水平光滑导轨(v0=0)拉力F恒定,开始时a=Fm,速度v↑⇒E=BLv↑,经过Δt速度为v+Δv,此时E′=BL(v+Δv),电容器增加的电荷量ΔQ=CΔU=C(E′-E)=CBLΔv,电流I=Qt∆∆=CBL vt∆∆=CBLa,安培力F安=BIL=CB2L2a,F-F安=ma,a=22Fm B L C+,所以杆做匀加速运动★考点一:电磁感应中的能量问题◆典例一:( 2019·浙江卷)如图所示,倾角θ=37°、间距l=0.1 m的足够长金属导轨底端接有阻值R=0.1 Ω的电阻,质量m=0.1 kg的金属棒ab垂直导轨放置,与导轨间的动摩擦因数μ=0.45.建立原点位于底端、方向沿导轨向上的坐标轴x.在0.2 m≤x≤0.8 m区间有垂直导轨平面向上的匀强磁场.从t=0时刻起,棒ab在沿x轴正方向的外力F作用下,从x=0处由静止开始沿斜面向上运动,其速度v与位移x满足v=kx(可导出a=kv),k=5 s-1.当棒ab运动至x1=0.2 m处时,电阻R消耗的电功率P=0.12 W,运动至x2=0.8 m处时撤去外力F ,此后棒ab 将继续运动,最终返回至x =0处.棒ab 始终保持与导轨垂直,不计其他电阻,求:(提示:可以用F-x 图象下的“面积”代表力F 做的功,sin 37°=0.6)(1)磁感应强度B 的大小; (2)外力F 随位移x 变化的关系式;(3)在棒ab 整个运动过程中,电阻R 产生的焦耳热Q.【解析】(1)在x 1=0.2 m 处时,电阻R 消耗的电功率P =(Blv )2R此时v =kx =1 m/s 解得B =PR (lv )2=305 T(2)在无磁场区间0≤x<0.2 m 内,有 a =5 s -1×v =25 s -2×xF =25 s -2×xm +μmgcos θ+mgsin θ=(0.96+2.5x) N 在有磁场区间0.2 m≤x≤0.8 m 内,有 F A =(Bl )2vR=0.6x NF =(0.96+2.5x +0.6x) N =(0.96+3.1x) N (3)上升过程中克服安培力做的功(梯形面积) W A1=0.6 N 2(x 1+x 2)(x 2-x 1)=0.18 J撤去外力后,设棒ab 上升的最大距离为x ,再次进入磁场时的速度为v′,由动能定理有 (mgsin θ+μmgcos θ)x =12mv 2(mgsin θ-μmgcos θ)x =12mv′2解得v′=2 m/s由于mgsin θ-μmgcos θ-(Bl )2v′R =0故棒ab 再次进入磁场后做匀速运动下降过程中克服安培力做的功W A2=(Bl )2v′R (x 2-x 1)=0.144 JQ =W A1+W A2=0.324 J 【答案】 (1)305T (2)(0.96+3.1x) N (3)0.324 J◆典例二:[用功能关系求焦耳热]两足够长且不计电阻的光滑金属轨道如图甲所示放置,间距为d =1 m ,在左端弧形轨道部分高h =1.25 m 处放置一金属杆a ,弧形轨道与平直轨道的连接处光滑无摩擦,在平直轨道右端放置另一金属杆b ,杆a 、b 的电阻分别为R a =2 Ω、R b =5 Ω,在平直轨道区域有竖直向上的匀强磁场,磁感应强度B =2 T .现杆b 以初速度大小v 0=5 m/s 开始向左滑动,同时由静止释放杆a ,杆a 由静止滑到水平轨道的过程中,通过杆b 的平均电流为0.3 A ;从a 下滑到水平轨道时开始计时,a 、b 运动的速度—时间图象如图乙所示(以a 运动方向为正方向),其中m a =2 kg ,m b =1 kg ,g =10 m/s 2,求:(1)杆a 在弧形轨道上运动的时间;(2)杆a 在水平轨道上运动过程中通过其截面的电荷量; (3)在整个运动过程中杆b 产生的焦耳热. 【答案】(1)5 s (2)73 C (3)1156J【解析】(1)设杆a 由静止滑至弧形轨道与平直轨道连接处时杆b 的速度大小为v b0,对杆b 运用动量定理,有Bd I -·Δt =m b (v 0-v b0)其中v b0=2 m/s 代入数据解得Δt =5 s.(2)对杆a 由静止下滑到平直导轨上的过程中,由机械能守恒定律有m a gh =12m a v 2a解得v a =2gh =5 m/s设最后a 、b 两杆共同的速度为v′,由动量守恒定律得m a v a -m b v b0=(m a +m b )v′ 代入数据解得v′=83m/s杆a 动量的变化量等于它所受安培力的冲量,设杆a 的速度从v a 到v′的运动时间为Δt′,则由动量定理可得BdI·Δt′=m a (v a -v′)而q =I·Δt′代入数据得q =73C.(3)由能量守恒定律可知杆a 、b 中产生的焦耳热为 Q =m a gh +12m b v 20-12(m b +m a )v′2=1616 J b 棒中产生的焦耳热为Q′=52+5Q =1156 J.★考点二:电磁感应中的动量问题◆典例一:.(多选)(2019·高考全国卷Ⅲ)如图,方向竖直向下的匀强磁场中有两根位于同一水平面内的足够长的平行金属导轨,两相同的光滑导体棒ab 、cd 静止在导轨上.t =0时,棒ab 以初速度v 0向右滑动.运动过程中,ab 、cd 始终与导轨垂直并接触良好,两者速度分别用v 1、v 2表示,回路中的电流用I 表示.下列图象中可能正确的是( )【答案】AC【解析】棒ab以初速度v0向右滑动,切割磁感线产生感应电动势,使整个回路中产生感应电流,判断可知棒ab受到方向与v0方向相反的安培力的作用而做变减速运动,棒cd受到方向与v0方向相同的安培力的作用而做变加速运动,它们之间的速度差Δv=v1-v2逐渐减小,整个系统产生的感应电动势逐渐减小,回路中感应电流逐渐减小,最后变为零,即最终棒ab和棒cd的速度相同,v1=v2,两相同的光滑导体棒ab、cd组成的系统在足够长的平行金属导轨上运动时不受外力作用,由动量守恒定律有mv0=mv1+mv2,解得v1=v2=v02,选项A、C均正确,B、D均错误.◆典例二:[动量定理和能量守恒结合](2018·江西九江模拟)如图所示,光滑水平面停放一小车,车上固定一边长为L=0.5 m的正方形金属线框abcd,金属框的总电阻R=0.25 Ω,小车与金属框的总质量m=0.5 kg.在小车的右侧,有一宽度大于金属线框边长,具有理想边界的匀强磁场,磁感应强度B=1.0 T,方向水平且与线框平面垂直.现给小车一水平速度使其向右运动并能穿过磁场,当车上线框的ab边刚进入磁场时,测得小车加速度a=10 m/s2.求:(1)金属框刚进入磁场时,小车的速度为多大?(2)从金属框刚要进入磁场开始,到其完全离开磁场,线框中产生的焦耳热为多少? 【答案】(1) v 0=5 m/s. (2) 4.0 J. 【解析】(1)设小车初速度为v 0,则线框刚进入磁场时,ab 边由于切割磁感线产生的电动势为E=BLv 0 回路中的电流I=ER,根据牛顿定律BIL=ma 由以上三式可解得v 0=5 m/s.学&科网(2)设线框全部进入磁场时小车速度为v 1,进入过程平均电流为1I ,所用时间为Δt,则1I =R t ∆Φ∆=2BL R t∆根据动量定理得-B 1I LΔt=mv 1-mv 0,解得v 1=4 m/s设线框离开磁场时小车速度为v 2,离开过程平均电流为2I ,所用时间为Δt 1,则2I =1R t ∆Φ∆=21BL R t ∆ 根据动量定理得-B 2I LΔt 1=mv 2-mv 1,解得v 2=3 m/s线框从进入到离开产生的焦耳热Q=12m 20v -12m 22v =4.0 J.★考点三:电磁感应中的“杆+导轨”模型◆典例一:(2018·高考江苏卷)如图所示,竖直放置的“”形光滑导轨宽为L ,矩形匀强磁场Ⅰ、Ⅱ的高和间距均为d ,磁感应强度为B.质量为m 的水平金属杆由静止释放,进入磁场Ⅰ和Ⅱ时的速度相等.金属杆在导轨间的电阻为R ,与导轨接触良好,其余电阻不计,重力加速度为g.金属杆( )A .刚进入磁场Ⅰ时加速度方向竖直向下B .穿过磁场Ⅰ的时间大于在两磁场之间的运动时间C .穿过两磁场产生的总热量为4mgdD .释放时距磁场Ⅰ上边界的高度h 可能小于m 2gR 22B 4L 4【答案】BC【解析】根据题述,由金属杆进入磁场Ⅰ和进入磁场Ⅱ时速度相等可知,金属杆在磁场Ⅰ中做减速运动,所以金属杆刚进入磁场Ⅰ时加速度方向竖直向上,选项A 错误;由于金属杆进入磁场Ⅰ后做加速度逐渐减小的减速运动,而在两磁场之间做匀加速运动,所以穿过磁场Ⅰ的时间大于在两磁场之间的运动时间,选项B 正确;根据能量守恒定律,金属杆从刚进入磁场Ⅰ到刚进入磁场Ⅱ过程动能变化量为0,重力做功为2mgd ,则金属杆穿过磁场Ⅰ产生的热量Q 1=2mgd ,而金属杆在两磁场区域的运动情况相同,产生的热量相等,所以金属杆穿过两磁场产生的总热量为2×2mgd =4mgd ,选项C 正确;金属杆刚进入磁场Ⅰ时的速度v =2gh ,进入磁场Ⅰ时产生的感应电动势E =BLv ,感应电流I =ER ,所受安培力F =BIL ,由于金属杆刚进入磁场Ⅰ时加速度方向竖直向上,所以安培力大于重力,即F>mg ,联立解得h>m 2gR 22B 4L 4,选项D 错误.◆典例二(2019·高考天津卷)如图所示,固定在水平面上间距为l 的两条平行光滑金属导轨,垂直于导轨放置的两根金属棒MN 和PQ 长度也为l 、电阻均为R ,两棒与导轨始终接触良好.MN 两端通过开关S 与电阻为R 的单匝金属线圈相连,线圈内存在竖直向下均匀增加的磁场,磁通量变化率为常量k.图中虚线右侧有垂直于导轨平面向下的匀强磁场,磁感应强度大小为B.PQ 的质量为m ,金属导轨足够长、电阻忽略不计.(1)闭合S ,若使PQ 保持静止,需在其上加多大的水平恒力F ,并指出其方向;(2)断开S ,PQ 在上述恒力作用下,由静止开始到速度大小为v 的加速过程中流过PQ 的电荷量为q ,求该过程安培力做的功W.【解析】(1)设线圈中的感应电动势为E ,由法拉第电磁感应定律E =ΔΦΔt ,则E =k ①设PQ 与MN 并联的电阻为R 并,有 R 并=R 2②闭合S 时,设线圈中的电流为I ,根据闭合电路欧姆定律得I =ER 并+R③ 设PQ 中的电流为I PQ ,有 I PQ =12I ④设PQ 受到的安培力为F 安,有 F 安=BI PQ l ⑤保持PQ 静止,由受力平衡,有 F =F 安⑥联立①②③④⑤⑥式得 F =Bkl 3R⑦ 方向水平向右.(2)设PQ 由静止开始到速度大小为v 的加速过程中,PQ 运动的位移为x ,所用时间为Δt ,回路中的磁通量变化量为ΔΦ ,平均感应电动势为E -,有E -=ΔΦΔt ⑧其中ΔΦ=Blx ⑨设PQ 中的平均电流为I -,有 I -=E -2R ⑩根据电流的定义得 I -=qΔt (11)由动能定理,有 Fx +W =12mv 2-0(12)联立⑦⑧⑨⑩(11) (12)式得W =12mv 2-23kq. (13)1.(2019·高考全国卷Ⅰ)空间存在一方向与纸面垂直、大小随时间变化的匀强磁场,其边界如图(a)中虚线MN 所示.一硬质细导线的电阻率为ρ、横截面积为S ,将该导线做成半径为r 的圆环固定在纸面内,圆心O 在MN 上.t =0时磁感应强度的方向如图(a)所示;磁感应强度B 随时间t 的变化关系如图(b)所示.则在t =0到t =t 1的时间间隔内( )A .圆环所受安培力的方向始终不变B .圆环中的感应电流始终沿顺时针方向C .圆环中的感应电流大小为B 0rS 4t 0ρD .圆环中的感应电动势大小为B 0πr 24t 0【答案】BC【解析】根据楞次定律可知在0~t 0时间内,磁感应强度减小,感应电流的方向为顺时针,圆环所受安培力水平向左,在t 0~t 1时间内,磁感应强度反向增大,感应电流的方向为顺时针,圆环所受安培力水平向右,所以选项A 错误,B 正确;根据法拉第电磁感应定律得E =ΔΦΔt =12πr 2·B 0t 0=B 0πr 22t 0,根据电阻定律可得R=ρ2πr S ,根据欧姆定律可得I =E R =B 0rS 4t 0ρ,所以选项C 正确,D 错误.2.(2019·新课标全国Ⅱ卷)如图,两条光滑平行金属导轨固定,所在平面与水平面夹角为θ,导轨电阻忽略不计。
1 两根光滑的长直金属导轨M N 、M′ N′平行置于同一水平面内,导轨间距为l ,电阻不计,M 、M′处接有如图所示的电路,电路中各电阻的阻值均为尺,电容器的电容为C 。
长度也为l 、阻值同为R 的金属棒a b 垂直于导轨放置,导轨处于磁感应强度为B 、方向竖直向下的匀强磁场中。
a b 在外力作用下向右匀速运动且与导轨保持良好接触,在运动距离为s 的过程中,整个回路中产生的焦耳热为Q 。
求 ⑴.a b 运动速度v 的大小; ⑵.电容器所带的电荷量q 。
答案:(1)设ab 上产生的磁感电动势为E ,回路中的电流为I ,ab 运动距离s 所用时间为t ,则有Blv E = ①REI 4=② v st = ③ t R I Q )4(2= ④由上述方程得sl B QR v 224=⑤(2)设电容器两极板间的电势差为U ,则有U =IR ⑥ 电容器所带电荷量q =CU ⑦ 解得BlsCQRq =⑧ 2 如图所示,两平行的光滑金属导轨安装在一光滑绝缘斜面上,导轨间距为L ,电阻忽略不计且足够长,导轨平面的倾角为α,斜面上相隔为d 的平行虚线MN 与PQ 间有磁感应强度大小为B 的匀强磁场,方向与导轨平面垂直,另有一长为2d 的绝缘杆将一导体棒和一边长为d (d < L )的正方形单匝线框连在一起组成一固定的装置,总质量为m ,导体棒中通过大小恒为I 的电流。
将整个装置置于导轨上,线框下边与PQ 重合,释放后装置沿斜面开始下滑,当导体棒运动到MN 处恰好第一次开始返回,经过若干次往返后,最终整个装置在斜面上做恒定周期的往复运动,导体棒在整个运动过程中始终与导轨垂直。
求:(1)在装置第一次下滑的过程中,线框中产生的热量Q;(2)画出整个装置在第一次下滑过程中的速度一时间(v-t )图像;(3)装置最终在斜面上做往复运动的最大速率v m;(4)装置最终在斜面上做往复运动的周期T。
解:(1)设装置由静止释放到导体棒运动到磁场下边界的过程中,安培力对线框做功的大小为W mg sinα·4d-W-BIL·d=0解得W = 4mgd sinα-BILd线框中产生的热量Q=W= 4mg dsinα-BILd(2)(3)装置往复运动的最高位置:线框的上边位于MN处速度最大的位置:导体棒位于PQ处,由解得(4)向下加速过程ma1= mg sinα,向下减速过程ma2=BIL-mg sinα,3如图所示,两足够长的平等光滑金属导轨安装在一倾角为θ的光滑绝缘斜面上,导轨间距为L,电阻忽略不计,一宽度为d的有界匀强磁场垂直于斜面向上,磁感应强度为B,另有一长为2d的绝缘杆将一导体棒和一边长为d (d<L)的正方形导线框连在一起组成固定装置.总质量为m,导体棒中通有大小恒定I的电流,将该装置置于导轨上,开始时导体棒恰好位于磁场的下边界处,由静止释放后装置沿斜面向上运动,当线框的下边运动到磁场的上边界MN处时装置的速度恰好为零.重力加速度大小为g.(1)求刚释放时装置加速度的大小;(2)求上述运动过程中线框中产生的热量;(3)装置速度为零后将向下运动,然后再向上运动,经过若干次往返,最终装置将在斜面上做稳定的往复运动,求稳定后装置运动的最高位置与最低位置之间的距离.解:(1)刚释放时,根据牛顿第二定律得 ma =BIL -mg sin θ可得加速度大小为 a =mBIL-g sin θ(2)设装置由静止释放到线框的下边运动到磁场的上边界MN 的过程中,安培力对线框做功的大小为W ,根据动能定理有:0-0=BILd -mg sinθ•4d -W 解得 W =BILd -4mgd sinθ 线框中产生的热量 Q =W =BILd -4mgd sin θ(3装置往复运动的最高位置:线框的上边位于磁场的下边界,此时导体棒距磁场上边界d ;往复运动到最低位置时,金属棒在磁场内,设距离上边界为x ,则功能关系得 mg sin θ •(x +d )= BIL •x可解出 x =装置运动的最高位置与最低位置之间的距离为x +d =+d=答:(1)刚释放时装置加速度的大小是mBIL-g sin θ (2)上述运动过程中线框中产生的热量是BILd -4mgd sin θ(3)装置运动的最高位置与最低位置之间的距离为.4(18分)如图所示,AD 与A 1D 1为水平放置的无限长平行金属导轨,DC 与D 1C 1为倾角为︒=37θ的平行金属导轨,两组导轨的间距均为l =1.5m ,导轨电阻忽略不计.质量为m 1=0.35kg 、电阻为R 1=1Ω的导体棒ab 置于倾斜导轨上,质量为m 2=0.4kg 、电阻为R 2=0.5Ω的导体棒cd 置于水平导轨上,轻质细绳跨过光滑滑轮一端与cd 的中点相连、另一端悬挂一轻质挂钩.导体棒ab 、cd 与导轨间的动摩擦因数相同,且最大静摩擦力等于滑动摩擦力.整个装置处于竖直向上的匀强磁场中,磁感应强度为B =2T .初始时刻,棒ab 在倾斜导轨上恰好不下滑.(g 取10m/s 2,sin ︒37=0.6) (1)求导体棒与导轨间的动摩擦因数μ;(2)在轻质挂钩上挂上物体P ,细绳处于拉伸状态,将物体P 与导体棒cd 同时由静止释放,当P 的质量不超过多大时,ab 始终处于静止状态?(导体棒cd 运动过程中,ab 、cd 一直与DD 1平行,且没有与滑轮相碰.)(3)若P 的质量取第(2)问中的最大值,由静止释放开始计时,当t =1s 时cd 已经处于匀速直线运动状态,求在这1s 内ab 上产生的焦耳热为多少?(1)对ab 棒,由平衡条件得0cos sin 11=-θμθg m g m (2分)解得43=μ(或0.75) (2分)(2)当P 的质量最大时,P 和cd 的运动达到稳定时,P 和cd 一起做匀速直线运动,ab 处于静止状态,但摩擦力达到最大且沿斜面向下。
专题27 法拉第电磁感应定律目录题型一实验:探究影响感应电流方向的因素 (1)题型二感应电流的产生和方向判断 (4)题型三楞次定律推论的应用 (6)题型四“三定则、一定律”的应用 (9)题型五法拉第电磁感应定律的理解及应用 (10)题型六导体切割磁感线产生的感应电动势 (13)类型1 平动切割磁感线 (14)类型2 转动切割磁感线 (15)类型3 有效长度问题 (16)题型六自感现象 (17)题型一实验:探究影响感应电流方向的因素1.实验设计如图2所示,通过将条形磁体插入或拔出线圈来改变穿过螺线管的磁通量,根据电流表指针的偏转方向判断感应电流的方向。
2.实验结论当穿过线圈的磁通量增加时,感应电流的磁场与原磁场的方向相反;当穿过线圈的磁通量减小时,感应电流的磁场与原磁场的方向相同。
3.注意事项实验前应首先查明电流表中电流的流向与电流表指针偏转方向之间的关系,判断的方法是:采用如图所示的电路,把一节干电池与电流表及线圈串联,由于电流表量程较小,所以在电路中应接入限流变阻器R,电池采用旧电池,开关S采用瞬间接触,记录指针偏转方向。
【例1】探究感应电流方向的实验所需器材包括:条形磁体、电流表、线圈、导线、一节干电池(用来查明线圈中电流的流向与电流表中指针偏转方向的关系).(1)实验现象:如图所示,在四种情况下,将实验结果填入下表.①线圈内磁通量增加时的情况①线圈内磁通量减少时的情况请填写表格中的空白项.(2)实验结论:当穿过闭合线圈的磁通量增加时,感应电流的磁场与原磁场方向________(选填“相同”或“相反”).(3)总结提炼:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的________.(4)拓展应用:如图所示是一种延时继电器的示意图.铁芯上有两个线圈A和B.线圈A和电源连接,线圈B与直导线ab构成一个闭合回路.弹簧K与衔铁D相连,D的右端触头C 连接工作电路(未画出).开关S闭合状态下,工作电路处于导通状态.S断开瞬间,延时功能启动,此时直导线ab中电流方向为________(选填“a到b”或“b到a”).说明延时继电器的“延时”工作原理:________.【例2】在“探究电磁感应的产生条件”的实验中,先按如图甲所示连线,不通电时,电流计指针停在正中央,闭合开关S时,观察到电流表指针向左偏。
1 / 29高考回归复习—电磁感应综合解答题1.如图甲,在水平桌面上固定着两根相距L =20cm 、相互平行的无电阻轨道P 、Q ,轨道一端固定一根电阻R =0.02Ω的导体棒a ,轨道上横置一根质量m =40g 、电阻可忽略不计的金属棒b ,两棒相距也为L =20cm 。
该轨道平面处在磁感应强度大小可以调节的竖直向上的匀强磁场中。
开始时,磁感应强度B 0=0.1T 。
设棒与轨道间的最大静摩擦力等于滑动摩擦力,g 取10m/s 2。
(1)若保持磁感应强度B 0的大小不变,从t =0时刻开始,给b 棒施加一个水平向右的拉力,使它由静止开始做匀加速直线运动。
此拉力F 的大小随时间t 变化关系如图乙所示。
求b 棒做匀加速运动的加速度及b 棒与轨道间的滑动摩擦力大小;(2)若从t =0开始,磁感应强度B 随时间t 按图丙中图像所示的规律变化,求从t =0到金属棒b 将要运动所经历的时间。
2.如图所示,平行导轨宽为L 、倾角为θ,处在垂直导轨平面向下的匀强磁场中,磁感强度为B ,CD 为磁场的边界,导轨左端接一电流传感器,CD 右边平滑连一足够长的导轨。
质量为m 、电阻为R 的导体棒ab 长也为L ,两端与导轨接触良好,自导轨上某处由静止滑下。
其余电阻不计,不计一切摩擦和空气阻力,重力加速度为g 。
(1)棒ab 上的感应电流方向如何?(2)棒ab 在磁场内下滑过程中,速度为v 时加速度为多大?(3)若全过程中电流传感器指示的最大电流为I 0。
求棒ab 相对于CD 能上升的最大高度。
3.如图,光滑水平桌面上等间距分布着4个条形匀强磁场,磁场方向竖直向下,磁感应强度B =1T ,每一条形磁场区域的宽度及相邻条形磁场区域的间距均为d =0.5m 。
桌面上现有一边长l =0.1m 、质量m =0.2kg 、电阻R =0.1Ω的单匝正方形线框abcd ,在水平恒力F =0.3N 作用下由静止开始从左侧磁场边缘垂直进入磁场,在穿出第4个磁场区域过程中的某个位置开始做匀速直线运动,线框ab边始终平行于磁场边界,取g=10m/s2,不计空气阻力。
2020 年高考物理试题分类汇编——电磁感觉〔全国卷1〕17.某地的地磁场磁感觉强度的竖直重量方向向下,大小为 4.5 10 5 T。
一敏捷电压表连结在当地入海河段的两岸,河宽100m,该河段涨潮和落潮时有海水〔视为导体〕流过。
设落潮时,海水自西向东流,流速为2m/s。
以下讲法正确的选项是A .河北岸的电势较高B.河南岸的电势较高C.电压表记录的电压为9mV D.电压表记录的电压为5mV【答案】BD【分析】海水在落潮时自西向东流,该过程可以理解得为:自西向东运动的导体棒在切割竖直向下的磁场。
依据右手定那么,右岸即北岸是正极电势高,南岸电势低, D 对 C 错。
依据法拉第电磁感觉定律E BLv 4.5 10 5100 2 9 10 3V, B对A错。
【命题企图与考点定位】导体棒切割磁场的实质应用题。
〔全国卷2〕18. 如图,空间某地区中有一匀强磁场,磁感觉强度方向水平,且垂直于纸面向里,磁场上界限 b 和下界限 d 水平。
在竖直面内有一矩形金属一致加线圈,线圈上下面的距离特意短,下面水平。
线圈从水平面 a 开始着落。
磁场上下界限之间的距离大于水平面a、 b 之间的距离。
假定线圈下面刚经过水平面b、c〔位于磁场中〕和 d 时,线圈所遇到的磁场力的大小分不为F b、 F c和 F d,那么A.F d> F c> F bB. F c<F d< F bC.F c> F b> F dD. F c< F b< F d【答案】 D【分析】线圈从a到b 做自由落体运动,在b 点开始进入磁场切割磁感线所有遇到安培力F b,因为线圈的上下面的距离特意短,所以经历特意短的变速运动而进入磁场,此后线圈中磁通量不变不产生感觉电流,在 c 处不受安培力,但线圈在重力作用下仍旧加快,所以从 d 处切割磁感线所受安培力必然大于答案 D。
b 处,【命题企图与考点定位】线圈切割磁感线的竖直运动,应用法拉第电磁感觉定律求解。
2020高考电磁感应专题1.磁通量公式: (B与S )注:磁通量有大小也有方向,但是标量,遵从代数运算法则也可以这样理解:穿过某面积的磁感线的条数叫做穿过这一面积的磁通量2.电磁感应现象:在磁场中的导体产生或的现象。
3.产生感应电流的条件:(1)(2)4.楞次定律:感应电流的方向,感应电流的磁场总是引起感应电流的。
5.简单判断法:(1)电流方向可用判断;(2)受力方向可用判断;(3)面积变化可用判断。
注:导体切割磁感线产生感应电流的方向用来判断较为简便。
专题训练:1.【2017·新课标Ⅲ卷】如图在方向垂直于纸面向里的匀强磁场中有一U形金属导轨,导轨平面与磁场垂直。
金属杆PQ置于导轨上并与导轨形成闭合回路PQRS,一圆环形金属线框T位于回路围成的区域内,线框与导轨共面。
现让金属杆PQ突然向右运动,在运动开始的瞬间,关于感应电流的方向,下列说法正确的是()A.PQRS中沿顺时针方向,T中沿逆时针方向B.PQRS中沿顺时针方向,T中沿顺时针方向C.PQRS中沿逆时针方向,T中沿逆时针方向D.PQRS中沿逆时针方向,T中沿顺时针方向2.(2018·高考全国卷Ⅰ)(多选)如图,两个线圈绕在同一根铁芯上,其中一线圈通过开关与电源连接,另一线圈与远处沿南北方向水平放置在纸面内的直导线连接成回路.将一小磁针悬挂在直导线正上方,开关未闭合时小磁针处于静止状态.下列说法正确的是( )A.开关闭合后的瞬间,小磁针的N极朝垂直纸面向里的方向转动B.开关闭合并保持一段时间后,小磁针的N极指向垂直纸面向里的方向C.开关闭合并保持一段时间后,小磁针的N极指向垂直纸面向外的方向D.开关闭合并保持一段时间再断开后的瞬间,小磁针的N极朝垂直纸面向外的方向转动3.(2018·全国III 卷)(多选)如图(a ),在同一平面内固定有一长直导线PQ 和一导线框R ,R 在PQ 的右侧。
导线PQ 中通有正弦交流电流i ,i 的变化如图(b )所示,规定从Q 到P 为电流的正方向。
导线框R 中的感应电动势( )A .在4Tt =时为零 B .在2Tt =时改变方向C .在2Tt =时最大,且沿顺时针方向D .在t T =时最大,且沿顺时针方向4.(2019·贵州遵义模拟)如图所示,在通电长直导线AB 的一侧悬挂一可以自由摆动的闭合矩形金属线圈P ,AB 在线圈平面内.当发现闭合线圈向右摆动时 ( ) A .AB 中的电流减小,用楞次定律判断得线圈中产生逆时针方向的电流 B .AB 中的电流不变,用楞次定律判断得线圈中产生逆时针方向的电流 C .AB 中的电流增大,用楞次定律判断得线圈中产生逆时针方向的电流 D .AB 中的电流增大,用楞次定律判断得线圈中产生顺时针方向的电流5.(2019·广东广州名校联考)如图所示,圆环形导体线圈a 平放在水平桌面上,在a 的正上方固定一竖直螺线管b ,二者轴线重合,螺线管b 与电源、滑动变阻器连接成如图所示的电路.若将滑动变阻器的滑片P 向下滑动,下列表述正确的是( ) A .线圈a 中将产生沿顺时针方向(俯视)的感应电流 B .穿过线圈a 的磁通量减小C .线圈a 有扩张的趋势D .线圈a 对水平桌面的压力F N 将增大6.(2019·绵阳模拟)两个闭合的金属环,穿在一根光滑的绝缘杆上,如图所示,当条形磁铁的S 极自右向左插向圆环时,环的运动情况是( ) A .两环同时向左移动,间距增大 B .两环同时向左移动,间距变小 C .两环同时向右移动,间距变小 D .两环同时向左移动,间距不变7.(2019·贵州五校联考)(多选)如图所示,在匀强磁场中,放有一与线圈D相连接的平行导轨,要使放在线圈D中的线圈A(A、D两线圈同心共面)各处受到沿半径方向指向圆心的力,金属棒MN的运动情况可能是 ( )A.匀速向右B.加速向左C.加速向右D.减速向左8.(2019·浙江宁波模拟)如图甲所示,在同一平面内有两个圆环A、B,圆环A将圆环B分为面积相等的两部分,以图甲中A环电流沿顺时针方向为正,当圆环A中的电流如图乙所示变化时,下列说法正确的是( )A.B中始终没有感应电流B.B中有顺时针方向的感应电流C.B中有逆时针方向的感应电流D.B中的感应电流先沿顺时针方向,后沿逆时针方向9.(2019·广东珠海摸底)如图所示,通有恒定电流的导线MN与闭合金属框共面,第一次将金属框由Ⅰ平移到Ⅱ,第二次将金属框绕cd边翻转到Ⅱ,设先后两次通过金属框的磁通量变化量大小分别为ΔΦ1和ΔΦ2,则( )A.ΔΦ1>ΔΦ2,两次运动中线框中均有沿adcba方向电流出现B.ΔΦ1=ΔΦ2,两次运动中线框中均有沿abcda方向电流出现C.ΔΦ1<ΔΦ2,两次运动中线框中均有沿adcba方向电流出现D.ΔΦ1<ΔΦ2,两次运动中线框中均有沿abcda方向电流出现10.(2019·青岛模拟)如图甲所示,水平面上的平行导轨MN、PQ上放着两根导体棒ab、cd,两棒中间用绝缘丝线系住.开始时匀强磁场垂直于纸面向里,磁感应强度B随时间t的变化如图乙所示,I和F T分别表示流过导体棒中的电流和丝线的拉力(不计电流之间的相互作用力),则在t0时刻( )A.I=0,F T=0B.I=0,F T≠0C.I≠0,F T=0D.I≠0,F T≠011.(2019·江苏扬州一模)(多选)航母上飞机弹射起飞是利用电磁驱动来实现的.电磁驱动原理如图所示,当固定线圈突然通过直流电流时,线圈左端的金属环被弹射出去.现在固定线圈左侧同一位置,先后放有分别用横截面积相等的铜和铝导线制成形状、大小相同的两个闭合环且电阻率ρ铜<ρ铝.闭合开关S的瞬间( )A.从左侧看环中感应电流沿顺时针方向B.铜环受到的安培力大于铝环受到的安培力C.若将环放置在线圈右方,环将向左运动D.电池正负极调换后,金属环不能向左弹射法拉第电磁感应定律1.法拉第电磁感应定律:电路中感应电动势的大小跟穿过这一电路的的变化率成正比。
公式:E= 。
(1)若磁感应强度B不变,回路的面积S变化,则E= ;(2)若回路的面积S不变,磁感应强度B变化,则E= ;(3)若回路的面积S变化,磁感应强度B也变化,则E= 。
2.当导体在匀强磁场中做切割磁感线运动时E= (v不垂直于B方向时需分解到)3.若导体棒绕某一固定转轴旋转切割磁感线时E= ,4.闭合回路感应电流的大小I= ;线圈两端电压U= 专题训练:1.【2017·天津卷】如图所示,两根平行金属导轨置于水平面内,导轨之间接有电阻R。
金属棒ab与两导轨垂直并保持良好接触,整个装置放在匀强磁场中,磁场方向垂直于导轨平面向下。
现使磁感应强度随时间均匀减小,ab始终保持静止,下列说法正确的是()A.ab中的感应电流方向由b到aB.ab中的感应电流逐渐减小C.ab所受的安培力保持不变D.ab所受的静摩擦力逐渐减小2.在竖直向上的匀强磁场中,水平放置一个不变形的单匝金属圆线圈,规定线圈中感应电流的正方向如图1所示,当磁场的磁感应强度B随时间t如图2变化时,下图中正确表示线圈中感应电动势E变化的是()3.(2019·全国卷Ⅰ)(多选)空间存在一方向与纸面垂直、大小随时间变化的匀强磁场,其边界如图a中虚线MN所示。
一硬质细导线的电阻率为ρ、横截面积为S,将该导线做成半径为r 的圆环固定在纸面内,圆心O在MN上。
t=0时磁感应强度的方向如图a所示;磁感应强度B 随时间t的变化关系如图b所示。
则在t=0到t=t1的时间间隔内( )A.圆环所受安培力的方向始终不变B.圆环中的感应电流始终沿顺时针方向C.圆环中的感应电流大小为B0 rS 4t0ρD.圆环中的感应电动势大小为Bπr2 4t04.(2019·吉林七校联考)(多选)两根光滑的金属导轨,平行放置在倾角为θ的斜面上,导轨的下端接有电阻R,导轨自身的电阻可忽略不计.斜面处在一匀强磁场中,磁场方向垂直斜面向上.质量为m、电阻可不计的金属棒ab,在沿着斜面与棒垂直的恒力F作用下沿导轨匀速上滑,并上升h 高度,如图所示.在这过程中()(A)作用于金属棒上的各力的合力所做的功等于零(B)作用于金属棒上的各力的合力所做的功等于mgh与电阻R上发出的焦耳热之和(C)恒力F与安培力的合力所做的功等于零(D)恒力F与重力的合力所做的功等于电阻R上发出的焦耳热5.(2015·安徽理综)如图所示,abcd为水平放置的平行“”形光滑金属导轨,间距为l,导轨间有垂直于导轨平面的匀强磁场,磁感应强度大小为B,导轨电阻不计.已知金属杆MN倾斜放置,与导轨成θ角,单位长度的电阻为r,保持金属杆以速度v沿平行于cd的方向滑动(金属杆滑动过程中与导轨接触良好).则( )A.电路中感应电动势的大小为Blv sin θB.电路中感应电流的大小为Bv sin θrC.金属杆所受安培力的大小为B2lv sin θrD.金属杆的发热功率为B2lv2 r sin θ6.(2016·高考全国卷Ⅱ)(多选)法拉第圆盘发电机的示意图如图所示.铜圆盘安装在竖直的铜轴上,两铜P、Q分别与圆盘的边缘和铜轴接触.圆盘处于方向竖直向上的匀强磁场B中.圆盘旋转时,关于流过电阻R的电流,下列说法正确的是( )A.若圆盘转动的角速度恒定,则电流大小恒定B.若从上向下看,圆盘顺时针转动,则电流沿a到b的方向流动C.若圆盘转动方向不变,角速度大小发生变化,则电流方向可能发生变化D.若圆盘转动的角速度变为原来的2倍,则电流在R上的热功率也变为原来的2倍7.(2019·湖南联考)(多选)半径分别为r和2r的同心圆形导轨固定在同一水平面内,一长为r、电阻为R的均匀金属棒AB置于圆导轨上面,BA的延长线通过圆导轨中心O,装置的俯视图如图所示,整个装置位于一匀强磁场中,磁感应强度的大小为B,方向竖直向下.在两环之间接阻值也为R的定值电阻和电容为C的电容器.金属棒在水平外力作用下以角速度ω绕O逆时针匀速转动,在转动过程中始终与导轨保持良好接触.下列说法正确的是( )A.金属棒中电流从B流向A B.金属棒两端电压为34Bωr2C.电容器的M板带负电 D.电容器所带电荷量为32CBωr28.(2015·新课标全国Ⅱ)如图,直角三角形金属框abc 放置的匀强磁场中,磁感应强度大小为B ,方向平行于ab 边向上.当金属框绕ab 边以角速度ω逆时针转动时,a 、b 、c 三点的电势分别为U a 、U b 、U c .已 知bc 边的长度为l .下列判断正确的是( ) A .U a >U c ,金属框中无电流B .U b >U c ,金属框中电流方向沿abcaC .U bc =-12Bl 2ω,金属框中无电流D .U bc =12Bl 2ω,金属框中电流方向沿acba9.(2018·高考全国卷Ⅰ)如图,导体轨道OPQS 固定,其中PQS 是半圆弧,Q 为半圆弧的中点,O 为圆心.轨道的电阻忽略不计.OM 是有一定电阻、可绕O 转动的金属杆,M 端位于PQS 上,OM 与轨道接触良好.空间存在与半圆所在平面垂直的匀强磁场,磁感应强度的大小为B .现使OM 从OQ 位置以恒定的角速度逆时针转到OS 位置并固定(过程Ⅰ);再使磁感应强度的大小以一定的变化率从B 增加到B ′(过程Ⅱ).在过程 Ⅰ、Ⅱ 中,流过OM 的电荷量相等,则B ′B等于( ) A.54 B.32 C.74D .210.【2017·新课标Ⅱ卷】(多选)两条平行虚线间存在一匀强磁场,磁感应强度方向与纸面垂直。