物理奥赛培训教程-相对论基础讲义
- 格式:pdf
- 大小:2.26 MB
- 文档页数:12
相对论初步知识相对论是本世纪物理学的最伟大的成就之一,它标志着物理学的重大发展,使一些物理学的基本概念发生了深刻的变革。
狭义相对论提出了新的时空观,建立了高速运动物体的力学规律,揭露了质量和能量的内在联系,构成了近代物理学的两大支柱之一。
§ 2. 1 狭义相对论基本原理2、 1、 1、伽利略相对性原理1632 年,伽利略发表了《关于两种世界体系的对话》一书,作出了如下概述:相对任何惯性系,力学规律都具有相同的形式,换言之,在描述力学的规律上,一切惯性系都是等价的。
这一原理称为伽利略相对性原理,或经典力学的相对性系原理。
其中“惯性系”是指凡是牛顿运动定律成立的参照系。
2、 1、 2、狭义相对论的基本原理19世纪中叶,麦克斯韦在总结前人研究电磁现象的基础上,建立了完整的电磁理论,又称麦克斯韦电磁场方程组。
麦克斯韦电磁理论不但能够解释当时已知的电磁现象,而且预言了电磁波的存在,确认光是波长较短的电磁波,电磁波在真空中的传播速度为一常数, c 3.0 108米 / 秒,并很快为实验所证实。
从麦氏方程组中解出的光在真空中的传播速度与光源的速度无关。
如果光波也和声波一样,是靠一种媒质(以太)传播的,那么光速相对于绝对静止的以太就应该是不变的。
科学家们为了寻找以太做了大量的实验,其中以美国物理学家迈克耳孙和莫雷实验最为著名。
这个实验不但没能证明以太的存在,相反却宣判了以太的死刑,证明光速相对于地球是各向同性的。
但是这却与经典的运动学理论相矛盾。
爱因斯坦分析了物理学的发展,特别是电磁理论,摆脱了绝对时空观的束缚,科学地提出了两条假设,作为狭义相对论的两条基本原理:1、狭义相对论的相对性原理在所有的惯性系中,物理定律都具有相同的表达形式。
这条原理是力学相对性原理的推广,它不仅适用于力学定律,乃至适合电磁学,光学等所有物理定律。
狭义相对论的相对性原理表明物理学定律与惯性参照系的选择无关,或者说一切惯性系都是等价的,人们不论在哪个惯性系中做实验,都不能确定该惯性系是静止的,还是在作匀速直线运动。
1. 洛伦兹变换2. 尺缩钟慢效应一、狭义相对论基础狭义相对论的理论框架是爱因斯坦在1905年在《论动体的电动力学》一文建立的。
之后随着后人的不断补充和发展,狭义相对论被许多实验精确验证,并已成为现代物理学的基石。
爱因斯坦最初的想法是朴素而深刻的。
电磁学又麦克斯韦的方程组所精确刻画,从这些方程组里面能求解出电磁波传播的速度是光速,与参照系没有关系。
然而根据牛顿的经典时空观,任何一个物体的速度都会在参照系变化下发生变化,可见电磁学与经典时空观有矛盾。
另一方面,正如伽利略和马赫所论述的那样,所有惯性参照系内观测到的物理规律是相同的,这和牛顿的经典时空观中存在一个特殊的绝对参照系是矛盾的。
爱因斯坦敏锐地发现了其矛盾根源所在。
他提出两条基本原理:真空中光速在任意参照系中都是不变的;所有惯性参照系都是平权的。
放弃了牛顿的经典时空观之后,爱因斯坦由这两条基本原理出发,推导出了参照系变换下,时间和空间的变换关系,这样的变换关系叫做洛伦兹变换。
我们先观察经典的参照系变换。
一个参照系是S ,另一个参照系'S 相对于S 沿着x 轴以速度v 运动。
在S 系中一个事件在t 时刻,(,,)x y z 位置发生。
同一个事件在'S 参照系中在't 时刻,(',',')x y z 位置发生。
按照牛顿的时空观,显然有:''''t t x x vt y y z z=⎧⎪=-⎪⎨=⎪⎪=⎩ 以上的变换叫做伽利略变换在狭义相对论的框架下我们可以经过一系列演算得到,狭义相对论基本原理的变换只能是: 22222'1/'1/''t v c x v c y y z z⎧=⎪-⎪⎪⎪=⎨-⎪⎪=⎪=⎪⎩或者写为更紧凑的形式:'()'()''ct ct x x x t y y z z γβγβ=-⎧⎪=-⎪⎨=⎪⎪=⎩其中22;1/v c v c γβ==- 这个变换关系被叫做洛伦兹变换。
第12讲 狭义相对论基础一、知识点击1.力学相对性原理和伽利略变换如图12一1,S 系静止,S '系相对S 系平动,对应 轴互相平行,0t t '==时,两坐标系原点重合,t 时 刻在两参考系中观察同一事物。
我们有0r r r '=+ t t '=0υυυ'=+0a a a '=+若S '系相对S 系做匀速直线运动,S '系也是惯性参考系,00a = ,则有a a '= 又在两系中有F F '= m m '= 因为F ma =力学现象对一切惯性系来说,都要遵从同样的规律.这是力学相对性原理,研究力学规律时,一切惯性系都是等价的,我们不能在一惯性系中做力学实验来判定这个惯性系是静止还是做匀速直线运动.若S'系仅沿着S 系x 轴作匀速直线运动,其速度为u ,则我们有x x ut '=- x x ut '=+y y '= 或 y y '= z z '= z z '=t t '= t t '=这就是伽利略变换.它描绘了同一事物在两个不同参考系观察时的时空关系.实际物体的低速运动都满足伽利略变换. 2.爱因斯坦假设 洛伦兹变换⑴爱因斯坦假设:力学现象满足伽利略变换,但电磁现象、特别是光现象呢?当时人们把机械波必须在媒质中才能传播的思想引进光现象中,认为光只在以太中才能传播,光相对以太速度为c ,并且沿各个方向相同。
伽利略变换已经不能解释,为此爱因斯坦提出了两条基本原理:相对性原理:物理学定律在所有惯性系中都是相同的。
光速不变原理:在所有惯性系中,自由空间中的光速具有相同的量值C 。
以这两个原理为依据,可得到的坐标变换关系——洛伦兹变换()x y x ut '=- ()x y x ut '=+y y '= 或 y y '= z z '= z z '=2()u t y t x c '=-2()ut y t x c''=+式中y =相应的速度变换关系为21x xx u u c υυυ-'=-21x x xuu c υυυ'-='-21y y y u u c υυυ-'=-或 21y y yuu c υυυ'-='-21z zz u u c υυυ-'=-21z z zuu c υυυ'-='-3.长度收缩 时间膨胀一刚性直尺沿x '轴放置并随S '系运动,S '系中测得尺长021l x x ''=-,S 系观察者观察到尺在运动,必须同时记下尺的两端的坐标1x 和2x ,测得21l x x =-,利用洛伦兹变换可得l =,相对物体为静止的惯性系中测得物体长度是最长的,称为物体的固有长度。
高中物理竞赛原子物理学教程 第一讲 原子物理 第二讲相对论初步知识第二讲 相对论初步知识相对论是本世纪物理学的最伟大的成就之一,它标志着物理学的重大发展,使一些物理学的基本概念发生了深刻的变革。
狭义相对论提出了新的时空观,建立了高速运动物体的力学规律,揭露了质量和能量的内在联系,构成了近代物理学的两大支柱之一。
§2. 1 狭义相对论基本原理 2、1、1、伽利略相对性原理1632年,伽利略发表了《关于两种世界体系的对话》一书,作出了如下概述:相对任何惯性系,力学规律都具有相同的形式,换言之,在描述力学的规律上,一切惯性系都是等价的。
这一原理称为伽利略相对性原理,或经典力学的相对性系原理。
其中“惯性系”是指凡是牛顿运动定律成立的参照系。
2、1、2、狭义相对论的基本原理19世纪中叶,麦克斯韦在总结前人研究电磁现象的基础上,建立了完整的电磁理论,又称麦克斯韦电磁场方程组。
麦克斯韦电磁理论不但能够解释当时已知的电磁现象,而且预言了电磁波的存在,确认光是波长较短的电磁波,电磁波在真空中的传播速度为一常数,秒米/100.38⨯=c ,并很快为实验所证实。
从麦氏方程组中解出的光在真空中的传播速度与光源的速度无关。
如果光波也和声波一样,是靠一种媒质(以太)传播的,那么光速相对于绝对静止的以太就应该是不变的。
科学家们为了寻找以太做了大量的实验,其中以美国物理学家迈克耳孙和莫雷实验最为著名。
这个实验不但没能证明以太的存在,相反却宣判了以太的死刑,证明光速相对于地球是各向同性的。
但是这却与经典的运动学理论相矛盾。
爱因斯坦分析了物理学的发展,特别是电磁理论,摆脱了绝对时空观的束缚,科学地提出了两条假设,作为狭义相对论的两条基本原理:1、狭义相对论的相对性原理在所有的惯性系中,物理定律都具有相同的表达形式。
这条原理是力学相对性原理的推广,它不仅适用于力学定律,乃至适合电磁学,光学等所有物理定律。
狭义相对论的相对性原理表明物理学定律与惯性参照系的选择无关,或者说一切惯性系都是等价的,人们不论在哪个惯性系中做实验,都不能确定该惯性系是静止的,还是在作匀速直线运动。
高中物理竞赛辅导相对论初步知识相对论是本世纪物理学的最伟大的成就之一,它标志着物理学的重大进展,使一些物理学的差不多概念发生了深刻的变革。
狭义相对论提出了新的时空观,建立了高速运动物体的力学规律,揭露了质量和能量的内在联系,构成了近代物理学的两大支柱之一。
§2. 1 狭义相对论差不多原理 2、1、1、伽利略相对性原理 1632年,伽利略发表了«关于两种世界体系的对话»一书,作出了如下概述:相对任何惯性系,力学规律都具有相同的形式,换言之,在描述力学的规律上,一切惯性系差不多上等价的。
这一原理称为伽利略相对性原理,或经典力学的相对性系原理。
其中〝惯性系〞是指凡是牛顿运动定律成立的参照系。
2、1、2、狭义相对论的差不多原理19世纪中叶,麦克斯韦在总结前人研究电磁现象的基础上,建立了完整的电磁理论,又称麦克斯韦电磁场方程组。
麦克斯韦电磁理论不但能够讲明当时的电磁现象,而且预言了电磁波的存在,确认光是波长较短的电磁波,电磁波在真空中的传播速度为一常数,秒米/100.38⨯=c ,并专门快为实验所证实。
从麦氏方程组中解出的光在真空中的传播速度与光源的速度无关。
假如光波也和声波一样,是靠一种媒质〔以太〕传播的,那么光速相关于绝对静止的以太就应该是不变的。
科学家们为了查找以太做了大量的实验,其中以美国物理学家迈克耳孙和莫雷实验最为闻名。
那个实验不但没能证明以太的存在,相反却宣判了以太的死刑,证明光速相关于地球是各向同性的。
然而这却与经典的运动学理论相矛盾。
爱因斯坦分析了物理学的进展,专门是电磁理论,摆脱了绝对时空观的束缚,科学地提出了两条假设,作为狭义相对论的两条差不多原理:1、狭义相对论的相对性原理在所有的惯性系中,物理定律都具有相同的表达形式。
这条原理是力学相对性原理的推广,它不仅适用于力学定律,乃至适合电磁学,光学等所有物理定律。
狭义相对论的相对性原理讲明物理学定律与惯性参照系的选择无关,或者讲一切惯性系差不多上等价的,人们不论在哪个惯性系中做实验,都不能确定该惯性系是静止的,依旧在作匀速直线运动。