结构力学重难点完美复习资料复习课程
- 格式:doc
- 大小:528.50 KB
- 文档页数:10
(完整版)结构⼒学最全知识点梳理及学习⽅法第⼀章绪论§1-1 结构⼒学的研究对象和任务⼀、结构的定义:由基本构件(如拉杆、柱、梁、板等)按照合理的⽅式所组成的构件的体系,⽤以⽀承荷载并传递荷载起⽀撑作⽤的部分。
注:结构⼀般由多个构件联结⽽成,如:桥梁、各种房屋(框架、桁架、单层⼚房)等。
最简单的结构可以是单个的构件,如单跨梁、独⽴柱等。
⼆、结构的分类:由构件的⼏何特征可分为以下三类1.杆件结构——由杆件组成,构件长度远远⼤于截⾯的宽度和⾼度,如梁、柱、拉压杆。
2.薄壁结构——结构的厚度远⼩于其它两个尺度,平⾯为板曲⾯为壳,如楼⾯、屋⾯等。
3.实体结构——结构的三个尺度为同⼀量级,如挡⼟墙、堤坝、⼤块基础等。
三、课程研究的对象材料⼒学——以研究单个杆件为主弹性⼒学——研究杆件(更精确)、板、壳、及块体(挡⼟墙)等⾮杆状结构结构⼒学——研究平⾯杆件结构四、课程的任务1.研究结构的组成规律,以保证在荷载作⽤下结构各部分不致发⽣相对运动。
探讨结构的合理形式,以便能有效地利⽤材料,充分发挥其性能。
2.计算由荷载、温度变化、⽀座沉降等因素在结构各部分所产⽣的内⼒,为结构的强度计算提供依据,以保证结构满⾜安全和经济的要求。
3.计算由上述各因素所引起的变形和位移,为结构的刚度计算提供依据,以保证结构在使⽤过程中不致发⽣过⼤变形,从⽽保证结构满⾜耐久性的要求。
§1-2 结构计算简图⼀、计算简图的概念:将⼀个具体的⼯程结构⽤⼀个简化的受⼒图形来表⽰。
选择计算简图时,要它能反映⼯程结构物的如下特征:1.受⼒特性(荷载的⼤⼩、⽅向、作⽤位置)2.⼏何特性(构件的轴线、形状、长度)3.⽀承特性(⽀座的约束反⼒性质、杆件连接形式)⼆、结构计算简图的简化原则1.计算简图要尽可能反映实际结构的主要受⼒和变形特点..............,使计算结果安全可靠;2.略去次要因素,便于..。
..分析和...计算三、结构计算简图的⼏个简化要点1.实际⼯程结构的简化:由空间向平⾯简化2.杆件的简化:以杆件的轴线代替杆件3.结点的简化:杆件之间的连接由理想结点来代替(1)铰结点:铰结点所连各杆端可独⾃绕铰⼼⾃由转动,即各杆端之间的夹⾓可任意改变。
结构力学重难点复习资料第二章结构的几何构成分析1、首先必须深刻理解几个基本概念,这几个概念层层递进。
•几何不变体系:不计材料应变情况下,体系的位置和形状不变。
在几何构成分析中与荷载无关,各个杆件都是刚体。
•刚片:形状不变的物体,也就是刚体。
在几何构成分析中,刚片的选取非常重要,也非常灵活,可大可小,小至一根杆,大至地基基础,皆可视为刚片。
•自由度:体系运动时可以独立改变的坐标的数目。
在平面内,一点有2个自由度,一刚片有3个自由度。
•约束:减少自由度的装置。
一根链杆(或链杆支座)相当于1个约束;一个铰(或铰支座)相当于2个约束,注意两根链杆和一个铰在约束方面的功能完全可等同,可根据几何构成分析的需要相互转换,另外注意瞬铰的概念,两根链杆直接铰接在一点,该点可视为实铰,两根链杆延长后相交在一点,该点则是瞬铰,一个瞬铰也相当于2个约束,两根链杆若平行,瞬铰在平行方向的无穷远处;一个刚结点(或固定端)相当于3个约束。
•多余约束:增加一个约束,体系的自由度并不减少,该约束就是多余约束。
注意一个约束是否多余约束,必须视必要约束而定。
只有必要约束确定后才能确定多余约束,不能直接说哪个约束是多余约束。
2、必须深刻理解几何不变体系的组成规律。
教材上列出4个规律,其实基本的规律只有一个,就是三角形规律,即小学数学就传授的“三角形是稳定的”。
三角形规则(三根链杆两两铰接形成三角形,则几何不变,无多余联系。
)将其中一根链杆视为刚片将其中两根链杆视为刚片将其中三根链杆视为刚片注意两刚片法则、三刚片法则中的铰与两根链杆可互相替换;注意二元体法则、两刚片法则、三刚片法则中“三铰不共线”、“三链杆不互相平行或相交于一点”的条件,若不满足,则为瞬变体系。
3、给大家推荐几何构成分析的基本思路和步骤•若有基础,首先看基础以外部分与基础的联系数:等于3,则只分析基础以外部分,若几何不变,则整体几何不变,若几何可变,则整体几何可变;不等于3,则须将基础作为一个刚片来分析;•观察是否有二元体,剔除所有的二元体;从基本的刚片(特别是铰接三角形)出发,不断地扩大刚片,用两刚片法则或三刚片法则来分析,有些杆件较多的体系可能须多次运用两刚片法则或三刚片法则来分析。
《结构力学》课程考试考前辅导资料一、考试题型介绍本次考试总共分为四个大题:(一)单项选择题,共10题,每题3分,共30分;(二)名词解释题,共5题,每题3分,共15分;(三)简答题,共4题,每题10分,共40分;(四)计算题,共1题,共15分;试卷中有注明本科和专科不同层次学生所做题目,请仔细阅读题目,不要盲目做题。
二、参考教材《结构力学Ⅰ》基本教程(第2版),龙驭球、包世华主编,高等教育出版社三、主要知识点及相关例题1.基本概念(1)自由度:是指体系远动时所具有的独立运动方式数目,也就是体系运动时可以独立变化的几何参数数目,或者说确定体系位置所需的独立坐标数目。
(2)刚片:在机动分析中,由于不考虑材料的变形,因此可以把一根杆件或已知是几何不变的部分看作是一个刚体,在平面体系中又将刚体称为刚片。
二维刚片有三个自由度。
(3)约束:限制运动的装置称为约束(或联系),体系的自由度可因加入约束而减少,能减少一个自由度的装置称为一个约束。
(4)虚铰:联结两个刚片的两根链杆的作用相当于在其交点处的一个单铰,不过这个铰的位置是随着链杆的转动而改变的,这种铰称为虚铰。
(5)几何不变体系:在不考虑杆件应变的假定下,体系的位置和形状是不会改变的体系叫做几何不变体系。
(6)几何可变体系:即使不考虑材料的变形,在很小的荷载作用下,也会发生机械运动而不能保持原有的几何形状和位置,这样的体系称为几何可变体系。
(7)瞬变体系:原为几何可变体系,经微小位移后即转化为几何不变的体系,称为瞬变体系。
(8)常变体系:经微小位移后仍能继续发生刚体运动的几何可变体系称为常变体系。
(9)结点法:为了求得桁架各杆的内力,可以截取桁架的一部分为隔离体,由隔离体的平衡件来计算所求的内力,若所取隔离体只包括一个节点,称为结点法。
(10)截面法:为了求得桁架各杆的内力,可以截取桁架的一部分为隔离体,由隔离体的平衡件来计算所求的内力,若所取隔离体不止包含一个结点,称为截面法(11)零杆:桁架中内力为零的杆件称为零杆。
教学内容一、课程定位与目标长安大学直属国家教育部,是国家“211工程”重点建设大学。
为尽快实现把长安大学建设成为一所以工为主、理工结合、人文社会学科协调发展、特色鲜明、优势突出、国内一流、在国际上有一定影响的开放式、教学研究型大学的总目标,已经提出了跨越式发展的新思路,明确了以学科建设为龙头;以教学、科研、人才培养和社会服务为中心;以师资队伍建设、管理体制改革和校园基础设施建设为重点的新的发展之路。
各项工作在稳定中发展,在创新中前进。
其人才培养目标是“厚基础、宽口径、高素质”的复合型创新人才。
其生源情况历年很好,有广阔的发展前景。
结构力学课程是土木工程专业重要的技术基础课程,其教学效果直接影响到土木工程专业学生在后续专业课程中的学习质量以及今后从事专业工作和科学研究的能力。
结构力学课程在土木工程专业的培养目标中占有极其重要的地位。
课程的教学目标是使学生掌握结构的类型与特点,掌握结构强度、刚度、稳定性、动力特性等的计算分析方法,为专业课程的学习奠定坚实的力学基础,为培养“厚基础、宽口径、高素质”的复合型人才服务。
二、知识模块顺序及对应的学时土木工程专业(本科)的结构力学课程,总学时104学时,另加上机4学时。
课程分结构力学基本部分、结构分析有限元部分和专题部分,用两学期完成。
课程的内容、次序和学时安排如下:1. 结构力学基本部分(共64学时)(1)第一章绪论2学时(2)第二章平面体系的几何组成分析6学时(3)第三章静定梁和刚架的受力分析8学时(4)第四章静定拱的受力分析4学时(5)第五章静定桁架和组合结构的受力分析4学时(6)第六章静定结构的位移计算8学时(7)第七章力法10学时(8)第八章位移法12学时(9)第九章力矩分配法4学时(10)第十章影响线及应用6学时2. 结构分析有限元部分(12+4学时)(1)第十一章矩阵位移法12学时,另加上机4学时3. 专题部分(共28学时)(1)第十二章结构的动力分析22学时(2)第十三章结构的极限荷载6学时三、课程的重点、难点及解决办法课程的重点和难点1. 结构力学基本部分重点:(1)第一章结构力学的研究对象、任务和目的;结构计算简图的概念和简化原则;结构、荷载分类。
结构力学复习资料(整理)1. 引言本文整理了结构力学的重要概念和公式,以帮助读者复和掌握相关知识。
2. 静力学2.1 受力分析- 讲解了受力分析的基本原理和常用方法,如平衡方程和自由体图法。
- 提供了受力分析的步骤和实例,以加深理解。
2.2 结构的静力平衡- 介绍了结构的静力平衡条件,包括平衡方程和力矩平衡方程。
- 强调了结构的静力平衡在工程中的重要性。
2.3 支座反力计算- 讲解了支座反力计算的方法,包括自由体图法和平衡方程。
- 提供了支座反力计算的实例和注意事项。
3. 动力学3.1 动力学基本概念- 解释了动力学的基本概念,包括质点、力、加速度等。
- 提供了动力学相关公式和例题,以加强记忆。
3.2 牛顿第二定律- 介绍了牛顿第二定律的含义和应用,强调了力和加速度之间的关系。
- 提供了牛顿第二定律的公式和应用实例,帮助读者理解和运用该定律。
3.3 动量与冲量- 解释了动量与冲量的概念和计算方法。
- 强调了动量守恒定律和冲量定律的重要性。
- 提供了动量与冲量的公式和练题。
4. 应力与应变4.1 应力的概念- 介绍了应力的定义和常见类型,如拉应力、压应力和剪应力。
- 解释了应力的计算方法和单位,以及应力与受力的关系。
4.2 应变的概念- 讲解了应变的定义和类型,如线性应变和剪切应变。
- 强调了应变的计算方法和单位,以及应变与形变的关系。
4.3 应力-应变关系- 介绍了应力-应变关系的基本原理,包括胡克定律和弹性模量的概念。
- 提供了应力-应变关系的公式和实例,以帮助读者理解和运用该关系。
5. 结语本文整理了结构力学的复资料,包括静力学、动力学和应力与应变的重要概念和公式。
希望本文可以帮助读者复和巩固相关知识,提高结构力学的理解和应用能力。
以上为结构力学复习资料的简要整理,更详细的内容请参考相关教材和课堂讲义。
结构力学复习资料结构力学复习资料结构力学是土木工程中的重要学科,它研究的是结构的力学性能和行为。
在土木工程实践中,结构力学的知识和技能是必不可少的。
本文将为大家提供一份结构力学的复习资料,帮助大家回顾和巩固相关知识。
一、力学基础结构力学的基础是力学,因此在复习结构力学之前,我们需要回顾一些力学的基本概念和原理。
力学分为静力学和动力学两个部分,其中静力学研究的是物体在平衡状态下的力学性质,动力学研究的是物体在运动状态下的力学性质。
在结构力学中,我们主要关注静力学。
1.1 牛顿定律牛顿定律是力学的基础,它包括三个定律:第一定律(惯性定律)、第二定律(运动定律)和第三定律(作用-反作用定律)。
第一定律指出,物体在没有外力作用下保持静止或匀速直线运动;第二定律指出,物体的加速度与作用在它上面的合力成正比,与物体的质量成反比;第三定律指出,任何两个物体之间的相互作用力大小相等、方向相反。
1.2 力的分解与合成在结构力学中,我们常常需要将一个力分解为几个分力,或者将几个力合成为一个合力。
力的分解与合成是力学中的重要概念和方法。
通过力的分解与合成,我们可以更好地理解和计算结构受力情况。
1.3 支反力与力的平衡在结构力学中,我们需要计算结构受力情况并确定支反力。
支反力是指结构中支撑点或支座对结构施加的力,它们对结构的平衡和稳定性起着重要作用。
力的平衡是指结构中所有受力的合力和合力矩为零,即结构处于静力平衡状态。
二、结构受力分析在复习结构力学时,我们需要掌握结构受力分析的方法和技巧。
结构受力分析是指通过计算和分析结构中各个部分的受力情况,确定结构的强度和稳定性。
2.1 静定结构与超静定结构结构根据受力条件的不同,可以分为静定结构和超静定结构。
静定结构是指结构中的未知力个数等于方程个数,可以通过力的平衡方程求解;超静定结构是指结构中的未知力个数大于方程个数,需要通过其他方法求解,如位移法、力法等。
2.2 集中力与分布力在结构受力分析中,我们需要考虑集中力和分布力对结构的影响。
结构力学复习大纲结构力学是工程力学的一个分支,主要研究物体受力的变形和破坏规律。
在工程设计和建筑施工中,结构力学是一个非常重要的学科,因此需要对其进行全面的复习。
下面是一个结构力学复习大纲,供参考:一、力学基础知识复习1.矢量代数:矢量的基本运算,点积和叉积的性质与运算。
2.牛顿定律:质点的平衡和运动规律。
3.刚体静力学:刚体的平衡条件,杆件和框架的平衡条件。
4.动力学:质点的运动学和动力学方程。
二、材料力学复习1.应力和应变的概念:正应力、剪应力、正应变、剪应变等。
2.弹性力学:胡克定律和弹性模量,杨氏模量、切变模量和泊松比的计算。
3.索拉力学:索拉应变和索拉模量,单轴应力状态和双轴应力状态下的应变计算。
三、静力学复习1.平面力系统:力的合成与分解,质点组的平面并力,力矩与力偶。
2.刚性平衡:平面力系和空间力系的等效条件,刚体的平衡条件。
3.杆件平衡:由受力杆件的平衡条件,如杆件内力的计算,反力和剪力图的绘制。
四、结构力学基本原理复习1. Hooke定律:应力和应变的关系,弹性体和弹塑性体的应力应变曲线。
2.支座反力和内力的平衡:梁和桁架的静力学平衡条件,计算支座反力和截面内力的方法。
五、梁的静力学复习1.梁的基本概念:梁的简介,静力学基本方程。
2.梁的弯曲:弯矩和弯曲曲率的关系,截面形状对梁的弯曲影响。
3.梁的剪力和轴力:剪力和剪力图的计算,轴力和轴力图的计算。
六、桁架的静力学复习1.三力平衡法:三力平衡条件下的桁架分析,用应力法分析桁架。
2.节点分析法:节点分析条件,节点力的计算。
3.桁架的应变能和位移计算:桁架的应变能和位移方程,桁架的位移计算方法。
七、悬链线和弧形结构的静力学复习1.悬链线静力学:悬链线的方程和性质,悬链线的支座反力计算。
2.圆弧和平曲线的静力学:圆弧和平曲线的性质和力学分析。
八、结构的稳定性复习1.固定端的稳定性:差动转角法和角加速度法分析结构的稳定性。
2.欧拉稳定性理论:欧拉稳定性方程和临界载荷计算公式。
黑龙江教育·理论与实践2016.11《结构力学》是土木工程专业的一门重要专业基础课,要求学生掌握杆件体系内力与位移计算。
学习该课程不能靠死记硬背,必须在吃透概念的基础上熟练掌握结构的分析能力。
下面归纳总结各部分内容的基本概念、重点和难点,希望能对学生的学习起指导作用。
一、结构的几何组成分析总体上,可通过下面两种方法来分析平面体系的几何组成特点。
(一)通过计算自由度来进行几何组成分析需要提醒W≤0只是保证平面体系为几何不变的必要条件,此时确定体系是否几何不变,尚需运用几何组成规则进行进一步分析。
同时要注意:当只考虑结构体系本身,不存在或不考虑结构的支座时,则体系为几何不变的必要条件是W≤3。
(二)运用几何不变体系的组成规则进行几何组成分析要掌握并能灵活运用三个组成规则。
实际上三规则为同一规则(铰结三角形规律),只是表述方式不同。
对体系进行几何组成分析时,要注意:1.三个组成规则对应的限制条件;2.刚片可以是单个杆件,也可以是一几何不变结构部分;3.特别注意复铰、虚铰及无穷远虚铰的特性。
二、静定结构的内力和位移计算静定结构的内力分析和位移计算是超静定结构及其他问题的分析和计算基础。
(一)静定梁及钢架1.内力及内力图。
要求熟练计算内力,并掌握用分段叠加法快速绘制内力图。
因为这也是结构的强度计算、位移计算、超静定问题的求解、结构的动力计算等方面的基础。
要学会分段叠加法,必须根据荷载和内力间的微分关系,熟练掌握每种典型荷载(无荷载、均布荷载、集中力及集中力偶)作用下的梁段内力图特征。
弯矩图要画在杆件受拉纤维的一侧,不标注正负号;而剪力图和轴力图可画在杆件任一侧,但必须标注正负号。
尤其要熟练掌握弯矩图的绘制,因为根据静力平衡条件,若取杆件为隔离体,由弯矩图可求出剪力并作剪力图;而由剪力图可求出轴力并作轴力图,所以作内力图(桁架结构除外)最终可归结为作弯矩图。
另外,内力求解时要注意定向支座的特性。
2.位移计算。
1、绪论知识点:结构和结构的分类,结构力学的任务,结构的计算简图与杆件结构分类,荷载的分类。
重点:结构的计算简图选择原则、简化要点,结点和支座的变形和受力特性。
难点:活载,铰结点、刚结点、组合结点的特点。
2、平面体系的几何组成分析知识点:自由度、约束、瞬铰、多余约束等概念,体系自由度计算公式,平面几何不变体系的组成规则,瞬变体系的特性,静定、超静定结构的几何组成。
重点:应用平面几何不变体系的组成规则分析平面杆系的几何组成。
难点:复杂平面杆系的几何分析。
3、静定xx静定刚架知识点:截面法计算指定截面的内力,利用微分关系作内力图,分段迭加法画弯矩图,简支斜梁的计算,多跨静定梁的组成特点及计算。
静定平面刚架的特点、几何组成及型式,反力的计算,内力的计算和内力图的绘制,内力图的校核。
重点:分段迭加法画弯矩图;多跨静定梁反力、内力的计算及内力图绘制;静定平面刚架内力的计算和内力图。
难点:简支斜梁的计算;已知弯矩图,绘制剪力图、轴力图。
4、三铰拱知识点:三铰拱的组成和类型,三铰拱的反力和内力,三铰拱的受力特点,合理轴线。
重点:三铰拱的反力和内力计算。
难点:三铰拱截面剪力和轴力的计算。
5、静定桁架和组合结构知识点:桁架的特点和组成分类,结点法、截面法和联合法求桁架内力,组合结构的内力计算。
重点:特殊杆内力判断,结点法、截面法和联合法求桁架内力,组合结构的内力计算。
难点:复杂桁架内力计算,组合结构中梁式杆的弯矩图。
6、虚功原理和结构位移计算知识点:位移计算的目的;变形体系的虚功原理;结构位移计算的一般公式;静定结构在荷载作用下的位移计算;图乘法;静定结构由于温度变化及支座移动下的位移计算;线弹性结构的互等定理。
重点:静定结构在荷载作用下的位移计算。
难点:图乘法。
7、力法知识点:超静定结构和超静定次数,力法的基本结构、基本未知量、及其物理意义,利用对称性简化力法计算,超静定结构位移的计算。
重点:根据力法基本方程物理意义列各类结构在各种外界因素作用时的基本方程并计算内力和位移,对称结构取“半边结构”。
湖北省考研土木工程一专业复习资料结构力学重点难点攻克结构力学是土木工程专业考研中的一门重要课程,对于考生而言,掌握结构力学的重点难点是提高复习效率的关键。
本文将针对湖北省考研土木工程一专业结构力学的重点难点进行详细分析和攻克策略的探讨。
一、重点难点分析1.受力分析在结构力学中,受力分析是一个重要的基础知识点。
它涉及到各种力的性质、作用规律以及力的合成分解等内容。
在复习过程中,需要重点掌握静力平衡的原理,学会利用平衡条件求解受力问题。
2.杆件受力计算在结构力学中,杆件受力是一个基础而又重要的内容。
杆件受力的计算涉及到静力平衡、截面特性及材料力学等知识。
在复习过程中,需要重点掌握杆件的内力计算方法,包括简支梁、悬臂梁等各种不同支座条件下的受力计算。
3.梁的受力分析梁是土木工程中常见的结构构件,其受力分析是结构力学中的重难点之一。
对于梁的受力分析,需要深入理解弯矩、剪力和轴力的概念,并能够利用弯矩方程、剪力方程和轴力方程进行受力计算。
4.梁的挠度计算在实际工程中,梁的挠度是一个重要的设计考虑因素。
挠度计算涉及到叠加原理、边界条件及挠度方程等知识。
在复习过程中,需要重点理解挠度的概念,并能够运用挠度方程计算梁的挠度。
5.桁架与刚架的分析桁架与刚架是结构力学中常见的形式,其分析需要掌握静力平衡、力的合成与分解、受力分析等知识。
在复习过程中,需要理解桁架与刚架的构造特点,并能够利用力的平衡条件进行受力计算。
二、攻克策略1.理解基本原理在复习结构力学的过程中,首先要理解和掌握基本的受力分析原理和受力计算方法。
这涉及到力的分类、力的合成与分解、静力平衡等基础知识。
通过理解基本原理,能够为后续的学习打下坚实的基础。
2.掌握解题方法结构力学是一门实践性较强的学科,解题方法的掌握对于提高复习效率至关重要。
在解题过程中,需要学会运用理论知识解答具体问题,并注意结构的简化和假设的合理性。
3.加强实践操作对于结构力学这样的实践性学科,光靠理论知识的掌握是不够的,还需要通过实践操作来加深理解。
结构力学复习材料结构力学是工程学科中必修的一门课程,是探讨物体在外力作用下的变形与内力分布规律的学科。
对于任何一个建筑师或工程师来说,结构力学都至关重要。
今天,我们将一起复习这门课程中的一些重点知识和技巧。
1. 弯矩图与剪力图弯矩图和剪力图是结构力学中非常重要的工具,它们可以提供我们在计算梁的内力和形变时所需的所有信息。
弯矩图是显示跨度上任意点的弯矩大小和正负方向的图形,剪力图则显示任意点的剪力大小和正负方向。
我们需要了解如何绘制和分析这些图形以准确地计算内力和形变,以及在设计结构时解决问题。
2. 工程结构的基本原理在计算任何结构的强度和稳定性时,我们需要考虑三个基本原理:静力平衡,应力平衡和位移兼容性。
静力平衡是指外力和内力的平衡,而应力平衡指任何截面上的应力和应变必须平衡。
位移兼容性是指构件之间的位移必须相容。
这些原则是基本的,但它们的应用在计算结构强度和刚度时非常重要。
3. 梁的剪力、弯矩和挠度在设计和计算梁的内力时,我们需要考虑剪力,弯矩和挠度。
梁在外力作用下会产生剪力和弯矩,我们需要了解如何计算它们的大小和分布。
此外,梁的挠度也是非常重要的,因为它对结构的安全和稳定性产生直接影响。
在设计和计算结构时,我们需要对这些因素进行综合考虑。
4. 桁架结构的设计桁架结构是由连续的构件和节点组成的三角形网络。
它们通常用于跨越较大的跨度,并具有优异的强度和刚度。
桁架结构的设计需要考虑许多因素包括节点类型和纵向构件的长度。
我们需要学习如何设计这些结构以满足特定的要求,例如承受外力或支持特定荷载。
总的来说,结构力学是所有工程学科中非常基本的一门课程,它对工程师和建筑师来说都非常重要。
在学习这个学科时,我们需要了解许多基本原则,如弯矩图与剪力图,梁的内力和挠度,以及在设计桁架结构时需要考虑的因素。
这些知识与技巧使我们能够设计,分析和优化各种工程和建筑结构。
北京市考研土木工程复习资料结构力学难点题型解析结构力学是土木工程中十分重要的一门课程,也是北京市考研土木工程专业的重点内容之一。
该科目的考察形式主要为题型解析,即对难点题目进行分析和解答。
下面将对几个常见的结构力学难点题型进行解析。
1. 杆件受力分析在结构力学中,杆件受力分析是一种常见的难点题型。
要解答这类题目,首先需要对杆件进行受力分析,确定每个节点的受力情况。
接着,利用平衡条件和受力平衡方程,可以得出各个杆件的受力大小和方向。
最后,根据受力分析结果,计算所求解的参数,如应力、应变等。
2. 梁的静力学分析梁的静力学分析是另一个常见的难点题型。
在解答这类题目时,需要注意梁的受力特点和边界条件。
通过受力分析,可以得出梁的弯矩、剪力以及挠度等参数。
解答此类题目时,还需要考虑力的平衡条件和力矩的平衡条件,运用相关公式进行计算。
3. 柱的稳定性分析柱的稳定性分析也是结构力学考试中的难点之一。
要解答这类题目,首先要根据柱的几何形状和边界条件,推导出柱的临界载荷。
然后,通过各种稳定性分析方法,如在偏心压力作用下的稳定性、弯曲扭转稳定性等,计算出柱的稳定性系数。
最后,对比计算结果和临界载荷,判断柱的稳定性情况。
4. 刚架分析刚架分析是结构力学中的重要内容,也是一种常见的难点题型。
要解答这类题目,需要运用刚架的受力分析方法。
通过对刚架进行受力分析,可以得出各个节点的受力大小和方向。
然后,利用平衡条件和受力平衡方程,计算出所需的参数,如支座反力、杆件受力等。
结构力学难点题型的解析除了上述几个常见题型外,还包括复杂结构的受力分析、复杂约束条件下的受力计算等。
在解答这些题目时,需要熟练掌握结构力学的理论知识,运用正确的分析方法和公式进行计算。
同时,注意合理的假设和简化处理,避免出现计算错误。
综上所述,结构力学是北京市考研土木工程专业中的重点内容之一。
解答结构力学难点题型需要熟练掌握受力分析方法和公式,注意合理假设和简化处理,并灵活运用理论知识解决实际问题。
《结构力学》复习讲义要点第一部分:力学基础1. 力学的基本概念:质点、力、力的性质、力的合成与分解、力的共线条件等。
2. 刚体力学:平动与转动、力矩、角动量、转动惯量、力矩的几何与代数相等条件等。
3. 静力学:平衡条件、力偶、杆条受力分析、平衡多边形等。
第二部分:截面力学1. 杆件截面特征:截面形状、截面形心、截面面积、截面宽度、截面模数等。
2. 拉压杆截面特征:杆轴力计算、细长杆的安全系数、压杆的稳定性、杆件受拉压状态分析等。
3. 扭转杆截面特征:杆件受扭力分析、圆形截面的极限扭矩、扭转角的计算等。
4. 弯曲杆截面特征:直线梁与弧形梁的受力分析、力的截面矩阵表示、梁截面的正向弯矩与反向弯矩、杨氏梁受力分析等。
第三部分:结构受力分析1. 杆系内力分析:截面法则、杆系的内力与外力关系、榀杆的变形与位移、杆系内力的计算等。
2. 杆系的受力分析:平衡条件的写法、平面结构与空间结构的受力分析、杆系的平面剪力图与弯矩图、受力分析的极端情况等。
3. 简支梁:梁的受力分析、悬臂梁的转角计算、剪力与弯矩图表、弹性线与弯矩-曲率关系等。
4. 悬链线与悬链线梁:悬链线形状方程、悬链线的性质与应用、悬链线梁的分析等。
第四部分:梁的变形1. 杆系的变形:位移分量的约束关系、虚功原理、单杆件的变形与位移、受约束的杆件变形计算等。
2. 弹性力学基本方程:胡克定律、弹性应变能、变形力、应变与变形的关系、应力分析与位移分析等。
3. 简支梁的本构关系:平衡微分方程、简支梁的自由振动、简支梁的拟静状态、简支梁的弹性力学与变形等。
第五部分:结构稳定性1. 稳定性基本概念:平衡与稳定的关系、平衡的稳定性判定、等效单轴刚度、曲线弯矩法等。
2. 简支梁的稳定性:轴力屈曲、弯曲屈曲与扭转屈曲、边界条件与截面要求等。
3. 大变形理论:弹性力学与大变形理论的区别、弹性线的切线方向、悬臂梁的大变形计算等。
总结:这份复习讲义总结了《结构力学》的核心要点,包含了力学基础、截面力学、结构受力分析、梁的变形和结构稳定性的内容。
《结构力学》课程复习提纲结构力学是土木工程建筑学科的基础课程,也是土木工程建筑师擅长的话题。
学习结构力学是非常重要的,它可以帮助我们深入理解建筑结构、分析结构系统,从而更好地设计和维护土木工程建筑。
下面是有关结构力学复习提纲:一、结构力学基础知识1、结构力学概述结构力学是土木工程建筑学科的基础课程,是土木工程建筑师擅长的话题。
结构力学的目的是为了更好地理解建筑结构的基本原理,并分析建筑系统的变形机制。
它以力学原理为根基,包含以下研究内容:分析结构的基本力学特性,探索施加在结构上的力的变形、变形速率和力学性能。
2、结构力学材料结构力学材料主要包括钢、铝、混凝土和木材等。
钢是由铁素体和均匀分布的碳和硅组成的合金,具有较高的强度、刚性和韧性,是一种常用的结构材料,在土木工程建筑中常用来做支撑、支承等。
铝是一种轻质金属,具有良好的抗腐蚀性和耐高温性,因其质量轻而被广泛用于结构力学,特别是在航空航天工程中具有重要的应用。
混凝土是一种重要的建筑材料,由水泥和骨料搭配组成,具有较高的抗压应力和抗剪应力性能,因此在结构力学设计中也得到了广泛应用。
木材是一种古老而又优质的建筑材料,具有较高的耐久性、良好的抗压强度、抗剪强度和绝缘性,常用于建筑的可塑性和装饰性质。
二、结构力学分析方法1、平面布置法平面布置法是结构力学中最常用的分析方法,也叫做单元法。
该方法根据材料的物理特性,将建筑结构分解为若干个分析单元,再根据这些单元之间的关系,建立起整个结构系统的力学模型,进行结构力学分析。
2、节点分析法节点分析法是结构力学中比较复杂的分析方法,它能够准确地模拟出结构受力时的变形情况,并且可以更深入地研究结构的变形机制和力学性能。
三、结构力学设计结构力学设计的基本过程包括建筑结构的规划、材料的选择、结构图绘制、分析计算和结构试验等。
需要注意的是,每一步的设计都要根据当前的技术条件和经济条件来确定,以保证最终建筑结构的完整性、可靠性和稳定性。
<<<<<<精品资料》》》》》结构力学重难点复习资料第二章结构的几何构成分析1、首先必须深刻理解几个基本概念,这几个概念层层递进。
●几何不变体系:不计材料应变情况下,体系的位置和形状不变。
在几何构成分析中与荷载无关,各个杆件都是刚体。
●刚片:形状不变的物体,也就是刚体。
在几何构成分析中,刚片的选取非常重要,也非常灵活,可大可小,小至一根杆,大至地基基础,皆可视为刚片。
●自由度:体系运动时可以独立改变的坐标的数目。
在平面内,一点有2个自由度,一刚片有3个自由度。
●约束:减少自由度的装置。
一根链杆(或链杆支座)相当于1个约束;一个铰(或铰支座)相当于2个约束,注意两根链杆和一个铰在约束方面的功能完全可等同,可根据几何构成分析的需要相互转换,另外注意瞬铰的概念,两根链杆直接铰接在一点,该点可视为实铰,两根链杆延长后相交在一点,该点则是瞬铰,一个瞬铰也相当于2个约束,两根链杆若平行,瞬铰在平行方向的无穷远处;一个刚结点(或固定端)相当于3个约束。
●多余约束:增加一个约束,体系的自由度并不减少,该约束就是多余约束。
注意一个约束是否多余约束,必须视必要约束而定。
只有必要约束确定后才能确定多余约束,不能直接说哪个约束是多余约束。
2、必须深刻理解几何不变体系的组成规律。
教材上列出4个规律,其实基本的规律只有一个,就是三角形规律,即小学数学就传授的“三角形是稳定的”。
片法则、三刚片法则中“三铰不共线”、“三链杆不互相平行或相交于一点”的条件,若不满足,则为瞬变体系。
3、给大家推荐几何构成分析的基本思路和步骤●若有基础,首先看基础以外部分与基础的联系数:等于3,则只分析基础以外部分,若几何不变,则整体几何不变,若几何可变,则整体几何可变;不等于3,则须将基础作为一个刚片来分析;● 观察是否有二元体,剔除所有的二元体;从基本的刚片(特别是铰接三角形)出发,不断地扩大刚片,用两刚片法则或三刚片法则来分析,有些杆件较多的体系可能须多次运用两刚片法则或三刚片法则来分析。
4、平面体系的计算自由度 W 的求法(1) 刚片法:体系看作由刚片组成,铰结、刚结、链杆为约束。
刚片数 m ;约束数:单铰数 h ,简单刚结数 g ,单链杆数 b 。
W = 3m-﹙3g +2h +b ﹚(2) 节点法:体系由结点组成,链杆为约束。
结点数 j ;约束数:链杆(含支杆)数 b 。
W = 2j – b (3) 组合算法约束对象:刚片数 m ,结点数 j约束条件:单铰数 h ,简单刚结数 g ,单链杆(含支杆)数 b W = (3m + 2j )-(3+2h+ b )第三章 静定结构的受力分析1、内力符号规定:轴力以拉为正;剪力顺时针转为正;弯矩使杆件下侧受拉为正 求截面内力时,应假设这一点的界面上有一个轴力,一个剪力,一个弯矩切内力计算的是截面左端与截面右端的相对作用力,故求内力时,只看其中一端弯矩图--习惯绘在杆件受拉的一侧,不需标正负号 轴力和剪力图--可绘在杆件的任一侧,但需标明正负号2s 2d d ()d d F M q x x x==-无外力均布荷载q 集中力P 集中力偶M铰处V图为零处有突变无变化无变化M图有极值有尖角有突变为零2、内力计算注意:1)集中力作用的截面其左、右两侧的剪力是不同的,两侧相差的值就是该集中力的大小。
2)集中力矩作用截面的两侧弯矩值也是不同的,其差值就是集中力矩的大小。
3、作内力图的方法:1,先求反力2,利用截面法求控制截面弯矩3,在结构图上利用叠加法作每一单元的弯矩图,从而得到结构的弯矩图4,以单元为对象,对杆端取矩可以求得杆端剪力,剪力图可画在杆轴的任意一侧,但必须标注正负号,以未知数个数不超过两个为原则,取结点由平衡求单元杆端轴力5,结构力学作内力图顺序为“先区段叠加作M图,再由M 图作FS 图,最后FS作FN图”,这种作内力图的顺序对于超静定结构也是适用的。
4、多跨静定梁基本部分:结构中不依赖于其它部分而独立与地基形成几何不变的部分附属部分:结构中依赖基本部分的支承才能保持几何不变的部分分析顺序:应先附属部分,后基本部分。
荷载在基本部分上,只基本部分受力,附属部分不受力;荷载在附属部分上,除附属部分受力外,基本部分也受力。
Eg:eg.剪力大小:由弯矩图斜率或杆段平衡条件;剪力正负:转动基线与弯矩重合,顺时针旋转则剪力为正,或由支座反力,集中荷载方向判别。
5、桁架: 只受结点荷载作用的铰结体系。
结点法:(首先进行零杆简化)1,以结点作为平衡对象,结点承受汇交力系作用。
2,按与“组成顺序相反”的原则,逐次建立各结点的平衡方程,则桁架各结点未知内力数目一定不超过独立平衡方程数。
3,由结点平衡方程可求得桁架各杆内力。
图上位于对称轴上的杆1、2都是零杆。
(因为1,2杆对称,如果有力的作用,均向上或者向下,但A点上没有一个竖向的里能够平衡它)截面法:作一截面将桁架分成两部分,然后任取一部分为隔离体 (隔离体包含一个以上的结点),根据平衡条件来计算所截杆件的内力。
应用范围: 1、求指定杆件的内力 2、计算联合桁架。
步骤:1. 求支反力(同静定梁);2. 作截面(用平截面,也可用曲截面)截断桁架,取隔离体;2=3. (1)选取矩心,列力矩平衡方程(力矩法)(2)列投影方程(投影法); 选取截面时应注意: 1、尽量使所截断的杆件不超过三根(隔离体上未知力不超过三个),可一次性求出全部内力; 2、选择适宜的平衡方程,最好使每个方程中只包含一个未知力,避免求解联立方程。
3、若所作截面截断了三根以上的杆件,但只要在被截各杆中,除一杆外,其余均汇交于一点(力矩法)或均平行(投影法),则该杆内力仍可首先求得。
计算技巧:截面单杆求解截面单杆:用截面切开后,通过一个方程可求出内力的杆1, 截面上被切断的未知轴力的,杆件只有三个,三杆均为单杆2, 截面上被切断的未知轴力的杆件除一个外交于一点,该杆为单杆3 , 截面上被切断的未知轴力的杆件除一个均平行, 该杆为单杆6、静定结构的一般特性:(1) 温度变化、支座移动以及制造误差均不引起静定结构的内力变化,但会造成位移变化 (2) 若取出的结构部分(不管其可变性)能够平衡外荷载,则其他部分将不受力 (3) 静定结构的内力与结构中各杆的截面刚度无关。
7、多跨静定梁的几何构成与内力特点8、桁架零杆的判断在特定荷载作用下,桁架中内力为零的杆件称为零杆。
首先判断桁架的零杆,将有助于用结点法或截面法计算桁架。
零杆的三种基本情况为: ● 两根杆汇交于一铰结点,结点上无外荷载,此两杆皆为零杆。
因为结点平衡,1S 和2S 的合力为零, 因此01=S ,02=S 。
● 三根杆汇交于一铰结点,其中两根杆共线,结点上无外荷载,另外一根不共线的杆为零杆。
因为结点平衡,在垂直于共线的两根几何构成特点:分级(基本部分,第一级附属部分,第二级附属部分……) 内力特点:某一级上受荷载作用,在该级和高于该级的部分才有内力,低于该级的部分无内力。
计算顺序:与几何构造顺序相反,从低级到高级。
多跨静定梁的1S1S2S 03=S 4S 杆轴线方向投影,因此03=S● 对称桁架(支座、几何形状、荷载皆对称),对称轴上K 形结点的两根斜杆为零杆。
在垂直于1S 和2S 的方向投影,0sin sin 43=+ααS S 43S S -= 根据对称性,43S S =, 因此043==S S 。
9、静定组合结构的合理计算顺序组合结构既有梁、刚架结构(全为受弯构件)的特点,也有桁架结构(全为轴向拉压构件)的特点。
一定要分清哪些是梁式杆,哪些是链杆。
要根据体系的几何构成特点选择合理的计算顺序,选择合理的截面,在计算出所有链杆轴力前,不要截断梁式杆。
一般顺序是:先求出支座反力;再用截面法切开两刚片或三刚片的联系部分,求出约束反力;再用结点法,或取梁式杆整体为对象,求出其它链杆的轴力;最后分析梁式杆的荷载,计算梁式杆的内力。
第五章 虚功原理与结构位移计算熟练掌握:用虚力原理求支座移动时静定结构的位移,图乘法求荷载作用下静定梁、刚架的位移。
1、刚体虚功原理的两种应用2、图乘法应用的注意事项基于单位力法的图乘法是求荷载作用下结构位移的最重要的方法,必须熟练掌握。
⎰=EIAy ds EI M M P0 ● 标距0y 应取自直线弯矩图中,A 和0y 在杆的同侧则乘积为正,否则为负。
● 对二次抛物线弯矩图,只需记住标准的二次抛物线面积公式lh A 32=,其它非标准的二次抛物线可分解成直线和标准的二次抛物线的叠加。
● 对分段折线弯矩图必须分段考虑,对梯形弯矩图最好分解计算。
位移公式:3、常见图形的形心和面积以上图形的抛物线均为标准抛物线:抛物线的顶点处的切线都是与基线平行 如果有一个图形为折线,则应分段考虑。
第6章 力法1、关于结构的超静定次数与多余约束正确判断超静定次数是用力法计算超静定结构的前提。
教材上提到用公式确定结构的超静定次数,建议大家不用此方法,还是利用几何构成分析来确定超静定次数和多余约束,因为那两个公式并不太好应用,容易出错,即使算出了超静定次数,还是要利用几何构成去掉多余约束,用多余未知力1X 代替,就是力法的基本未知量 满足平衡条件的1X 有无数个 (因为平衡方程数少于未知量数)形协调条件:01111=∆+P X δ 就是力法的基本方程 即满足平衡条件的1X 有无数个,满足平衡条件和变形条件的1X有且仅有一个 分析来确定多余约束。
● 判断超静定次数的基本原则:去掉一根链杆支座或切断一根链杆,或在梁式杆中加入一个单铰,则去掉1个约束; 去掉一个铰支座或切断一个单铰,则去掉2个约束; 去掉一个固定支座或切断一根梁式杆,则去掉3个约束;● 要正确保留必要约束,不要把原结构拆成几何可变体系;另外要明确,一个超静定结构可以拆成多种形式的静定结构,但去掉的多余约束的个数相同。
2、深刻理解力法的基本原理 力法的基本原理和三个“基本”(基本未知量、基本体系、基本方程)在教材的第二节,通过一个典型的一次超静定梁作了阐述。
在此作图解式的说明:3、深刻理解力法典型方程中每一个方程、每一项、每个符号的含义n 次超静定结构的力法的基本方程是利用叠加原理导出的,无论结构是什么型式、力法的基本未知量和基本体系怎么选取,其力法的基本方程均为此形式,也称力法的典型方程:⎪⎪⎩⎪⎪⎨⎧=∆++++=∆++++=∆++++00022112222212111212111nP n nn n n Pn n P n n X X X X X X X X X δδδδδδδδδ 或 {}{}{}0][=∆+P X δ 每个方程代表了某个多余约束处的变形条件,即基本体系在外载荷和所有多余未 力(基本未知量)共同作用下该多余约束处位移为零;每一项代表了基本体系在一个因素单独作用下某个多余约束处的位移;柔度系数ij δ表示了基本体系在单位力1=j X 作用下沿i X 方向产生的位移(附带说明:柔度系数、自由项皆有两个下标,第一个下标表示产生位移的地点,第二个下标表示产生位移的原因,可简称为“前地点、后原因”),柔度矩阵为对用图乘法求柔度ij δ(只需求柔度矩阵的对角线元素、上三角或下三∆解n 元一次线性方程组,求出基本未知量X X X ,,,21利用叠加原理求超静定结构的弯矩P i i P n n M M X M M X M X M X M +=++++=∑ 2211称矩阵(位移互等定理),主系数ii δ恒大于零;自由项iP ∆表示了基本体系在外载荷单独作用下沿i X 方向产生的位移。