代数学符号发展的历史
- 格式:doc
- 大小:25.00 KB
- 文档页数:1
数学符号的历史演变数学符号是数学表达的重要工具,它们的使用可以简化数学表达,提高数学思维的效率。
然而,这些符号并非一蹴而就,而是经历了漫长的历史演变过程。
本文将从古代到现代,探讨数学符号的历史演变。
一、古代数学符号的起源古代数学符号的起源可以追溯到古埃及和古巴比伦时期。
在古埃及,人们使用简单的图形来表示数字,比如用一根竖线表示数字1,两根竖线表示数字2,以此类推。
而在古巴比伦,人们使用楔形文字来表示数字和运算符号。
这些古代数学符号的使用虽然简单,但已经为后来的数学符号奠定了基础。
二、古希腊数学符号的发展古希腊是数学符号发展的重要阶段。
在古希腊,人们开始使用字母来表示未知数和变量。
这种表示方法的优势在于可以用不同的字母来表示不同的未知数,从而使数学表达更加清晰。
此外,古希腊人还发明了一些几何符号,比如用字母表示角度、线段等几何概念。
这些几何符号的使用使得几何学的表达更加简洁明了。
三、中世纪数学符号的发展中世纪是数学符号发展的低谷期。
在这个时期,由于教会的压力和迷信的影响,数学符号的使用受到了限制。
人们不再使用字母来表示未知数,而是使用完整的句子来表达数学问题。
这种表达方式的缺点在于冗长而复杂,不利于数学思维的发展。
四、近代数学符号的发展近代数学符号的发展可以追溯到16世纪的欧洲。
在这个时期,人们开始重新使用字母来表示未知数和变量。
同时,人们还发明了一些新的数学符号,比如加号、减号、乘号、除号等。
这些符号的使用使得数学表达更加简洁明了,为数学思维的发展提供了便利。
五、现代数学符号的发展现代数学符号的发展可以追溯到19世纪的欧洲。
在这个时期,人们开始使用更加抽象的符号来表示数学概念。
比如,人们开始使用希腊字母来表示角度、函数等数学概念。
同时,人们还发明了一些新的数学符号,比如极限符号、积分符号等。
这些符号的使用使得数学表达更加简洁明了,为数学思维的发展提供了更大的空间。
六、未来数学符号的发展随着科技的进步和数学研究的深入,数学符号的发展还将继续。
数学符号的创造
数学符号的创造是一个漫长而不断发展的过程,它是随着数学的发展和人类对抽象思维的不断深化而逐渐形成的。
最早的数学符号可以追溯到古埃及和巴比伦时期,这些符号主要用于表示简单的算术运算和几何量。
随着数学领域的不断扩大和抽象程度的不断提高,数学符号也逐渐变得更加复杂和多样化。
例如,代数符号的引入使得数学的表达变得更加简洁和准确;平面几何符号的引入使得几何学的研究变得更加系统和深入;三角学和微积分符号的引入则进一步推动了数学的发展。
在数学符号的创造过程中,一些著名的数学家和哲学家发挥了重要的作用。
例如,法国数学家韦达在16世纪发明了代数符号,使得代数学的研究变得更加方便;英国数学家牛顿在17世纪发明了微积分符号,为微积分学的发展奠定了基础;德国数学家莱布尼茨则在他的研究中广泛使用了平面几何符号,推动了平面几何的研究。
数学符号的创造是一个不断发展和深化的过程,它随着数学的发展而不断改进和完善。
如今,数学符号已经成为数学领域不可或缺的一部分,它们使得数学的表述更加准确、简明和专业化。
代数的演变过程代数是数学的一个分支,它从古希腊时期以来就广泛研究和应用,演变过程丰富多彩。
本文将从古希腊时期开始介绍代数的演变过程,一直到现代代数的发展。
古希腊时期:代数开始萌芽古希腊人最早使用的是几何方法,并且不理解负数和零的数域。
但是,他们认为数量应该独立于度量,不依赖任何对象。
这个想法给代数的发展奠定了基础。
古希腊人以文字、符号等画出较小的数量,利用整数来解决方程,例如:n + 5 = 7。
他们一开始并没有发明字母来代表数量,但在1600年左右,人们开始使用字母解决方程。
伊斯兰黄金时期:代数初步发展在伊斯兰文化黄金时期,伊斯兰贡献了代数和算法等方面的重大进展。
伊斯兰数学家使用了大量的代数方法,发明了代数式,使用字母代表数字并将它们用于解决多项式方程。
光荣时期:代数的重要进展16世纪欧洲成为代数的中心,一位名叫里昂的数学家所创造的代数商法被广泛使用。
也是在这个时期,拉丁字母被作为符号被广泛引入,at表示乘法,ad表示加法,as表示已知量。
拉格朗日时期:群论的核心思想18世纪,拉格朗日开创了新的思想,他认为我们应该将具有相同性质的对称操作放在一起进行研究。
此时,群论的核心思想被建立,其中最为著名和广泛使用的是阿贝尔群和非阿贝尔群。
伽罗瓦时期:解析几何的代数方法伽罗瓦使用代数方法为解析几何提供了一个全新的框架,规定了解析几何的一些基本原理。
他的理论主要有涵盖多项式中的根、简化高阶方程和构建代数方程,为现代代数学奠定了基础。
现代代数:通用代数的产生在19世纪末,矩阵理论取得了长足的进展。
20世纪初,万能代数的概念被提出,使代数理论更为广泛和通用。
通用代数解决了许多方程无法处理的问题,是现代代数学的重要分支。
总结通过上述的演变过程,我们不难发现代数的重要性和发展简史。
从古希腊时期到现代代数,我们可以看到代数的历史和发展中不断涌现的众多数学家,他们的贡献让代数不断发展、演化,成为数学研究的一个重要分支。
数学符号的历史演变数学符号是数学表达和交流的重要工具,它们的使用使得数学问题可以简洁而准确地表达。
然而,这些符号并不是一蹴而就的产物,而是经历了漫长的历史发展过程。
本文将介绍数学符号的历史演变,并探讨其背后的文化与技术因素。
一、古代的数学符号数学符号的起源可以追溯到古代文明,尤其是古希腊和古埃及。
古希腊的数学家如毕达哥拉斯、欧几里得等使用字母来代表数值,其中最为著名的例子便是毕达哥拉斯定理中的符号"θ"代表角度。
古埃及则使用象形符号以表示数值,比如用直角表示1,蛇形曲线表示10等。
这些早期的数学符号在当时的文化背景中具有重要的象征意义,但在后来的数学发展中逐渐被淘汰。
二、印度与阿拉伯的数学符号在中世纪,印度与阿拉伯成为数学发展的重要地区。
印度的数学家发明了零的概念,并使用了目前我们所熟知的阿拉伯数字,即0、1、2、3等。
阿拉伯的数学家则进一步发展了这些数字,并将它们引入到欧洲。
这些数字以及小数点等符号的使用,使得数学计算更加方便和高效。
三、近代数学符号的发展随着数学的发展,人们对于数学符号的需求也越来越高。
在近代,一些著名的数学家如勒让德、高斯、欧拉等都对数学符号进行了重要的贡献。
他们创造了许多新的符号,并将其引入到不同的数学分支中。
比如欧拉引入了无穷大和虚数单位的符号"∞"和"i",为复数和级数的运算提供了更加简洁的表示方法。
高斯则创造了统计学中常用的正态分布的符号"μ"和"σ",使得统计学问题的表达更加精确。
四、现代数学符号的应用在现代,数学符号已经成为数学教育和研究的重要工具。
通过使用符号,数学家能够更加准确地描述和推导数学问题,同时也能够使得数学的表达更加简洁。
比如在代数学中,我们使用字母表示未知数,通过符号运算可以得到方程的解。
在几何学中,我们使用符号表示点、线、面等,通过符号的运算可以推导出几何定理。
代数式历史发展的三步曲数学与算术最显着的区别,是以字母表示数,代数式a x +,b a +22中的字母a 、b 、x 表示数,但都是可以取不同值的数。
字母代数的历史发展经历了三个阶段,这就是言语代数――简字代数(半符号代数)――符号代数。
公元三世纪以前,无论是东方还是西方,都是言语代数,即用普通语言来叙述的代数,例如:对于代数式18523-+-x x x 说成是:一个数的三次方,减去这个数平方的5倍,加上这个数的8倍,减去1。
这种方式叙述的代数式,十分繁琐,又不便计算。
首先设法简化这种语言代数的,是希腊数学家丢番图,他被后人称为『代数学之父』。
丢番图对数学有两大贡献,其一是采用缩写方式简化数学表达,人称缩写代数,推进了数学符号的采用;其二是求解不定方程,人称丢番图方程,开辟了数论研究的一个重要领域,这个领域后来被称为丢番图分析.丢番图曾写过三部书,其中13卷本的《算术》最为出色,后失传.大约在1463年雷琼蒙塔努力发现了这部书的6卷,1560年,帕茨发现了这部书原稿抄本,1621年出版了《算术》的拉丁文,希腊文版本.《算术》中大部分问题是求解不定方程的,其解法非常巧妙,很少给出一般法则,即使性质相近的题,其解法也会大不相同.著名数学家汉克尔说:"研究丢番图100道题后,去解第101道,仍然感到困难重重."这些问题曾经引起所有欧洲数学家的兴趣。
例如,法国数学家费马就曾经仔细研究过《算术》的拉丁译本,并在书中空白出写下了著名的“费马定理”,这个没有证明的定理(因此又称“费马猜想”)困惑人们达350年之久,直到1993年,才有英国数学家怀而斯予以逻辑论证。
丢番图在《算术》中的创造性成就,是用语头的字母作为缩写符号,来简化代数式。
例如,他用希腊文“幂”的头两个字母来表示未知数的平方,用希腊文“立方”的头两个字母表示未知数的立方;用希腊文“缺少”中的头一个字母表示减号等等。
于是他把前面所说的那个代数式子,写成了:∂∆∧∂ℑM K y y εη其中希腊字母εη,,∂分别表示字母1,8,5;ℑ表示未知数,M 表示常数。
代数发展简史一门科学的历史是那门科学中最宝贵的一部分,因为科学只能给我们知识,而历史却能给我们智慧。
——傅鹰数学的历史是重要的,它是文明史的有价值的组成部分,人类的进步和科学思想是一致的。
—— F. Cajori 0、引言数学发展到现在,已经成为科学世界中拥有100多个主要分支学科的庞大的“共和国”。
大体说来,数学中研究数的部分属于代数学的范畴;研究形的部分,属于几何学的范筹;沟通形与数且涉及极限运算的部分,属于分析学的范围。
这三大类数学构成了整个数学的本体与核心。
在这一核心的周围,由于数学通过数与形这两个概念,与其它科学互相渗透,而出现了许多边缘学科和交叉学科。
在此简要介绍代数学的有关历史发展情况。
“代数”(algebra)一词最初来源于公元9世纪阿拉伯数学家、天文学家阿尔·花拉子米(al-Khowārizmī,约780-850)一本著作的名称,书名的阿拉伯文是‘ilm al-jabr wal muqabalah,直译应为《还原与对消的科学》.al-jabr 意为“还原”,这里指把负项移到方程另一端“还原”为正项;muqabalah 意即“对消”或“化简”,指方程两端可以消去相同的项或合并同类项.在翻译中把“al-jabr”译为拉丁文“aljebra”,拉丁文“aljebra”一词后来被许多国家采用,英文译作“algebra”。
阿布·贾法尔·穆罕默德·伊本·穆萨·阿尔—花拉子米的传记材料,很少流传下来.一般认为他生于花拉子模[Khwarizm,位于阿姆河下游,今乌兹别克境内的希瓦城(Хива)附近],故以花拉子米为姓.另一说他生于巴格达附近的库特鲁伯利(Qut-rubbullī).祖先是花拉子模人.花拉子米是拜火教徒的后裔,早年在家乡接受初等教育,后到中亚细亚古城默夫(Мерв)继续深造,并到过阿富汗、印度等地游学,不久成为远近闻名的科学家.东部地区的总督马蒙(al-Ma’mūn,公元786—833年)曾在默夫召见过花拉子米.公元813年,马蒙成为阿拔斯王朝的哈利发后,聘请花拉子米到首都巴格达工作.公元830年,马蒙在巴格达创办了著名的“智慧馆”(Bayt al-Hikmah,是自公元前3世纪亚历山大博物馆之后最重要的学术机关),花拉子米是智慧馆学术工作的主要领导人之一.马蒙去世后,花拉子米在后继的哈利发统治下仍留在巴格达工作,直至去世.花拉子米生活和工作的时期,是阿拉伯帝国的政治局势日渐安定、经济发展、文化生活繁荣昌盛的时期.花拉子米科学研究的范围十分广泛,包括数学、天文学、历史学和地理学等领域.他撰写了许多重要的科学著作.在数学方面,花拉子米编著了两部传世之作:《代数学》和《印度的计算术》.1859年,我国数学家李善兰首次把“algebra”译成“代数”。
古代的数学符号古代数学符号是人类历史上的一项宝贵文化遗产,它将数学精神和技术与文化和历史相结合,为我们了解和探索古代数学提供了重要的工具和参考。
本文将从古代数学符号的来源、演变、应用等方面系统地介绍古代数学符号。
古代数学符号的来源可以追溯到远古时期。
早在古埃及时期,人们就开始使用一些象形和符号来表示数学概念。
例如,一个仙人掌的形状用来表示“1000”,一个蒲公英的形状用来表示“100”,一个手掌的形状用来表示“10”等等。
这些符号的来源,一方面是因为古埃及人将自然界中的事物作为图像的原始形式,另一方面则是因为人们在日常生活中经常使用这些事物来计数。
随着数学的发展,数学符号也逐渐演变出一套完整的符号系统,这套符号系统被广泛运用于数学教育、数学交流和数学研究中。
在这套符号系统中,最基本的符号是数字本身,包括0~9这些数字,这是所有数学符号的基础。
此外,还有一些常用的符号,例如“+”、“-”、“×”、“÷”等,这些符号常用于数学运算中。
古代数学符号在不同的文化和历史背景下,也呈现出不同的特征。
在中国,古代数学符号的最早形式是甲骨文,这些符号常常表现为图案和符号相结合的形式,例如:“捍”、“口”、“日”、“人”等。
与此同时,在古印度和古希腊等地,数学符号的演变也是极其丰富的。
例如,在雅典学派的数学中,人们使用很多几何符号来进行数学证明,其中最著名的符号就是直线和圆。
在日常生活和商业交易中,人们也会使用一些特殊的数学符号来表示特定的含义。
例如,在古罗马时期,人们使用“Ⅰ”、“Ⅱ”、“Ⅲ”、“Ⅳ”、“Ⅴ”等符号来表示不同的数字,这些符号被广泛应用于各种商业文书和公共场合中。
类似地,在古代埃及和古代中国等地,人们也会使用一些特殊符号来表示货币、重量等方面的概念。
总的来说,古代数学符号在人类文化历史中扮演了非常重要的角色。
它不仅是人类认识世界和掌握技术的重要工具,还是人类文化交流和历史传承的重要载体。
数学符号历史
数学符号的历史可以追溯到古代文明时期。
以下是一些重要的历史里程碑:
古代文明(公元前3000年到公元前500年):
- 古巴比伦人使用了楔形文字,它们也用于表示数学表达式。
- 古代埃及人使用图形符号来表示数字和算术运算。
古希腊(公元前600年到公元300年):
- 古希腊人使用字母来表示未知数。
例如,他们使用X(希腊
字母chi)来表示位置未知的数。
- 古希腊数学家欧几里得发明了用符号表示数学命题的方法,
这为现代形式逻辑奠定了基础。
印度和阿拉伯(公元前500年到公元1500年):
- 古印度人使用符号来表示数字和算术运算。
他们发明了零和
十进制系统,并引入了现代的十进制数字系统。
- 阿拉伯数学家阿拉伯人使用符号来表示代数表达式和方程。
文艺复兴时期和近代(公元1500年至今):
- 文艺复兴时期的数学家开始使用字母作为变量,并发展出了
一套用于表示数学关系和运算的符号系统。
- 这些符号在17世纪得到了深化和完善,包括几何符号和代
数符号。
- 18世纪的数学家欧拉和拉格朗日进一步发展了数学符号系统,使其更加简洁和一致。
总的来说,数学符号的发展是一个长期的过程,从早期的图形和字母符号演化到现代的简洁和统一的符号系统。
这些数学符号的发展对数学的发展和应用至关重要。
代数学发展历程在宽广的数学领域范围内,代数学只是其中的一个分支,一个部分.“代数学”这个名称,在我国是1859年正式开始使用的.那么什么是代数?代数学又是如何发展的呢?1847年,英国人伟烈亚力来到上海,他用中文写了一本《数学启蒙》,在序中说:“有代数、微分诸书在,余将续梓之.”这是第一次使用代数这个词来作为数学分科的名称.李善兰是我国清代数学家.1859年和伟烈亚力合译英国棣么甘(Augustus De Morgan)的“Elements of Algebra”正式定名为《代数学》.这是我国第一本代数学书,代数的名称就是这样来的.代数是对字母、字母表达式进行运算或变换的学问.在初等数学中字母代表数,在近代数学中字母可以代表更广泛的对象,如向量、张量、矩阵、变换等.代数的发展大致分为三个时期.第一个时期从九世纪的花拉子米始,到十六世纪止.这个时期人们把代数看成为对字母进行运算,关于字母公式的变换以及关于代数方程式的学问.这些就是目前中学代数的内容.第二个时期从十六世纪开始到十九世纪,这时意大利数学家解出了三次方程和四次方程.由此人们开始研究更高次的代数方程.代数的中心问题逐渐变为代数方程式的理论了.十九世纪谢尔的两卷本的代数问世,在这部书中代数被定义为方程式论.这在当时是个创举.在第二个时期内,行列式与矩阵的理论,二次型与变换的理论,特别是不变量的理论等代数工具也发展起来了.在这个时期内群论及不变量的理论的发展对几何学的发展起了重大影响.第三个时期从上世纪末到本世纪.这时在力学,物理以及数学本身越来越频繁地研究到一些对象,对这些对象也要考虑加法、减法,有时要考虑乘法和除法.这些对象中有矩阵、张量、旋量、超复数等.这样人们就不得不考虑某种更一般的集合,在这种集合中有某种运算,并满足一定的运算法则.这就是说,我们不得不考虑某种代数系统.这样一来,代数的目的是研究各种代数系统.这就是公理化,或抽象化的代数.说它是抽象的,是因为所考虑的代数系统是用字母表示的.说它是公理化的,是因为它只遵从作为它的基础的那些公理.有趣的是这样的代数系统无论就数学本身而言,或就它的应用而言都具有巨大意义.以下我是通过初等代数,高等代数以及抽象代数三个阶段的发展来研究代数学领域的发展的.1.初等代数初等代数是研究数字和文字的代数运算理论和方法,更确切的说,是研究实数和复数,以及以它们为系数的多项式的代数运算理论和方法的数学分支学科.初等代数是更古老的算术的推广和发展.在古代,当算术里积累了大量的,关于各种数量问题的解法后,为了寻求有系统的、更普遍的方法,以解决各种数量关系的问题,就产生了以解方程的原理为中心问题的初等代数.代数是由算术演变来的,这是毫无疑问的.代数和算术的主要区别,就在于前者引入未知量,根据问题的条件列出方程,然后解方程求出未知量的值.至于什么年代产生的代数学这门学科,就很不容易说清楚了.比如,如果你认为“代数学”是指解这类用符号表示的方程的技巧,那么,这种“代数学”是在十六世纪才发展起来的.如果我们对代数符号不是要求象现在这样简练,那么代数学可以上溯到更早的年代.大约在公元前2000年,巴比伦算术已经演化成为一种高度发展的用文字叙述的代数学.从载有数字表的文件中,可以获得巴比伦人的数系和数字运算方面的许多知识.他们既能用相当于代入一般公式的方法,又能用配方法来解二次方程,还讨论了某些三次方程和双二次(四次)方程.已经发现一块书板,它给出的数表不仅包括从1到30的整数的平方和立方,还包括了这个范围的整数组合.公元前2500年左右,埃及的草片文书(Ahmes)中有求一个未知量问题的解法,这个问题大体上相当于今日的一元一次方程.不过用的方法纯粹是算术的,并且在埃及人心目中这并不成其为一门独特的学科——解方程.公元200—1200年时期,印度人也在代数上获得一些进展.他们用缩写文字和一些记号来描述运算.印度人认识到二次方程有两个根,而且包括负根和无理根.在不定方程方面印度人超过了Diaphanous,印度人要求出所有整数解,而Diaphanous则只得出一个有理的解.印度人也研究了不定二次方程.他们解出了(其中不是平方数)这种类型的方程,并可看出这种类型对处理很重要.西方人将公元前三世纪古希腊数学家Diaphanous看作是代数学的鼻祖.而在中国,用文字来表达的代数问题出现得就更早了.“代数”作为一个数学专有名词,代表一门数学分支在我国正式使用,最早是在1859年.那年,清代数学家李善兰和英国人韦列亚力共同翻译了英国人棣么甘所写的一本书,译本的名称就叫做《代数学》.当然,代数的内容和方法,我国古代早就产生了,比如成书于公元一世纪初的《九章算术》中就有方程问题.在《九章》方程章中,经刘徽注给方程予以最早的定义:“程,课程也.群物总杂,各列有数,总言其实.令每行为率,二物者再程,三物者三程,皆如物数程之,并列为行,帮谓之方程”.这里的“群物总杂,各列有数,总言其实”是说每一行(相当于今称的方程式)的系数、未知数和常数项(此叫“实”)的组成方法.令每行为率(就是列出几个等式),二物者再乘(两个未知数,列两个等式或程式),三物三乘(三个未知数列三个等式或程式),如物数程之(就是有几个未知数,就列出几个等式或程式),用算筹并列成一方形,所以叫做方程.在方程的定义里,“程”就是“课”,而“课”的本义是试验,考核.正是在试验与考核的意义上,“程”与“课”是相通的.由“课”将数学应用题转化为盈亏类问题,而由“程”把问题布列为“方程”.这种问题模式化的思想和方法是一脉相承的.当然,在这里方程的定义是狭隘的,仅指线性方程组,但《九章》实际上还涉及到二次方程,而且已能用“带从开方术”(“从”读“纵”)求出方程的正根.共步骤相当于“配方法”.《九章》关于多元一次方程组的解法,是将其“所出率”用算筹摆成一个方阵,然后应用“遍乘,通约,齐同”三种基本演算,达到“消元”为目的.《九章》称解方程组的过程为“直除”,即现代的消元法.《九章》方程解法有方程术和正负术,刘徽注又添了新方程术,反映了我国古代方程理论发展的不同阶段.这些解法经刘徽注释,把它们作为比率理论的应用和发展,从而获得了统一的理论基础.初等代数的中心内容是解方程,因而长期以来都把代数学理解成方程的科学,数学家们也把主要精力集中在方程的研究上.它的研究方法是高度计算性的.要讨论方程,首先遇到的一个问题是如何把实际中的数量关系组成代数式,然后根据等量关系列出方程.所以初等代数的一个重要内容就是代数式.由于事物中的数量关系的不同,大体上初等代数形成了整式,分式和根式这三大类代数式.代数式是数的化身,因而在代数中它们都可以进行四则运算,服从基本运算定律,而且还可以进行乘方和开方两种新的运算.通常把这六种运算叫做代数运算,以区别于只包含四种运算的算术运算.在初等代数的产生和发展的过程中,通过解方程的研究也促进了数的概念的进一步发展,将算术中讨论的整数和分数的概念扩充到有理数的范围,使数包括正负整数、正负分数和零.这是初等代数的又一重要内容,就是数的概念的扩充.有了有理数,初等代数能解决的问题就大大地扩充了.但是,有些方程在有理数范围内仍然没有解.于是,数的概念再一次扩充到了实数,进而又进一步扩充到了复数.那么到了复数范围内是不是仍然有方程没有解,还必须把复数再进行扩展呢?数学家们说:不用了.这就是代数里的一个著名的定理——代数基本定理.这个定理简单地说就是n个方程有n个根.1742年12月15日,瑞士数学家欧拉曾在一封信中明确地做了陈述.后来另一个数学家德国的高斯在1799年给出了严格的证明.把上面分析过了的内容综合起来,组成初等代数的基本内容就是:三种数——有理数、无理数、复数.三种式——整式、分式、根式.中心内容是方程——整式方程、分式方程、根式方程和方程组.初等代数的内容大体上相当于现代中学设置的代数课程的内容,但又不完全相同.比如严格地说,数的概念,排列和组合应归入算术的内容;函数是分析数学的内容;不等式的解法有点像解方程的方法,但不等式作为一种估算数值的方法,本质上是属于分析数学的范围;坐标法是研究解析几何的…….这些都只是历史上形成的一种编排方法.初等代数是算术的继续和推广,初等代数研究的对象是代数式的运算和方程的求解.代数运算的特点是只进行有限次的运算.全部初等代数总起来有十条规则.这是学习初等代数需要理解并掌握的要点.这十条规则是:五条基本运算律:加法交换律、加法结合律、乘法交换律、乘法结合律、乘法对加法的分配律;两条等式基本性质:等式两边同时加上一个数,等式不变;等式两边同时乘以一个非零的数,等式不变;三条指数律:同底数幂相乘,底数不变指数相加;幂的乘方等于底数不变指数相乘;积的乘方等于乘方的积.初等代数学进一步向两个方面发展,一方面是研究未知数更多的一次方程组;另一方面是研究未知数次数更高的高次方程.这时候,代数学已由初等代数向着高等代数的方向发展了.2.高等代数初等代数从最简单的一元一次方程开始,一方面进而讨论二元及三元的一次方程组,另一方面研究二次以上及可以转化为二次的方程组.沿着这两个方向继续发展,代数在讨论任意多个未知数的一次方程组(也叫线性方程组)的同时还研究次数更高的一元方程组.发展到这个阶段,就叫做高等代数.高等代数是代数学发展到高级阶段的总称,它包括许多分支.现在大学里开设的高等代数一般包括两部分:线性代数、多项式代数.高等代数在初等代数的基础上研究对象进一步扩充,引进了许多新的概念以及与通常很不相同的量,比如最基本的有集合、向量和向量空间等.这些量具有和数相类似的运算特点,不过研究的方法和运算的方法都更加繁复.集合是具有某种属性的事物的全体;向量是除了具有数值还同时具有方向的量;向量空间也叫线性空间,是由许多向量组成的并且符合某些规则的集合.向量空间中的运算对象已经不只是数,而是向量了,其运算性质也有了很大的不同.古典代数学(即初等代数学)的中心课题是解方程问题.就方程本身而言,它是向两个方向发展的.一个方向是一元高次方程,另一个方向是多元一次方程组与多元高次联立方程组.前者发展成为后来的方程论(或多项式论)的研究,方程论的扩展便是高等代数学.到了十九世纪,还诱发了近世代数的出现.后者的发展形成了线性代数学,它的中心内容是行列式与线性方程组,矩阵及线性空间和线性变换的理论等.多项式是一类最常见,最简单的函数,它的应用非常广泛.多项式理论是以代数方程的根的计算和分布作为中心问题的,也叫做方程论.研究多项式理论,主要在于探讨代数方程的性质,从而寻找简易的解方程的方法.多项式代数所研究的内容,包括整除性理论,因式分解理论等.这些大体上和中学代数里的内容类似.多项式的整除性质对于解代数方程是很有用的.解代数方程无非就是求对应多项式的零点,零点不存在的时候,所对应的代数方程就没有解.我们知道一次方程叫线性方程,讨论线性方程的代数就叫做线性代数.线性代数学的兴起与发展是随着十七、十八世纪生产和科学技术的发展与要求而发展的.在线性代数中最重要的内容是行列式和矩阵.早在十七世纪和十八世纪初,行列式在解方程中就得到了发展.在线性方程组中,由于碰到方程的个数与未知量个数相等,所以就提出行列式这个词.行列式的概念最早是由十七世纪日本数学家关孝和提出来的,他在1683年写了一部叫做《解伏题之法》的著作,标题的意思是“解行列式问题的方法”,书中对行列式的概念和它的展开已经有了清楚的叙述.此外,1750年瑞士克莱姆(C ramer,1704--1752)的“克莱姆法则”也出现,但没有把行列式作为一个单独理论加以研究和阐述.欧洲第一个提出行列式概念的是德国的数学家莱布尼茨.1772年法国数学家范德蒙(Vandermonde,1735--1796)首先把行列式作为专门理论独立于线性方程组之外进行研究.故人们称他是行列式理论的奠基者.德国数学家雅可比于1841年发表了《论行列式的形式与性质》一文标志着行列式的系统理论的建立.行列式有一定的计算规则,利用行列式可以把一个线性方程组的解表示成公式,因此行列式是解线性方程组的工具.行列式可以把一个线性方程组的解表示成公式,也就是说行列式代表着一个数.因为行列式要求行数等于列数,排成的表总是正方形的,通过对它的研究又发现了矩阵的理论.矩阵概念和行列式一样是从解线性方程组中产生的.矩阵概念最早也出现在我国的《九章算术》方程章里.该书所说的“方程”实际是“矩阵”,所说的“方程术”的中心内容是对“方程”(即矩阵)施行“遍乘”与“直除”两种运算.在欧洲,由于有行列式的成果作为基础,1850年前后,矩阵的理论发展是非常迅速的.“矩阵”这个词是西勒维斯特(J.J.Sylvester,1814--1897)在1850年首先提出并使用的.他在碰到线性方程组的方程的个数与未知量个数不等,无法运用行列式概念时提出这个词的.1855年凯莱也引出了矩阵概念.他在文章中介绍他发现这一概念的思想时说:“我决不是通过四元数而获得矩阵概念的,它或是直接从行列式的概念而来,或是作为一个表达方程组的方便的方法而来的.”矩阵也是由数排成行和列的数表,行数和列数可以相等也可以不等.矩阵和行列式是两个完全不同的概念,行列式代表着一个数,而矩阵仅仅是一些数的有顺序的摆法.利用矩阵这个工具可以把线性方程组中的系数组成向量空间中的向量,这样对于一个多元线性方程组的解的情况,以及不同解之间的关系等等一系列理论上的问题,就都可以彻底地解决.矩阵的应用是多方面的,不仅在数学领域里,而且在力学、物理、科技等方面都有十分广泛的应用.1879年,德国数学家弗罗尼乌斯(Frobenius)引入矩阵秩的概念,英国数学家史密斯(H.J.S Smith,1826--1883)引入增广矩阵的概念,证明了n 个未知数m个方程的方程组相容的充分必要条件是其增广矩阵与非增广矩阵的秩相等.在行列式的理论和矩阵理论与应用发展的同时,线性空间以及与之相联系的线性变换的理论也蓬蓬勃勃地发展起来.由于采用向量的概念,可以使得解析几何特别地简单和清楚.向量可以相加,也可以相乘,并且满足如下运算规律:1.2.存在着“零元素”0,使得对任意x,3.对于任意元素x,存在着一个逆元素-x,使得4.5.6.7.8.这里x、y、z是线性空间里的元素,而1、、、是数.如果向量由它的坐标(即它在坐标轴上的射影)给出,那么在向量上进行的加法运算和数乘运算就相应着由它的坐标所组成的行(或列)上同名的运算.这样一来,由三个数组成的行或列就宜于几何上地解释作三维空间中的向量,同时在“行”(或“列”)上进行的运算就解释作为空间中向量上所进行的相应的运算,使得由三个数所组成行(或列)的代数在形式上与三维空间中的向量代数没有差别.线性方程组的系数、线性方程组的解是一个多元有序数组,在多元有序数组集合中引进加法、数乘运算,可以简化线性方程组的讨论,这使它们自然地将三维向量空间推广到n元有序数组集合的n维向量空间.不仅n维向量的集合具备上面所说的这些特性,就是同一类型的矩阵集合以及物理向量:力、速度、加速度等等也具备这些性质.完全是另外性质的数学对象,如一个变元的多项式全体、已知区间[a,b]上的连续函数的全体,线性齐次微分方程解的全体等等,也都具备这些性质.这些例子引导人们进一步推广向量空间的概念,这种空间的元素可以是任意数学对象或物理对象,这就引进了一般的线性空间的概念.同样它们满足加法和数乘一定的运算规律.在很多数学研究中需要改换变数,即从一组变数,…… ,过渡到与它们有函数关系的另一组变数,,…….例如,如果变数是平面上或空间中点的坐标,那么从一个坐标系过渡到另一个坐标系就引起坐标的一个交换,它将原来的坐标用新的坐标表出.此外,在研究一个物体从一个位置或状态变为另一个位置或状态时,如果它的位置或状态由变数的值所给出,变数的变换也会产生.线性变换是线性空间到自身的变换.线性空间中每一个线性变换都对应着一个方阵,变换本身可以用矩阵语言写成形状,这里x是原向量的坐标组成的列,y是变换后的向量的坐标组成的列,是变换的系数矩阵.欧氏空间中,将保持向量长度不变的线性变换称为正交变换.正交变换是将三维空间中坐标原点不动的旋转或旋转与对通过原点的某一平面的反射的联合对n维空间的推广.正交变换是非退化变换的重要特殊情形.线性空间与线性变换是线性代数的几何架构,数组向量和矩阵实际上是它们的代数形式,其间的转换枢纽是基底,就好象是平面和立体几何里的坐标系.然而线性代数里的向量空间却往往从抽象定义开始,这只是相当大的一般性.3.抽象代数在十八世纪后半叶,数学内部悄悄积累的矛盾已经开始酝酿新的变革.当时数学家们面临一系列数学发展进程中自身提出的、长期悬而未决的问题,其中在代数方面最突出的是:高于四次的代数方程的根式求解问题.在十九世纪初,这个问题已变得越发尖锐而不可回避.它们引起了数学家们集中的关注和热烈的探讨,并导致了代数学发展的新突破.在前面曾经说过,中世纪的阿拉伯数学家把代数学看成是解方程的学问.直到十九世纪初,代数学研究仍未超出这个范围.不过这时数学家们的注意力集中在了五次和高于五次的代数方程上.考虑一般的五次式更高次的方程能否像二、三、四次方程一样来求解,也就是说对于形如:(其中)的代数方程,它的解能否通过只对方程的系数作加、减、乘、除和求正整数次方根等运算的公式得到呢?遗憾的是这个问题虽然耗费了许多数学家的时间和精力,但一直持续了长达三个多世纪都没有解决.最终,阿贝尔(1802--1829)解决了五次和高于五次的一般方程的求解问题,证明了五次或五次以上方程不可能有代数解.即这些方程的根不能用方程的系数通过加、减、乘、除、乘方、开方这些代数运算表示出来.他还考虑了一些特殊的能用根式求解的方程,其中的一类被称为“阿贝尔方程”.在这一工作中,他实际上引进了“域”这一重要的近世代数概念,虽然他没有这样来称呼.但他没能解决判定已知方程是否可用根式来求解的问题.这个问题最终由另一个年轻的天才数学家法国的伽罗瓦彻底解决.在十九世纪,代数学的研究对象已突破了数(包括用符号表示的数)的范畴,这种突破是由伽罗瓦群的概念开始的.伽罗瓦20岁的时候,因为积极参加法国资产阶级革命运动曾两次被捕入狱,1832年4月,他出狱不久便在一次私人决斗中死去,年仅21岁.伽罗瓦在临死前预料自己难以摆脱死亡的命运,所以曾连夜给朋友写信,仓促地把自己生平的数学研究心得扼要写出,并附以论文手稿.他在给朋友舍瓦利叶的信中说:“我在分析方面做了一些新发现.有些是关于方程论的;有些是关于整函数的……公开请求雅可比或高斯,不是对这些定理的正确性而是对这些定理的重要性发表意见.我希望将来有人发现消除所有这些混乱对它们是有益的.”伽罗瓦死后,按照他的遗愿,舍瓦利叶把他的信发表在《百科评论》中.他的论文手稿过了14年,才由刘维尔(1809--1882)编辑出版了他的部分文章,并向数学界推荐.随着时间的推移,伽罗瓦的研究成果的重要意义愈来愈为人们所认识.伽罗瓦虽然十分年轻,但是他在数学史上做出的贡献,不仅是解决了几个世纪以来一直没有解决的高次方程的代数解的问题,更重要的是他在解决这个问题中提出了“群”的概念.在伽罗瓦之后,群的概念本身进一步发展,除了有限的、离散的群,又出现了无限群、连续群等,并由此发展了一整套关于群和域的理论,开辟了代数学的一个崭新的天地,直接影响了代数学研究方法的变革.从此,代数学不再以方程理论为中心内容,而转向对代数结构性质的研究,促进了代数学的进一步发展.在数学大师们的经典著作中,伽罗瓦的论文是最薄的,但他的数学思想却是光彩夺目的.代数对象的扩张,在十九世纪还沿着其他途径进行,先后产生了许多其他代数系统,例如四元数与超复数、域、理想等.十九世纪数学家还引进了环(戴德金,1871.克罗内克也研究过环并称之为“order”,希尔伯特首先使用了“ring”即环这个名称)和格(戴德金,1897)等.。
代数学符号发展的历史
代数是一门具有丰富内容并且与现实世界、学生生活、其他学科联系十分密切的学科,同时代数也是一门基础的数学学科,它为数学本身和其他学科的研究提供了语言方法和手段.是谁最先用字母表示数呢?系统地使用字母表示数的最主要的人是法国的数学家韦达(F.Vieta,1540-1603).
代数学符号发展的历史,可分为三个阶段。
第一个阶段为三世纪之前,对问题的解不用缩写和符号,而是写成一篇论文,称为文字叙述代数。
第二个阶段为三世纪至16世纪,对某些较常出现的量和运算采用了缩写的方法,称为简化代数。
三世纪的丢番图的杰出贡献之一,就是把希腊代数学简化,开创了简化代数。
然而此后文字叙述代数,在除了印度以外的世界其它地方,还十分普通地存在了好几百年,尤其在西欧一直到15世纪。
第三个阶段为16世纪以后,对问题的解多半表现为由符号组成的数学速记,这些符号与所表现的内容没有什么明显的联系,称为符号代数。
16世纪韦达的名著《分析方法入门》,对符号代数的发展有不少贡献。
16世纪末,维叶特开创符号代数,经笛卡儿改进后成为现代的形式。
“+”、“-”号第一次在数学书中出现,是1489年魏德曼的著作。
不过正式为大家所公认,作为加、减法运算的符号,那是从1514年由荷伊克开始的。
1540年,雷科德开始使用“=”。
到1591年,韦达在著作中大量使用后,才逐渐为人们所接受。
1600年哈里奥特创用大于号“>”和小于号“<”。
1631年,奥屈特给出“×”、“÷”作为乘除运算符。
1637年,笛卡儿第一次使用了根号,并引进用字母表中前面的字母表示已知数、后面的字母表示未知数的习惯做法。
至于“≮”、“≯”、“≠”这三个符号的出现,那是近代的事了。