三相异步电动机Y-△
- 格式:ppt
- 大小:105.50 KB
- 文档页数:9
课程名称:电器原理指导老师:_ __ _____成绩:_________________实验名称:三相异步电机Y-△换接起动控制和三相异步电机单向能耗制动控制一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得一、实验目的1.了解时间继电器的使用方法及在控制系统中的应用;2.熟悉异步电动机Y-△降压起动控制的运行情况和操作方法;3.学会设计常用继电接触控制方法。
4。
通过实验进一步理解三相鼠笼式异步电动机能耗制动原理。
5.增强实际连接控制电路的能力和操作能力。
二、实验原理实验三:按时间原则控制电路的特点是各个动作之间有一定的时间间隔,使用的元件主要是时间继电器。
时间继电器是一种延时动作的继电器,它从接受信号(如线圈带电)到执行动作(如触点动作)具有一定的时间间隔。
此时间间隔可按需要预先整定,以协调和控制生产机械的各种动作。
时间继电器的种类通常有电磁式、电动式、空气式和电子式等。
其基本功能可分为两类,即通电延时式和断电延时式,有的还带有瞬时动作式的触头。
时间继电器的延时时间通常可在0.4s~80s范围内调节。
实验四:1.三相鼠笼电动机实现能耗制动的方法是:在三相定子绕组断开三相交流电源后,在两相定子绕组中通入直流电,以建立一个恒定的磁场,转子的惯性转动切割这个恒定磁场而感应电流,此电流与恒定磁场作用,产生制动转矩使电动机迅速停车。
2.在自动控制系统中,通常采用时间继电器按时间原则进行制动过程的控制。
可根据所需的制动停车时间来调整时间继电器的延时,以使电动机刚一制动停车,就使接触器释放,切断直流电源。
3. 能耗制动过程的强弱与进程,与通入直流电流大小和电动机转速有关,在同样的转速下,电流越大,制动作用就越强烈,一般直流电流取为空载电流的3~5倍为宜。
三、实验设备实验三实验四四、实验内容实验三内容:1. 接触器控制Y-△降压起动线路图1 接触器控制Y-△降压起动线路按图1线路接线,经检查无误后,方可进行通电操作。
《电气控制与PLC技术》课程设计题目:三相异步电动机Y-△启动控制设计专业:自动化班级:姓名:学号:指导教师:设计日期:2012.11.13 --- 2012.11.30目录摘要1 控制要求 (1)2 主要元件介绍 (6)2.1 继电器 (6)2.2 熔断器 (2)2.3 交流接触器 (2)2.4 台达可编程控制器 (8)2.5 三相异步电动机 (8)3 硬件设计 (8)3.1 设计原理 (6)3.2 控制过程 (7)4 软件设计 (7)4.1 I/O接线图 (8)4.2 梯形图和指令表 (9)5 总结 (5)参考文献 (10)摘要星三角启动控制系统,属降压启动他是以牺牲功率为代价来换取降低启动电流来实现的。
所以不能一概而以电机功率的大小来确定是否需采用星三角启动,还得看是什么样的负载,一般在需要启动时负载轻,运行时负载重尚可采用星三角启动控制系统,一般情况下鼠笼型电机的启动电流是运行电流的5—7倍,而对电网的电压要求一般是正负10%,为了不形成对电网电压过大的冲击所以要采用星三角启动控制。
只有鼠笼型电机才采用星三角启动。
星三角降压启动的控制系统电动机三相绕组共有六个外接端子:A-X、B-Y、C-星形启动:X-Y-Z相连,A、B、C三端接三相交流电压380V,此时每相绕组电压为220,较直接加380V 启动电流大为降低,避免了过大的启动电流对电网形成的冲击。
此时的转矩相对较小,但电动机可达到一定的转速。
三角形运行:经星形启动电动机持续一段时间(约十秒钟)达到一定的转速后,利用PLC定时约0.5秒,电器开关把六个接线端子转换成三角形连接并再次接到380V电源时每相绕组电压为380V,转矩和转速大大提高,电动机进入额定条件下的运行过程。
关键词:星三角启动 PLC 鼠笼型电机转矩转速1 控制要求接触器KM1—KM3的作用分别是控制电源、Y形起动、△运行。
①按下起动按钮SB1后,电动机M先作Y起动,10s钟后自动转换为△运行。
三相异步电动机常用的Y-△降压启动本文分析了三相异步电动机的由来、启动进程与启动方式,并针对星-三角降压启动进行了探讨。
标签:三相异步发动机降压启动1 三相异步电动机的由来三相异步电动机的旋转是由于其定子绕组中通入三相交流电后,在定子绕组周围产生一个旋转的磁场,当转子处于该旋转磁场中时,相当于导体在磁场中作切割磁力线运动,从而产生感应电流和感应电动势,促使转子不断地旋转运动。
但是三相异步电动机的转子转速不会与旋转磁场同步,更不会超过旋转磁场的速度。
因为三相异步电动机转子线圈中的感应电流是由于转子导体与磁场有相对运动而产生的,如果三相异步电动机转子的转速与旋转磁场的转速大小相等,那么,磁场与转子之间就没有相对运动,导体不能切割磁力线,转子线圈中也就不会产生感应电流和感应电动势,三相异步电动机转子导体在磁场中也就不会受到电磁力的作用而使转子转动——三相异步电动机因此而得名。
2 电动机的启动过程和启动方式电动机的启起动过程是指电动机从接入电网开始到正常运转的这一过程。
三相异步电动机的启动方式有两种,即在额定电压下的全压(直接)启动和降低启动电压的减压启动。
电动机的直接启动是一种简单、可靠、经济的启动方法,但由于直接启动电流可达电动机额定电流的4~7倍,过大的启动电流会造成电网电压显著下降,直接影响在同一电网工作的其他电动机,甚至使它们停转或无法启动,故直接启动电动机的容量受到一定的限制。
对容量较大的电动机的启动,为了不造成电网电压的大幅度降落,从而导致电动机启动困难或不能启动,也不影响电网内其他用电设备的正常供电,在生产技术上,多采用降压启动措施。
所谓降压启动是将电网电压适当降低后加到电动机定子绕组上进行启动,待电动机启动后,再将绕组电压恢复到额定值。
降压启动的目的是减小电动机启动电流,从而减小电网供电的负荷。
但由于启动电流的减小,必然导致电动机启动转矩下降,因此凡采用降压启动措施的电动机,只适合空载或轻载启动。
三相异步电动机Y—△降压起动(1)线路设计思想Y—△降压起动也称为星形—三角形降压起动,简称星三角降压起动。
这一设计思想仍是按时间原则控制起动过程。
所不同的是,在起动时将电动机定子绕组接成星形,每相绕组承受电压为电源的相电压(220V),减小了起动电流对电网的影响。
而在其起动后期则按预先整定的时间换接成三角形接法,每相绕组承受的电压为电源的线电压(380V),电动机进入正常运行。
凡是正常运行时定子绕组接成三角形的鼠笼式异步电动机,均可采用这种线路。
(2)典型线路介绍定子绕组接成Y—△降压起动的自动控制线路如图所示。
工作原理:1、按下起动按钮SB2,接触器KM1线圈得电,电动机M接入电源。
同时,时间继电器KT 及接触器KM2线圈得电。
2、接触器KM2线圈得电,其常开主触点闭合,电动机M定子绕组在星形连接下运行。
KM2的常闭辅助触点断开,保证了接触器KM3不得电。
3、时间继电器KT的常开触点延时闭合;常闭触点延时继开,切断KM2线圈电源,其主触点断开而常闭辅助触点闭合。
4、接触器KM3线圈得电,其主触点闭合,使电动机M由星形起动切换为三角形运行。
停车5、按SB1 辅助电路断电各接触器释放` 电动机断电停车线路在KM2与KM3之间设有辅助触点联锁,防止它们同时动作造成短路;此外,线路转入三角接运行后,KM3的常闭触点分断,切除时间继电器KT、接触器KM2,避免KT、KM2线圈长时间运行而空耗电能,并延长其寿命。
三相鼠笼式异步电动机采用Y—△降压起动优点:定子绕组星形接法时,起动电压为直接采用三角形接法时的1/3,起动电流为三角形接法时的1/3,因而起动电流特性好,线路较简单,投资少。
缺点:起动转矩也相应下降为三角形接法的1/3,转矩特性差。
所以该线路适用于轻载或空载起动的场合。
另外应注意,Y—△联接时要注意其旋转方向的一致性。
三相异步电动机y-△降压启动控制电路工作原理
三相异步电动机Y-Δ降压启动控制电路是一种常见的电动机
启动方式,多用于大功率电动机的启动过程中。
其工作原理如下:
1. 电源供电:当三相异步电动机需要启动时,通过主控制开关将电源连接到电动机的三相输入端。
2. Δ连接:在启动过程中,控制电路将电动机的三个定子绕组
分别连接成一个Δ形状,即将每个定子绕组的一个端子与另
一个定子绕组的另一个端子连接在一起。
3. 降压启动:通过一个时间继电器或者其他启动控制器来控制一个对应的继电器,使得在启动过程中,电动机的每个定子绕组通过一个降压启动器,即一个定子绕组与外部电阻串联连接,以降低电动机的电压。
4. 加载转矩:在降压启动的过程中,电动机的电压被降低,电机的转矩也被降低。
这样可以减轻电动机启动时的机械冲击,并且可以避免过大的电流冲击对线路和电机的损坏。
5. 过渡到Y连接:当电动机达到设定的启动时间或者转速后,控制电路将继电器动作,切断降压启动器的连接,在短时间内,使得电动机的三个定子绕组组成Y形状连接,使得电动机能
够正常运行。
总的来说,Y-Δ降压启动控制电路通过降低电动机的电压,减
小启动时的机械冲击,确保电动机的安全启动,并在启动后切换为正常运行状态。