圆孔衍射和圆盘衍射乐乐课堂
- 格式:docx
- 大小:13.36 KB
- 文档页数:1
圆孔衍射与圆板衍射的区别
生活老师玲儿
成为第12388位粉丝1、亮斑不同圆孔衍射图样中心亮斑较大;而圆板亮斑较小。
2、半径不同圆孔衍射图样中亮环或暗环间距随半径增大而增大,圆板衍射图样中亮环或暗环间距随半径增大而减小。
3、背景不同圆孔衍射图样的背景是黑暗的,而圆板衍射图样中的背景是明亮的。
扩展资料产生衍射的条件由于光的波长很短,只有十分之几微米,通常物体都比它大得多,但是当光射向一个针孔、一条狭缝、一根细丝时,可以清楚地看到光的衍射。
用单色光照射时效果好一些,如果用复色光,则看到的衍射图案是彩色的。
当障碍物的尺寸远大于光波的波长时,光可看成沿直线传播。
注意,光的直线传播只是一种近似的规律,当光的波长比孔或障碍物小得多时,光可看成沿直线传播;在孔或障碍物可以跟波长相比,甚至比波长还要小时,衍射就十分明显。
由于可见光波长范围为4×10∧-7m至7.7×10∧-7m之间,所以日常生活中很少见到明显的光的衍射现象。
圆孔衍射和泊松亮斑和牛顿环
圆孔衍射、泊松亮斑和牛顿环是光的衍射和干涉现象中的重要现象。
圆孔衍射是指光通过一个圆孔时产生的衍射现象,图样呈现出中央为亮圆斑,周围为明暗相间的同心圆环。
泊松亮斑是指当光照到不透光的小圆板上时,在圆板的阴影中心出现的亮斑,同时还有不等间距的明暗相间的圆环。
牛顿环是指透过凸透镜和平凸透镜之间的空气薄膜时,在两个表面接触处形成的一系列同心圆环,亮纹的亮度几乎相同。
这些现象都是由光的波动性引起的,展示了光的干涉和衍射的特性。
实验10 圆孔衍射当光在传播过程中经过障碍物,如不透明物体的边缘、小孔、细线、狭缝等时,一部分光会传播到几何阴影中去,产生衍射现象。
光的衍射现象是光的波动性的一种表现。
研究光的衍射现象不仅有助于加深对光本质的理解,而且能为进一步学好近代光学技术打下基础。
衍射使光强在空间重新分布,利用光电元件测量光强的相对变化,是测量光强的方法之一,也是光学精密测量的常用方法。
一、实验目的1.观察圆孔衍射现象,加深对衍射理论的理解。
2.会用光电元件测量圆孔衍射的相对光强分布,掌握其分布规律。
二、实验仪器H e -N e 激光器、单缝及二维调节架、光电探测器及移动装置、数字式万用表、钢卷尺等。
三、实验原理圆孔衍射的基础是惠更斯-菲涅尔原理,,经过计算可以得到:在沿光传播方向圆孔的中轴线上,总是光强极大(设平面光波沿圆孔轴线传播),偏开中轴线一定角度,诸子波相干叠加正好相消,则出现第一级暗线,由于圆孔激起子波的轴对称性,暗线将是暗环,再增大偏开轴线角度,可得到一系列暗环,暗环之间为亮环,即衍射次极大。
直径为D 的圆孔的夫琅和费衍射光强的径向分布可通过贝塞耳函数表示。
夫琅和费圆孔衍射图样的中央圆形(零级衍射)亮斑通常称为艾里斑,艾里斑的大小可用半角宽度即第一级暗环对应的衍射角为:D λθθ22.1sin ==圆孔衍射各极小值的位置(衍射角)在0.610π,1.116π,1.619π,… 处,各极大值的位置(衍射角)在0,0.0819π,0.133π,0.187π,… 处,其相对光强I/I0依次为1,0.0175,0.042,0.0016,…。
零级衍射的圆亮斑集中了衍射光能量的83.8% 。
夫琅和费衍射不仅表现在单缝衍射中,也表现在小孔的衍射中,如图10-1所示。
平行的激光束垂直地入射于圆孔光阑1上,衍射光束被透镜2会聚在它的角平面3上,若在此焦平面上放置一接收屏,将呈现出衍射条纹。
衍射条纹为同心圆,它集中了84%以上的光能量,P 点的光强分布为:()2102⎥⎦⎤⎢⎣⎡=x x J I I (10-1)()x J 1为一阶贝塞尔函数,它可以展开成x 的级数()()()1212!1!1+∞=⎪⎭⎫ ⎝⎛+-=∑k o k k x k k x J (10-2)x 可以用衍射角θ及圆孔半径a 表示θλπsin 2ax = (10-3) 式中λ是激光波长(e e N H —激光器8.623=λ纳米)。
医用物理实验圆孔衍射
医用物理实验中,圆孔衍射是一种常用的实验方法。
在此实验中,光线通过圆形孔洞时,会产生衍射现象,即光线会弯曲并散射到周围的区域中。
圆孔衍射是一种光学现象,它与光线的波动性有关。
当光线通过圆形孔洞时,光线会发生衍射,使得光线在周围形成一定的干涉图样,这种图像被称为衍射图。
圆孔衍射实验通常使用激光或白光源进行,通过将光线穿过圆形孔洞,将衍射图样投影在一块屏幕上观察。
通过观察屏幕上的衍射图样,可以了解光线在经过圆形孔洞后的行为。
圆孔衍射实验在医学领域中非常重要,它可以用来研究细胞和组织的结构。
通过将光线穿过细胞或组织样本,将衍射图样观察在显微镜下,可以了解样本的结构和组成。
这对于疾病的诊断和治疗非常有帮助。
总之,圆孔衍射实验是一种非常有用的实验方法,它可以帮助我们了解光线在经过圆形孔洞时的行为,并用于医学领域中的细胞和组织结构研究。
圆孔衍射条纹的特点圆孔衍射是光通过一个小孔后产生的光的传播现象。
当光通过一个小孔时,由于光的波动特性,光波会发生衍射,形成一系列的光的明暗条纹,这就是圆孔衍射条纹的特点。
圆孔衍射条纹的特点可以从以下几个方面来描述:1. 中心亮斑:圆孔衍射中最明亮的区域位于中心,这是由于中心光线的传播方向与孔的中心线方向相同,光线更趋于直线传播,形成强光斑。
2. 环形暗条纹:中心亮斑周围会出现一系列的环形暗条纹,这是由于光波的干涉效应导致的。
光波通过圆孔后会形成一系列的球面波,这些球面波相互叠加,使得某些区域的光波相消干涉,形成暗条纹。
3. 条纹的密度:圆孔衍射条纹的密度与孔的直径和光的波长有关。
当孔的直径较大或光的波长较小时,条纹的密度较小,暗条纹的间距较大;反之,当孔的直径较小或光的波长较大时,条纹的密度较大,暗条纹的间距较小。
4. 条纹的扩展:当圆孔的直径增大时,衍射条纹会随之扩展。
这是因为当孔的直径增大时,通过孔的光线更多,形成的球面波也更多,干涉效应更加明显,衍射条纹的范围也随之扩大。
圆孔衍射条纹的特点可以通过以下表述来描述:在圆孔衍射实验中,当光通过一个小孔后,会出现一系列的明暗条纹,其中最明亮的区域位于中心,形成中心亮斑;而中心亮斑周围会出现一系列的环形暗条纹,这是由于光波的干涉效应导致的。
条纹的密度与孔的直径和光的波长有关,当孔的直径较大或光的波长较小时,条纹的密度较小,暗条纹的间距较大;反之,当孔的直径较小或光的波长较大时,条纹的密度较大,暗条纹的间距较小。
此外,随着圆孔直径的增大,衍射条纹的范围也随之扩大。
总结起来,圆孔衍射条纹的特点主要包括中心亮斑、环形暗条纹、条纹的密度和条纹的扩展。
这些特点是由光的波动特性和干涉效应共同作用产生的,通过实验观察和理论分析可以得到以上结论。
圆孔衍射和圆盘衍射乐乐课堂
圆孔和圆盘的衍射,就只讲对称轴上的光强分布,对称轴以外的,就只用对称性得到光强是径向分布的圆圈这个结论。
在圆孔衍射时,衍射图案在对称轴上的强度分布,随着圆孔直径的增大而明暗交替地变化(如果圆孔直径不变,改变圆孔到衍射屏的距离,也有类似的效果)。
在圆盘衍射时,对称轴上总是亮斑(泊松亮斑)。
半波带法就是一种求解方法,具体细节可以看任何一本光学教材。
半波带法把透光部分划分为一系列的环带:每个环带内的各点到衍射屏中心位置的距离都相差不过半个波长,光场振幅因而具有相同的符号,可以相长干涉;相邻环带的光程差是半个波长,因而是相消干涉。
利用三角形的余弦定理(勾股定理是其特殊形式),可以证明,每个环带贡献的光场振幅的大小是个常数,而相邻环带的符号是相反的。
圆孔衍射中间是个亮圆,外面是明暗相间的圆环;而圆板衍射中间是个小亮圆,周围包裹着一个很大的黑色圆圈,再往外才是明暗相间的圆环。
所以主要差别在于中心部分,圆孔衍射第一个暗环不大,圆板衍射第一个暗环很大。