逻辑代数中三种基本逻辑关系
- 格式:docx
- 大小:3.42 KB
- 文档页数:3
基本逻辑关系通常,把反映“条件”和“结果”之间的关系称为逻辑关系。
如果以电路的输入信号反映“条件”,以输出信号反映“结果”,此时电路输入、输出之间也就存在确定的逻辑关系。
数字电路就是实现特定逻辑关系的电路,因此,又称为逻辑电路。
逻辑电路的基本单元是逻辑门,它们反映了基本的逻辑关系。
基本逻辑关系和逻辑门基本逻辑关系和逻辑门逻辑电路中用到的基本逻辑关系有与逻辑、或逻辑和非逻辑,相应的逻辑门为与门、或门及非门。
一、与逻辑及与门与逻辑指的是:只有当决定某一事件的全部条件都具备之后,该事件才发生,否则就不发生的一种因果关系。
如图2.1.1所示电路,只有当开关A 与B 全部闭合时,灯泡Y 才亮;若开关A 或B 其中有一个不闭合,灯泡Y就不亮。
这种因果关系就是与逻辑关系,可表示为Y =A •B ,读作“A 与B”。
在逻辑运算中,与逻辑称为逻辑乘。
与门是指能够实现与逻辑关系的门电路。
与门具有两个或多个输入端,一个输出端。
其逻辑符号如图2.1.2所示,为简便计,输入端只用A 和B 两个变量来表示。
与门的输出和输入之间的逻辑关系用逻辑表达式表示为: Y =A •B =AB两输入端与门的真值表如表2.1.1所示。
波形图如图2.1.3所示。
A B Y0 0 0 0 1 0 1 0(a )常用符号表2.1.1 与门真值表图2.1.1 与逻辑举例(b )国标符号图2.1.2 与逻辑符号1 11由此可见,与门的逻辑功能是,输入全部为高电平时,输出才是高电平,否则为低电平。
二、或逻辑及或门或逻辑指的是:在决定某事件的诸条件中,只要有一个或一个以上的条件具备,该事件就会发生;当所有条件都不具备时,该事件才不发生的一种因果关系。
如图2.1.4所示电路,只要开关A 或B 其中任一个闭合,灯泡Y 就亮;A 、B 都不闭合,灯泡Y 才不亮。
这种因果关系就是或逻辑关系。
可表示为:Y =A +B读作“A 或B”。
在逻辑运算中或逻辑称为逻辑加。
14 数字逻辑电路基础 就是“0”。
显然,上述事件中的“0”和“1”不再表示为数值的大小,而是表示了事件中相互依存的两种对立状态。
客观世界事物的发展和变化通常都具有一定的因果关系。
由二值变量所构成的因果关系称“逻辑”关系。
2.正逻辑和负逻辑在二值变量的逻辑关系中,如果我们把“是”“真”“高”“有”“通”用逻辑“1”表示,把“非”“假”“低”“无”“断”用逻辑“0”表示时,是“正逻辑”的表示方法,反之为负逻辑。
数字信息技术中,我们遇到的大量电信号都是在两个稳定状态之间作阶跃式变化的电平信号或脉冲信号,因此数字信号的输入和输出关系实质上就是二值变量之间的逻辑关系。
当高电平和脉冲到来用逻辑“1”表示,低电平和无脉冲用“0”表示时,即为“正逻辑”的表示方式。
本教材中,如无特别说明,均采用正逻辑。
3.逻辑代数能够反映和处理逻辑关系的数学工具称为逻辑代数....。
逻辑代数是英国数学家格雷·布尔在19世纪中叶创立的,因此又被人们称作布尔代数。
20世纪30年代,美国人克劳德·艾尔伍德·香农把布尔代数运用于开关电路中,使之很快成为分析和计算开关电路的重要数学工具,从此人们又把逻辑代数称为开关代数。
4.逻辑变量逻辑代数和普通代数一样,也是用英文字母表示变量,由于逻辑变量取值只有“0”和“1”,没有第三种可能,因此逻辑变量....是二值变量,二值逻辑变量显然比普通代数变量简单。
值得注意的是:逻辑变量中的0和1,并不表示数字本身的量值,而是表示逻辑问题中相互依存的两种对立“状态”。
5.逻辑函数逻辑代数中,逻辑变量是因,逻辑函数是果,这种因果关系式即逻辑函数表达式。
例如,A 和B 是逻辑变量,F=f(A ,B)就是A 和B 的逻辑函数。
在逻辑代数中,只要逻辑变量的取值确定,则逻辑函数F 的值也就唯一确定了。
1.3.2 三种基本的逻辑关系在逻辑关系中,最基本的逻辑关系是与逻辑、或逻辑、和非逻辑。
逻辑代数的三种基本逻辑关系
逻辑代数中有三种基本逻辑关系,分别是:
1. 关系恒等:表示两个命题或逻辑表达式等价。
用符号"="表示。
例如,A=B 表示命题 A 等价于命题 B。
2. 关系包含:表示一个命题或逻辑表达式在另一个命题或逻辑表达式中的包含关系。
用符号"⊆"表示。
例如,A⊆B 表示命题 A 包含于命题 B。
3. 关系互斥:表示两个命题或逻辑表达式之间的互斥关系,即两者不能同时为真。
用符号"∨"表示。
例如,A∨B 表示命题A 和命题 B 互斥。
这三种关系在逻辑代数中常用于判断命题之间的等价性、包含关系和互斥关系。
逻辑代数的基本定律及规则文章来源:互联网作者:佚名发布时间:2012年05月26日浏览次数: 1 次评论:[已关闭] 功能:打印本文一、逻辑代数相等:假定F、G都具有n个相同变量的逻辑函数,对于这n个变量中的任意一组输入,如F和G都有相同的输出值,则称这两个函数相等。
在实际中,可以通过列真值表来判断。
二、逻辑代数的基本定律:在逻辑代数中,三个基本运算符的运算优先级别依次为:非、与、或。
由此推出10个基本定律如下:1.交换律A+B=B+A;A·B=B·A2.结合律A+(B+C)=(A+B)+C;A·(BC)=(AB)·C3.分配律A·(B+C)=AB+AC;A+BC=(A+B)·(A+C)4.0-1律A+0=A;A·1=AA+1=1 ;A·0=05.互补律A+=1 ;A·=06.重叠律A·A=A;A+A=A7.对合律=A8.吸收律A+AB=A;A·(A+B)=AA+B=A+B;A·(+B)=ABAB+B=B;(A+B)·(+B)=B9.反演律=·;=+10.多余项律AB+C+BC=AB+C;(A+B)·(+C)·(B+C)=(A+B)·(+C)上述的定律都可用真值表加以证明,它们都可以用在后面的代数化简中。
三、逻辑代数的基本规则:逻辑代数中有三个基本规则:代入规则、反演规则和对偶规则。
1.代入规则:在任何逻辑代数等式中,如果等式两边所有出现某一变量(如A)的位置都代以一个逻辑函数(如F),则等式仍成立。
利用代入规则可以扩大定理的应用范围。
例:=+,若用F=AC代替A,可得=++2.反演规则:已知函数F,欲求其反函数时,只要将F式中所有的“·”换成“+”,“+”换成“·”;“0”换成“1”,“1”换成“0”时,原变量变成反变量,反变量变成原变量,便得到。
逻辑代数的三个基本定理
一、代入定理
在一个逻辑等式两边出现某个变量(逻辑式)的所有位置都代入另一个变量(逻辑式),则等式仍然成立。
二、反演定理
对一个逻辑函数y进行如下变换:
将所有的“.”换成“+”,“+”换成“.”,“0”换成“1”,“1”换成“0”,原变量换成反变量,反变量换成原变量,则得到函数y的反函数y’(或称补函数)。
注意:1、遵守“先括号、然后乘、最后加”的运算优先次序;
2、不属于单个变量上的反号应保留不变。
三、对偶定理
对一个逻辑函数y进行如下变换:
将所有的“.”换成“+”,“+”换成“.”,“0”换成“1”,“1”换成“0”,则得到函数y的对偶函数yd。
对偶规则:若两个函数相等,则它们的对偶函数亦相等。
逻辑代数中三个基本运算规则
在逻辑代数中,有三个基本的运算规则,它们是交换律、结合律和分配律。
它们是用来操作逻辑表达式的基本原则,它们有助于简化复杂的表达式,使其变得更容易理解。
首先,交换律规定,如果有两个运算符,例如加号和乘号,则它们的位置可以互换,而不会改变表达式的含义。
例如,
a+b=b+a,a*b=b*a。
其次,结合律规定,如果有两个运算符,例如加号和乘号,则可以将它们结合在一起,而不会改变表达式的含义。
例如,
a+b+c=(a+b)+c=a+(b+c),a*b*c=(a*b)*c=a*(b*c)。
最后,分配律规定,如果有两个运算符,例如加号和乘号,则可以将乘法分配给加法,而不会改变表达式的含义。
例如,
a*(b+c)=(a*b)+(a*c)。
这三条基本运算规则是逻辑代数中的基础,它们可以帮助我们简化复杂的逻辑表达式,从而使我们能够更容易地理解和使用它们。
例如,我们可以使用这三条基本规则来简化表达式
(a+b)*(c+d),首先,使用结合律,可以将表达式写成
(a+b+c+d),然后,使用分配律,可以将表达式简化为
a*c+a*d+b*c+b*d,用这种方式,我们就可以简化复杂的表达式,使其变得更容易理解。
因此,这三条基本运算规则是逻辑代数中不可或缺的部分,它们可以帮助我们简化复杂的表达式,使其变得更容易理解。
它们的重要性不言而喻,每个人都应该深入研究这三条基本运算规则,以便更好地理解逻辑代数。
逻辑运算逻辑代数的基本运算比较简单,只有三种:“与”运算、“或”运算和“非”运算。
任何复杂的逻辑运算都可由这三种基本逻辑运算构成。
如,广泛采用的“与非”、“或非”、“与或非”、“异或” 。
、“同或”等逻辑运算,它们的逻辑关系可以由以上三种基本运算导出。
1.“与”运算当决定一事件的所有条件都具备之后,这事件才会发生,称这种因果关系为“与”逻辑关系,或称为“与”逻辑运算或逻辑乘。
条件用逻辑变量“A,B…..”表示,变量取值为1,表示条件具备;取值为0,表示条件不具备。
事件用F表示,只有发生(用1表示)和不发生(用0表示)两种取值。
“与”逻辑运算用表达式表示为:F=A·B 或者F=A ∧B一般简写为:F=AB,把此式称为变量A、B相“与”的逻辑表达式。
用两个串联的开关A、B控制一盏灯,如图1(a)所示。
灯亮的条件是开关A“与”开关B同时处在合上位置。
假定灯亮为“1”,不亮为“0”,开关在合上位置为“1”,在断开位置为“0”,那么,把灯的状态和两个开关所处位置之间的关系列表,如图1(b)所示。
把这种表称为真值表(或称为功能表)。
常用真值表来表示逻辑命题的真假关系。
把所有的条件(输入变量)的全部组合以表格形式列出来,这里为A、B,再把在每一种组合下对应的事件(函数)的值F求出,这张表格就是真值表。
因为每个条件有两种状态“0”、“1”,因此,n个条件就有2n个组合。
图1(b)为A“与”B 的真值表。
同一逻辑函数只可能有唯一的真值表!2.“或”运算当决定事件发生的各种条件中,只要有一个或一个以上条件具备时,这事件就会发生,这样的因果关系称为“或”逻辑关系,或称逻辑加。
“或”运算的逻辑表达式为:F=A+B 或者F=A∨B 。
用并联的两个开关A、B控制一盏灯,如图2(a)所示,只要开关A“或”开关B在合上位置,灯就亮。
按照前面假定来赋值“0”、“1”,列出真值表,如图2(b)所示。
3.“非”运算“非”运算,就是否定,或者称为求反。
逻辑代数逻辑代数(又称布尔代数),它是分析设计逻辑电路的数学工具。
虽然它和普通代数一样也用字母表示变量,但变量的取值只有“0”,“1”两种,分别称为逻辑“0”和逻辑“1”。
这里“0”和“1”并不表示数量的大小,而是表示两种相互对立的逻辑状态。
若定义一种状态为“1”,则另一种状态就为“0”。
例:灯亮用“1”表示、则灯灭就表示为“0”,不考虑灯损坏等其它可能性。
逻辑代数所表示的是逻辑关系(因果关系),而不是数量关系。
这是它与普通代数的本质区别。
1. 基本运算法则一、逻辑代数运算法则从三种基本的逻辑运算关系,我们可以得到以下的基本运算法则(公式1—9)。
0 • 0=01 • 1=10 • 1=0 1 • 0=0公式10 •A=0公式2 1 •A=A 公式3 A •A=A 公式4A •A=0与运算或运算0+0=01+1=10+1=11+0=1公式50 +A=A 公式61+A=1公式7 A +A=A 公式8A+A=1非运算01=10=公式9AA =交换律:结合律:公式11A+B=B+A 公式10A• B=B • A公式13A+(B+C)=(A+B)+C=(A+C)+B 公式12 A• (B • C)=(A • B) • C分配律:公式14A(B+C)=A • B+A • C公式15A+B • C=(A+B)(A+C)(少用)证明:右边=AA+AC+BA+BC=A+AC+BA+BC=A (1+C+B )+BC=A+BC吸收律:1. 基本运算法则公式16A (A+B )=A 证明:左边=AA+AB=A+AB=A (1+B )=A公式17A (A+B )=AB普通代数不适用!证明:BA B A A A B A A +=++=+)15())((公式DCBC A DC BC A A ++=++被吸收B A B A A +=+公式19(常用)公式18A+AB=A (常用)证明:A+AB=A(1+B)=A•1=A CDAB )F E (D AB CD AB +=+++1. 基本运算法则例:例:1. 基本运算法则公式20AB+AB=A公式21(A+B )(A+B )=A(少用)证明:BC)A A (C A AB BCC A AB +++=++CA AB BC A C AB BC A ABC C A AB +=+++=+++=)1()1(推论:CA AB BCDC A AB +=++1C A AB BC C A AB +=++公式22(常用)摩根定律公式23B A AB +=(常用)公式24BA B A ∙=+(常用)记忆:记忆:可以用列真值表的方法证明:A B 00110011A B 00001111AB A+B 00111111A+B A• B 00000011公式25=⊕B A AB或A B =BA ⊕其中:BA B A B A +=⊕是异或函数BA AB B A+=是同或函数用列真值表的方法证明:A B 00110011ABAB10000100B A 11000000A B 1100B A ⊕0011A B其中,吸收律公式16 A (A+B )= A 公式18 A+AB = A对偶式BA B A A +=+公式19公式20AB+AB=A 公式21(A+B)(A+B)=A对偶关系:将某逻辑表达式中的与(• )换成或(+),或(+)换成与(• ),得到一个新的逻辑表达式,即为原逻辑式的对偶式。
逻辑代数中三种基本逻辑关系
逻辑代数中的三种基本逻辑关系
逻辑代数是研究逻辑关系的一门学科,其基础是三种基本逻辑关系:包含关系、等价关系和互斥关系。
这三种关系在逻辑推理和数学证明中起着重要的作用,下面将逐一介绍它们。
一、包含关系
包含关系是指一个集合中的所有元素都属于另一个集合的关系。
在逻辑代数中,我们用符号“⊆”表示包含关系。
例如,若集合A包含集合B中的所有元素,则可以表示为A⊆B。
包含关系具有以下性质:
1. 自反性:对于任意集合A,都有A⊆A。
2. 反对称性:对于任意集合A和B,如果A⊆B且B⊆A,则A和B 是相等的集合,即A=B。
3. 传递性:对于任意集合A、B和C,如果A⊆B且B⊆C,则A⊆C。
包含关系在逻辑推理中常用于判断一个集合是否是另一个集合的子集,或者用于证明一些集合之间的关系。
二、等价关系
等价关系是指一个集合中的元素之间具有相等关系的关系。
在逻辑代数中,我们用符号“≡”表示等价关系。
例如,若元素a和b具有等价关系,则可以表示为a≡b。
等价关系具有以下性质:
1. 自反性:对于任意元素a,都有a≡a。
2. 对称性:对于任意元素a和b,如果a≡b,则b≡a。
3. 传递性:对于任意元素a、b和c,如果a≡b且b≡c,则a≡c。
等价关系在逻辑推理和数学证明中常用于判断两个元素是否具有相等关系,或者用于构建等价类等概念。
三、互斥关系
互斥关系是指两个命题或集合之间不存在交集的关系。
在逻辑代数中,我们用符号“∩”表示互斥关系。
例如,若集合A和集合B互斥,则可以表示为A∩B=∅。
互斥关系具有以下性质:
1. 自反性:对于任意集合A,都有A∩A=∅。
2. 对称性:对于任意集合A和B,如果A∩B=∅,则B∩A=∅。
3. 传递性:对于任意集合A、B和C,如果A∩B=∅且B∩C=∅,则A∩C=∅。
互斥关系在逻辑推理中常用于判断两个命题或集合是否具有矛盾关系,或者用于构建互斥事件等概念。
包含关系、等价关系和互斥关系是逻辑代数中的三种基本逻辑关系。
它们分别描述了集合元素之间的包含关系、相等关系和互斥关系。
这三种关系在逻辑推理和数学证明中具有重要的作用,能够帮助我们理清思路,准确表达问题,推导出正确的结论。
在学习和应用逻辑代数的过程中,我们需要深入理解和熟练运用这三种基本逻辑关
系,以提高我们的逻辑思维能力和分析问题的能力。