基于单片机智能交流电压表的设计
- 格式:pdf
- 大小:657.17 KB
- 文档页数:37
基于单片机的数字电压表设计一、引言在电子测量领域中,电压表是一种常用的测量仪器,用于测量电路中的电压值。
传统的模拟电压表由于精度低、读数不便等缺点,逐渐被数字电压表所取代。
数字电压表具有精度高、读数直观、抗干扰能力强等优点,广泛应用于工业自动化、电子设备检测、实验室测量等领域。
本文将介绍一种基于单片机的数字电压表设计方案,详细阐述其硬件电路设计、软件编程实现以及系统性能测试。
二、系统总体设计方案(一)设计要求设计一款基于单片机的数字电压表,能够测量 0 5V 的直流电压,测量精度为 001V,具有实时显示测量结果的功能。
(二)系统组成本数字电压表系统主要由以下几个部分组成:1、传感器模块:用于将输入的电压信号转换为适合单片机处理的电信号。
2、单片机模块:作为系统的核心,负责对传感器采集到的数据进行处理和计算,并控制显示模块显示测量结果。
3、显示模块:用于实时显示测量的电压值。
三、硬件电路设计(一)传感器模块选用 ADC0809 作为模数转换芯片,它具有 8 个模拟输入通道,可以将 0 5V 的模拟电压转换为 8 位数字量输出。
(二)单片机模块选择 AT89C51 单片机作为控制核心,它具有 4K 字节的 Flash 程序存储器和 128 字节的随机存取数据存储器。
(三)显示模块采用液晶显示屏(LCD1602)作为显示器件,它能够清晰地显示数字和字符信息。
四、软件编程实现(一)编程语言选择使用 C 语言进行编程,C 语言具有语法简洁、可移植性强等优点。
(二)主程序流程主程序首先进行系统初始化,包括单片机端口初始化、LCD1602 初始化、ADC0809 初始化等。
然后启动 ADC0809 进行模数转换,读取转换结果并进行数据处理,计算出实际的电压值。
最后将电压值发送到 LCD1602 进行显示。
(三)模数转换子程序ADC0809 的转换过程通过控制其启动转换引脚(START)和读取转换结束引脚(EOC)来实现。
基于单片机的数字电压表设计一、背景介绍随着科技的发展,越来越多的人开始关注电压表。
电压表是一种测量电压的仪器,它可以根据检测到的电压值显示出相应的数字。
传统的电压表使用指针或指示灯来显示电压值,但这种方式会有很多限制,例如不能显示小于1V的电压值,对于高精度的测量也不能满足要求。
为了解决上述问题,本文提出了一种基于单片机的数字电压表设计方案。
二、基于单片机的数字电压表设计原理基于单片机的数字电压表设计采用单片机ADC(模数转换)模块来检测电压值,将检测到的电压值转换成数字值,然后通过LCD(液晶显示器)来显示。
该设计中需要使用一个模拟信号处理电路,它包括一个放大器、一个滤波器和一个参考电压电路。
放大器可以增加信号的幅值,以便更好地检测信号的电压值;滤波器可以削弱外部电磁干扰,以便更好地检测电压值;参考电压电路可以把外部电压转换为0-5V之间的电压,以便更好地检测电压值。
三、设计方案1.单片机:AT89S522.ADC模块:AD79053.放大器:LM3584.滤波器:LPF(低通滤波器)5.参考电压电路:LM3176.LCD显示器:12864四、设计步骤1. 利用LM358放大器和LPF滤波器对测量的电压值进行放大和滤波处理,以获得更精准的数据。
2. 利用LM317参考电压电路将放大后的电压值转换为0-5V的电压,以便更好地检测电压值。
3. 将转换后的电压值送入AD7905 ADC模块,将检测到的电压值转换成数字值。
4. 将转换后的数字值送入AT89S52单片机,并通过12864 LCD显示器将检测到的电压值显示出来。
五、总结本文提出了一种基于单片机的数字电压表设计方案,主要采用单片机ADC模块来检测电压值,并将检测到的电压值转换为数字值,然后通过LCD显示器显示出来。
该设计方案可以满足各种电压测量要求,具有良好的精度和可靠性。
智能仪器原理与应用题目基于单片机的电压表设计班级姓名指导教师年月日目录第1章设计背景 (1)第2章系统总体方案设计 (2)第3章系统硬件电路设计 (3)3.1 系统控制器的设计 (3)3.2 电压数据采集模块 (4)3.3 LCD1602显示电路 (5)3.4 按键设置模块 (6)3.5 报警电路模块 (7)3.6 上位机通信模块 (7)3.7 温度采集模块 (8)第4章软件电路设计 (9)4.1 主程序流程图 (9)4.2 量程自动切换子程序流程图 (9)4.3 A/D转换子程序流程图 (10)4.4 温度测量子程序流程图 (11)心得体会 (12)参考文献 (13)附录 (14)基于单片机的电压表设计第1章设计背景随着科学技术的发展,人们对宏观和微观世界逐步了解,越来越多的微弱信号需要被检测,例如:弱磁、弱光、微震动、小位移、心电、脑电等。
测控技术发展到现在,微弱信号检测技术已经相对成熟,基本上采用以下两种方法来实现:一种是先将信号放大滤波,再用低或中分辨率的ADC进行采样,转化为数字信号后,再做信号处理,另一种是使用高分辨率ADC,对微弱信号直接采样,再进行数字信号处理。
两种方法各有千秋,也都有自己的缺点。
前一种方法,ADC要求不高,特别是现在大部分微处理器都集成有低或中分辨率的ADC,大大节省了开支,但是增加了繁琐的模拟电路。
后一种方法省去了模拟电路,但是对ADC性能要求高,虽然∑-△ADC发展很快,已经可以做到24位分辨率,价格也相对低廉,但是它是用速度和芯片面积换取的高精度,导致采样率做不高,特别是用于多通道采样时,由于建立时间长,采样率还会显著降低,因此,它一般用于低频信号的单通道测量,满足大多数的应用场合。
在对采样精度要求不断提升的情况下,科技工作者也在其他方面对智能仪表的发展提出了新的要求,如:良好的人机界面、数据存储和通讯、阈值报警和较低的功耗等,同时还要求仪表具有较高的性价比。
目录前言 (1)第1章方案选择及总体设计 (2)1.1设计目的 (2)1.2作品要求 (2)1.3实验器材 (2)1.4总体设计 (2)1.5模块方案选择与认证 (3)第2章硬件设计及电路图 (4)2.1.AT89S52的主要性能 (4)2.2.ADC0832功能特点 (6)2.3. 显示部分 (7)2.4电源电路 (9)2.5复位电路 (9)2.6时钟电路: (9)2.7系统原理图 (10)第三章系统程序设计 (10)3.1软件总体框架设计 (10)第四章实物制作 (11)实物的制作: (11)第五章调试说明 (13)5.1.软件调试: (13)5.2.硬件调试 (13)5.3.实物的调试 (13)参考文献 (14)附件一 (15)前言单片机是一种面向控制的大规模集成电路模块,具有功能强、体积小、可靠性高、价格低廉等特点,在工业控制、数据采集、智能仪表、机电一体化、家用电器等领域得到了广泛的应用,极大的提高了这些领域的技术水平和自动化程度,在一定程度上限制了这类产品的普及和推广。
在电量的测量中,电压、电流和频率是最基本的三个被测量,其中电压量的测量最为经常。
而且随着电子技术的发展,更是经常需要测量高精度的电压,所以数字电压表就成为一种必不可少的测量仪器。
数字电压表(Digital Voltmeter)简称DVM,它是采用数字化测量技术,把连续的模拟量(直流或交流输入电压)转换成不连续、离散的数字形式并加以显示的仪表。
由于数字式仪器具有读数准确方便、精度高、误差小、灵敏度高和分辨率高、测量速度快等特点而倍受青睐。
第1章方案选择及总体设计1.1设计目的通过制作简易数字电压表,加深对所学专业知识的认识,提高对单片机的应用能力,提高收集文献,资料的能力,从而达到综合运用所学的知识进行电子产品设计,制作与调试。
1.2作品要求基本功能:1)电压测量范围0-5V2)能用数码管显示电压值3)测量精度是0.1V1.3实验器材AT89S51芯片,AT89S52芯片,共阴极数码管,晶振,排线电阻(10K),电阻(10K),极性电容一个(10uF),无极性电容两个(30pF),0—5V电源,若干导线。
任务书摘要本文介绍了基于89c51单片机的一种8路输入电压测量电路,该电路采用ADC0809作为A/D转换元件,测量范围0至5伏,小数点后显示一位。
要求能够依次显示每路通道电压,而且能够通过拨码开关选择输入通道。
使用3位LED 模块显示,前面一位显示通道号,后面两位显示测量电压值。
本系统主要包括四大模块:数据采集模块、控制模块、显示模块、A/D转换模块。
绘制电路原理图与工作流程图,并进行调试,最终设计完成了该系统的硬件电路。
在软件编程上,采用了汇编语言进行编程,开发环境使用WAVE集成开发环境。
开发了显示模块程序、通道切换程序、A/D转换程序。
关键词:ADC0809;A/D转换;LED显示目录1 方法论证 (5)1.1 系统的设计任务 (5)1.2 设计方案 (5)1.3 软硬件开发环境 (6)2 数字电压表硬件设计 (7)2.1 单片机主电路设计 (7)2.1.1 复位电路 (7)2.1.2 晶振电路 (7)2.2 测量、转换电路设计 (8)2.3 按键电路设计 (9)2.4 显示电路设计 (10)2.4.1 LED数码管构成 (10)2.4.2 显示方式 (11)3 软件设计 (14)3.1 主程序设计 (14)3.1.1 工作流程 (14)3.1.2 存储空间定义安排 (15)3.2 模块程序设计 (15)3.2.1 A/D转换测量程序 (15)3.2.2 显示程序 (16)4 系统调试与分析 (18)4.1 调试内容及问题解决 (18)4.2 系统进一步改进方案 (18)附录1:硬件原理图 (20)附录2:程序清单 (21)参考文献 (24)1 方法论证1.1 系统的设计任务设计单片机主电路、数据采集接口电路、LED显示电路、拨码控制电路,能够实现对8路电压值进行测量,能够显示当前测量通道号及电压值,电压精度小数点后1位,可以通过键盘选择循环显示8路的检测电压值和指定通道的检测电压值。
1.2 设计方案将数据采集接口电路输入电压传入ADC0809数模转换元件,经转换后通过D0至D7与单片机P0口连接,把转换完的模拟信号以数字信号的信号的形式传给单片机,信号经过单片机处理从LED数码显示管显示。
目录1. 设计背景 02. 系统总体方案设计 03. 系统硬件电路的设计 (1)3.1 系统控制器的设计 (1)3.2 电压数据采集模块 (3)3.3 LCD1602显示电路 (4)3.4 按键设置模块 (5)3.5 报警电路模块 (6)3.6 上位机通信模块 (6)3.7 温度采集模块 (7)4. 软件电路设计 (7)4.2 量程自动切换子程序流程图 (8)4.3 A/D转换子程序流程图 (9)4.4 温度测量子程序流程图 (10)心得体会 (11)参考文献 (12)附录 (13)基于单片机的电压表设计1. 设计背景随着科学技术的发展,人们对宏观和微观世界逐步了解,越来越多的微弱信号需要被检测,例如:弱磁、弱光、微震动、小位移、心电、脑电等。
测控技术发展到现在,微弱信号检测技术已经相对成熟,基本上采用以下两种方法来实现:一种是先将信号放大滤波,再用低或中分辨率的ADC进行采样,转化为数字信号后,再做信号处理,另一种是使用高分辨率ADC,对微弱信号直接采样,再进行数字信号处理。
两种方法各有千秋,也都有自己的缺点。
前一种方法,ADC要求不高,特别是现在大部分微处理器都集成有低或中分辨率的ADC,大大节省了开支,但是增加了繁琐的模拟电路。
后一种方法省去了模拟电路,但是对ADC性能要求高,虽然∑-△ADC发展很快,已经可以做到24位分辨率,价格也相对低廉,但是它是用速度和芯片面积换取的高精度,导致采样率做不高,特别是用于多通道采样时,由于建立时间长,采样率还会显著降低,因此,它一般用于低频信号的单通道测量,满足大多数的应用场合。
在对采样精度要求不断提升的情况下,科技工作者也在其他方面对智能仪表的发展提出了新的要求,如:良好的人机界面、数据存储和通讯、阈值报警和较低的功耗等,同时还要求仪表具有较高的性价比。
本文主要设计的是基于单片机的量程自动选择的电压表的设计。
用来精确地采集不同等级的电压表。
数字电压表是采用数字化测量技术,把连续的量输入电压转换成不连续离散的数字化形式并加以显示的仪表作为现代电子测量中最基础与核心的一种测量仪器,对其测量精度和功能要求也越来越高,由于电压测量范围广特别是在微电压高电压及待测信号强弱相差极大情况下,既要保证弱信号测量精度又要兼顾强信号的测量范围,传统的手动转换量程的电压表在测量技术上有一定难度同时若量程选择不当不但会造成测量精度下降甚至损坏仪表。
基于单片机的数字电压表设计数字电压表在电子技术中使用非常广泛,可以用来测量电路中的直流电压、交流电压以及各种信号的幅度等等。
基于单片机的数字电压表实现了数字电压的读取和显示,具有精确、稳定、易操作等特点,下面将介绍基于单片机的数字电压表的设计原理及实现方法。
一、系统结构基于单片机的数字电压表主要是由程序控制模块、模数转换模块和数字显示模块组成。
程序控制模块主要用来完成开机、校准、测试、功能选择等功能;模数转换模块主要将电压信号转换成数字量,供数字显示模块使用;数字显示模块主要将转换后的数字量显示在LCD液晶屏上。
二、硬件设计1.电源电路电源电路主要用来为电路提供稳定的电压和电流,本电路采用稳压电源芯片LM7805实现,稳压芯片输入端连接外部DC12V/1A电源,输出端连接电路板上的整个电路。
2.输入电路输入电路主要用来将被测电源的电压传递给单片机,常规情况下采用分压电路实现。
在本电路中,电阻R1和电容C1为RC滤波电路,起到滤波作用,防止干扰信号的影响;电阻R2是分压电路中的电阻,它根据电压值的不同设置不同的值,以保证被测电压在单片机内部转换过程中不会对单片机产生影响。
3.单片机模块单片机模块是系统的核心部分,本电路中选用STM32F103C8T6单片机实现模数转换和数码管控制,使用C 语言编写程序,通过模拟输入端口读取电压并进行模数转换,将得到的数字使用查表法将其转换为数码管控制脉冲,控制数码管的亮灭实现数字显示。
4.数字显示模块数字显示模块主要由七段数码管、LCD液晶屏幕、导线和电容等器组成,七段数码管用于展示测量到的电压大小,LCD 液晶屏用于展示功能选项、单位等信息。
导线是电路板内部连接线路,电容等器用来平滑电压波动。
三、软件设计1.引脚定义在程序中首先定义STM32F103C8T6单片机内存地址、输入输出引脚和电平状态,其中A0口用来读取被测电压;B0-B7口用来控制七段数码管的亮灭;C0口用来输出PWM,控制风扇的旋转速度;D0口用来控制蜂鸣器的开启和关闭。
毕业论文基于单片机的数字电压表的设计摘要本设计主要研究的是以AT89C51单片机为核心的电压测量系统,该系统能够在单片机的控制下完成对电压信号采集,能够根据采样值进行量程自动转换,并且测量结果可通过四个数码管显示出来。
整个系统的设计完成了硬件电路的设计及软件程序的编写,通过最终硬件电路的调试及软件程序的仿真,使该系统能够在要求的条件下达到正常的测量及显示功能。
在整个系统的设计过程中,主要采用了模块化的设计方法。
关键词:AT89C51单片机;数字电压表;模块化Design of the digital voltmeter based on the MCUAbstractThis paper introduces an achievement of a voltage measure system based on the AT89C51 MCU. This system can accomplish the signal sampling of voltage, and change range automatically according to the signal sampled. The result can be displayed through numeral rube of four places.In this design, the hardware circuit and software programming are both realized at the judge of hardware circuit and imitation of software program. This system can fulfill the function of measure and displaying under the demanded conditions.Over the designing of the whole system, the method of modularity is used. Key words: AT89C51 MCU; Digital Voltmeter; Modularity目录绪论 (1)第一篇硬件部分的设计 (1)1.数据采集部分的设计 (2)1.1 交流信号和直流信号的采样 (2)2.量程自动转换电路的设计 (4)3.模数转换单元的设计 (5)4.控制电路的设计 (7)4.1总体概况 (7)一.主要功能 (7)二.内部结构框图 (8)三.外部引脚说明 (9)4.2 单片机在系统中的应用 (11)5.显示部分的设计 (12)5.1键盘显示8279芯片 (12)5.2 8279的组成和基本工作原理 (13)5.3 8279引脚及功能 (15)5.4 8279的工作方式及命令字格式 (17)第二篇软件系统的设计 (23)1.MCS-51单片机汇编语言 (23)2.主程序的设计 (23)3.子程序的设计 (25)3.1采样程序的设计 (25)3.2 量程处理程序的设计 (26)3.21 采样及其处理程序 (26)3.22 计算部分的设计 (28)3.23 显示部分的软件设计 (29)3.3 超量程处理 (29)4.系统程序清单 (29)设计总结 (41)参考文献 (41)绪论在电气测量中,电压是一个很重要的参数。
基于单片机的电压表设计目录1 引言 (2)2设计原理及要求 (1)2.1数字电压表的实现原理 (1)2.2数字电压表的设计指标............... 错误!未定义书签。
3软件仿真电路设计. (2)3.1设计思路 (2)3.2硬件电路设计图 (2)3.3 AT89C51的功能介绍 (3)3.3.1简单概述 (3)3.3.2主要功能特性 (3)3.3.3 AT89C51的引脚介绍 (4)3.4 ADC0804的引脚及功能介绍 (6)3.4.1芯片概述 (6)3.4.2 引脚简介 (7)3.4.3 ADC0804的转换原理 (8)3.5 74HC373芯片的引脚及功能 (8)3.5.1芯片概述 (8)3.5.2引脚介绍 (10)3.6 LED数码管的控制显示 (10)4系统软件程序的设计 (11)5测试及性能分析 ......................... 错误!未定义书签。
5.1 测试............................. 错误!未定义书签。
55.2 性能分析.......................... 错误!未定义书签。
6 设计总结 (17)参考文献 (17)附录原理电路............................ 错误!未定义书签。
1 引言随着微电子技术的不断发展,微处理器芯片的集成程度越来越高,单片机已可以在一块芯片上同时集成CPU、存储器、定时器/计数电路,这就很容易将计算机技术与测量控制技术结合,组成智能化测量控制系统。
数字电压表(DigitalVoltmeter)简称DVM,它是采用数字化测量技术,把连续的模拟量(直流输入电压)转换成不连续、离散的数字形式并加以显示的仪表。
与此同时,由DVM扩展而成的各种通用及专用数字仪器仪表,也把电量及非电量测量技术提高到崭新水平。
本设计重点介绍单片机、A/D 转换器以及由它们构成的数字电压表的工作原理。
基于单片机智能交流电压表的设计摘要电工参数一般包括电压、电流、功率、频率、功率因数等。
在电网调度自动化的设备中需要配置多只测量显示上述电工参数的镶嵌式面板表,如电压表、电流表、功率表等等,其一般均为指针式面板表,精度低,可视距离近,数据需要人工抄录,浪费人力资源,数据管理不便,容易出错。
近年来,随着微电子技术的迅速发展和超大规模集成电路的出现,特别是单片机的出现,正在引起测量控制仪表领域的新的技术革命。
本文在研究国内外有关智能仪器仪表最新科研成果的基础上,采用单片机为测量仪器的主控制器,设计出可与上位计算机进行通信的新型智能交流电压表。
这种以单片机为主体的新型智能仪表将计算机技术与测量控制技术结合在一起,在测量过程自动化,测量结果数据处理以及功能的多样化方面都取得了巨大的进步。
关键词:单片机,智能仪表,数据处理,通信如需此论文Word版本,单片机程序/单片机技术支持,请访问: 嵌入式应用软件园。
Intelligence alternating voltage meteron Single-chip MicrocomputerAbstractElectrical parameter includes voltage, current, power, frequency power factor ,and soon .The adjustment system of electrical network needs many panel instruments that can show the electrical parameter, such as voltage, current, power, cycle etc. Usually these instrument is not accurate, wastes manpower resource, and the management of the data is inconvenient and easy to mistake. Recently the development of micro-electronics technology and the advent of SLSI, especially the advent. Of single chip, lead to a new revolution in the field of instrument.In this paper,on the basis of studying the up to date fruit of instrument ,a new intellective instrument which adopts single chip as control core and which can communicate with the PC is designed.This appliance which bases on the single chip compounds the technology of computer and measure. It is improved very much on processing result and the diversification of function.Key words: single chip, intellective instrument, data process, communication.目录引言 (6)第一章方案选择 (7)1.1设计结构图 (7)1.2芯片的选择 (7)第二章硬件电路设计 (9)2.1总硬件电路设计 (9)2.2A T89S51单片机简介 (9)2.2.1 芯片特点 (9)2.2.2 芯片管脚介绍 (10)2.3电压信号采样 (12)2.3.1 设计原理简介 (12)2.3.2 精密电压互感器SPT205B (12)2.4A/D转换电路 (14)2.4.1 A/D转换芯片介绍 (14)2.4.2 TLC1549与单片机的连接 (15)2.5显示单元 (16)2.5.1 MAX7219芯片的介绍 (16)2.5.2 引脚说明 (16)2.5.3 工作原理 (17)2.5.4 显示单元与单片机连接电路 (18)2.6通信接口硬件设计 (18)2.6.1 数据通信基础 (19)2.6.2 RS-232标准接口总线 (19)2.6.3 芯片MAX485介绍 (20)第三章软件部分 (23)3.1软件整体结构 (23)3.2电压采集模块 (24)3.2.1 数字滤波 (24)3.2.2 A/D转换 (25)3.3显示模块 (26)3.4通讯模块 (27)结论和展望 (29)参考文献 (30)致谢 (31)附录A 电压表电路图 (32)附录B 源程序 (33)附录C 外文文献及其译文 (34)附录D 参考文献摘要 (36)插图清单图1-1 整体结构图 (7)图2-1 单片机引脚图 (10)图2-2 采样部分的原理图 (12)图2-3 尺寸结构图 (13)图2-4 交流互感器部分电路图 (14)图2-5 TLC1549引脚排列 (15)图2-6 TLC1549方式1的时序图 (15)图2-7 TLC1549与单片机A T89S51的连接图 (16)图2-8 MAX7219芯片实物封装图 (17)图2-9 MAX7219芯片工作时序图 (18)图2-10 MAX7219与51单片机的接线电路 (18)图2-11 MAX485芯片引脚介绍 (21)图2-12 PC与单片机串行通讯 (22)图3-1 总体软件流程 (23)图3-2 数字滤波的流程图 (25)图3-3 A/D转换流程图 (26)图3-4 显示模块流程图 (27)图3-5A 单片机与微机信的软件框图 (28)图3-5B 初始化框图 (28)表格清单表2-1精密电压互感器SPT205B性能指标表 (12)引言电力系统参数一般包括电压、电流、功率、频率、功率因数等。
在电网调度自动化的设备中需要配置多只测量显示上述电工参数的镶嵌式面板表,如电压表、电流表、功率表等等,其一般均为指针式面板表,精度低,可视距离近,数据需要人工抄录,浪费人力资源,数据管理不便,容易出错。
近年来,随着微电子技术的迅速发展和超大规模集成电路的出现,特别是单片机的出现,正在引起测量控制仪表领域的新的技术革命。
本文在研究国内外有关智能仪器仪表最新科研成果的基础上,采用单片机作为测量仪器的主控制器,设计出可与上位计算机进行通信的新型智能交流电压表。
这种以单片机为主体的新型智能仪表将计算机技术与测量控制技术结合在一起,在测量过程自动化,测量结果数据处理以及功能的多样化方面都取得了巨大的进步。
第一章方案选择1.1 设计结构图本设计是基于单片机智能交流电压表的设计,设计中使用了精密交流互感器,桥式整流器,∏式滤波单元,串行A/D转换器,MCS-51系列单片机,显示驱动器,LED数码管,上位通信单元几部分组成。
整体结构图如下1-1图1-1 整体结构图被测交流电压由精密交流互感器降压得到与输入被测电压成比例的交流电压值:经整流滤波得到与输入电压成比例的直流电压值。
由AD转换芯片TLC1549转换成相应的数值量;再由单片机存储在内存单元,做相应的数字信号处理(算法);然后通过显示驱动器MAX 7219驱动四个LED数码管显示结果,并通过MAX485收发器芯片与上位机相连。
智能电压表有简单的监控功能,能实时显示并记录当前电压情况。
通过智能交流电压表,达到了监控交流电压有效值变化的目的。
1.2芯片的选择电力系统参数一般包括电压、电流、功率、频率、功率因数等等。
在电网调度自动化的设备中需要配置多只测量显示上述电_工参数的镶嵌式面板表,如电压表、电流表、功率表等等,其一般均为指针式面板表,精度低,可视距离近,数据需要人工抄录,浪费人力资源,数据管理不便,容易出错。
本设计采用A TMEL生产的MCS-51系列的A T80S51单片机芯片作为主芯片。
没有采用其他公司芯片的理由是我们单片机课程详细修过MCS-51系列单片机,且MCS-51单片机所占的市场分额很大,在单片机领域影响力很大,几十年居于单片机领域领头羊地位,其产品大量作为单片机教材范例使用。
本想用最常见并主修过的A T89C51,但现在,89S51目前已经成为了实际应用市场上新的宠儿,89S51在工艺上进行了改进,89S51采用0.35新工艺,成本降低,而且将功能提升,增加了竞争力,并增加了很多新功能,内置看门狗记时器,所以我选择它。
整流电路方面本来使用双二极管进行整流,但考虑到更高的精确性,使用了简单实用的桥式整流电路,并采用成本低廉,电路简单的∏型滤波电路进行滤波。
使用精密电压互感器SPT205B进行电压信号的降压处理,是为了更高的信号采样精密度,SPT205B实际上是一款毫安级精密电流互感器,精密度很高。
本想使用电阻级联进行分压,但其精确度和抗干扰性就大大差远了,极大的影响了测量的精确性,所以采用了电压互感器降压。
A/D转换部分采用的TLC1549芯片是TI工公司生产的10位逐次逼近模数转换器,该器件具有两个数字输入端和一个3态输出端。
没有采用同系列的8位A/D转换芯片TLC549,是因为本芯片精度更高,可以达到令人满意的效果。
显示方面采用了美国MAXIM公司生产的串行输入/输出共阴极显示驱动器系列芯片MAX7219,以其功能强大,编程简单,控显可靠,可泛用于工业控制器等力一面的数码显示驱动,比较成熟的应用即为与单片机的结合。
选用LED数码管显示电压值,精度高,可视距离远。
并利用上位PC机对电压值进行监控,完成了机械式面板表和一般数字式电压表不能完成的工作。
LED数码管简单经济,使我放弃了本想使用的液晶显示单元,虽然先进有挑战性,但却极大的增加了成本,对产品的功能设计而言毫无意义,所以最后选择了LED数码管作为显示单元。
在于上位机相连模块,采用了MAX485收发器芯片,可实现多片并联并通过MAX232与上位机通讯,节省了通讯资源和上位机的利用率,故我选择它。
第二章硬件电路设计2.1总硬件电路设计在智能电压表的设计中主要包括硬件、软件、及仪表工艺三方面的问题。
硬件方面采用了桥式整流及N式滤波环节,A/D转换芯片TLC1549与单片机配合完成A/D转换的工作。
选用MCS-51系列A T80S51芯片进行数据处理。
四块八段LED进行显示。
MAX485作为电平转换芯片,用于通信部分的设计。
2.2 A T89S51单片机简介2.2.1 芯片特点说到A T89S51单片机就不得不说他的原形A T89C51单片机。