智能仪器仪表基于单片机的电压表的设计
- 格式:doc
- 大小:561.50 KB
- 文档页数:17
基于单片机的数字电压表摘要随着电子科学技术的发展,电子测量成为广大电子工作者必须掌握的手段,对测量的精度和功能的要求也越来越高,而电压的测量甚为突出,因为电压的测量最为普遍。
本设计在参阅了大量前人设计的数字电压表的基础上,利用单片机技术结合A/D 转换芯片构建了一个直流数字电压表。
本文首先简要介绍了设计电压表的主要方式以及单片机系统的优势;然后详细介绍了直流数字电压表的设计流程,以及硬件系统和软件系统的设计,并给出了硬件电路的设计细节,包括各部分电路的走向、芯片的选择以及方案的可行性分析等。
近年来随着科技的飞速发展,单片机的应用正在不断地走向深入,在多方面显示出了它的优势,值得进一步学习和研究。
但是仅单片机方面的知识是不够的,还应根据具体硬件结构,以及针对具体应用对象特点的软件结合,加以完善。
关键词单片机(MCU)A/D转换ADC0809Digital Voltmeter Based on MicrocontrollerABSTRACTWith the development of electronic science and technology, electronic measuring a vast number of electronic workers must have the means to measure the accuracy and function of increasingly high requirements, and voltage measurement is obvious, because the measured voltage is most common. The design see a lot of our predecessors in the design of digital voltage meter on the basis of using SCM technology with A / D converter chip Construction of a DC voltage digital form. This paper briefly introduced the design voltage meter and the main form of the advantages of SCM system and then described in detail the number of DC voltage meter design processes, systems and software and hardware system design, and gives details of the hardware circuit design, Including the direction of the circuit, chip and the choice of the feasibility analysis.In recent years, with the rapid development of science and technology, SCM applications are continually deepening, in many ways to display its advantages, it is worth further study and research. However, only the knowledge SCM is not enough, the structure should be based on specific hardware and application-specific characteristics of the target software combination, to be perfect.Key words Microcontroller (MCU),A / D converter,ADC0809目录摘要 (I)ABSTRACT (II)1 引言 (1)2 系统原理及基本框图 (3)3 硬件电路设计 (4)3.1 输入电路 (4)3.2单片机芯片选择 (4)3.3 A/D转换器与单片机接口电路 (8)3.3.1 A/D转换器芯片选择 (8)3.3.2 A/D 转换电路 (9)3.3.3 ADC0809 A/D转换器 (9)3.4 LED数码管 (12)3.4.1 性能特点 (12)3.4.2 性能简易检测 (12)3.4.3 使用注意事项 (13)3.5 通讯模块 (13)3.6报警电路的设计 (14)4 软件设计及流程图 (15)4.1程序设计内容 (15)4.2程序流程框图 (15)4.3 C51程序(见附录3) (16)4.4 通讯模块程序设计 (16)结束语 (18)致谢 (20)参考文献 (21)附录一 (22)附录二 (25)1 引言在电量的测量中,电压、电流和频率是最基本的三个被测量,其中电压量的测量最为经常。
基于单片机的数字电压表设计一、背景介绍随着科技的发展,越来越多的人开始关注电压表。
电压表是一种测量电压的仪器,它可以根据检测到的电压值显示出相应的数字。
传统的电压表使用指针或指示灯来显示电压值,但这种方式会有很多限制,例如不能显示小于1V的电压值,对于高精度的测量也不能满足要求。
为了解决上述问题,本文提出了一种基于单片机的数字电压表设计方案。
二、基于单片机的数字电压表设计原理基于单片机的数字电压表设计采用单片机ADC(模数转换)模块来检测电压值,将检测到的电压值转换成数字值,然后通过LCD(液晶显示器)来显示。
该设计中需要使用一个模拟信号处理电路,它包括一个放大器、一个滤波器和一个参考电压电路。
放大器可以增加信号的幅值,以便更好地检测信号的电压值;滤波器可以削弱外部电磁干扰,以便更好地检测电压值;参考电压电路可以把外部电压转换为0-5V之间的电压,以便更好地检测电压值。
三、设计方案1.单片机:AT89S522.ADC模块:AD79053.放大器:LM3584.滤波器:LPF(低通滤波器)5.参考电压电路:LM3176.LCD显示器:12864四、设计步骤1. 利用LM358放大器和LPF滤波器对测量的电压值进行放大和滤波处理,以获得更精准的数据。
2. 利用LM317参考电压电路将放大后的电压值转换为0-5V的电压,以便更好地检测电压值。
3. 将转换后的电压值送入AD7905 ADC模块,将检测到的电压值转换成数字值。
4. 将转换后的数字值送入AT89S52单片机,并通过12864 LCD显示器将检测到的电压值显示出来。
五、总结本文提出了一种基于单片机的数字电压表设计方案,主要采用单片机ADC模块来检测电压值,并将检测到的电压值转换为数字值,然后通过LCD显示器显示出来。
该设计方案可以满足各种电压测量要求,具有良好的精度和可靠性。
基于单片机的数字电压表的设计任务书 1.课程设计的内容和要求(包括原始数据、技术要求、工作要求等): 一、设计电压测量电路 数字式电压表是电压测量的常用仪表,本课题即要求应用单片机、A/D转换器及其他器件组成数字式电压检测仪表。 二、主要技术指标与要求:
2.1基本要求: (1)电压测量范围0-5V; (2)能用数码管显示电压值; (3)测量精度达0.1V; (4)要求系统具备复位功能; 2.2发挥部分:
(1)电压测量范围5—20V; (3)电压表具备20V超量程报警功能; (4)测量精度:0-5V内可调可达0.02V,5-20V可达0.1V; (5)尽可能减少芯片的使用节能成本; 三.设计思路
(1)方案的对比和确定 (2)硬件电路设计 a) AT89S52-24PU是DIPloma-40集成电路芯片,该芯片有4个八位并行的双向I/O口,分别为P0、P1、P2、P3、口. AT89S52具有较大程序存储空间和数据存储空间能满足用户的需要易于实现功能拓展,AT89S52内部置有ISP在线编程技术可以应用下载线直接连到计算机的并口相连就可烧写程序。 b) ADC0809CCN是CMOS器件,不仅包括一个8位的逐次逼近型的ADC部分,而且还提供一个8通道的模拟多路开关和通道寻址逻辑,因而有理由把它作为简单的“数据采集系统”。利用它可直接输入8个单端的模拟信号分时进行A/D转换。 c)LED84S -------LED动态显示模块. 12引脚,包含四个数码管,应用起来相当简便。 (3)程序设计
i. 由于ADC0809在进行A/D转换时需要有CLK信号,而此时的ADC0809的CLK是接在AT89S51单片机的P3.3端口上,也就是要求从P3.3输出CLK信号供ADC0809使用。因此产生CLK信号的方法就得用软件来产生了。 ii. 由于ADC0809的参考电压VREF=VCC,所以转换之后的数据要经过数据处理,在数码管上显示出电压值。实际显示的电压值 (D/256*VREF) (4)结果分析 参照实验现象和结果进行必要的分析和思考
基于单片机的数字电压表的课程设计一、引言在电子测量领域,电压表是一种常见且重要的测量工具。
传统的模拟电压表存在精度低、读数不直观等缺点,而数字电压表则凭借其高精度、高稳定性和直观的数字显示等优势,在电子测量中得到了广泛的应用。
本课程设计旨在基于单片机设计一款数字电压表,以实现对直流电压的准确测量和数字显示。
二、设计要求1、测量范围:0 5V 直流电压。
2、测量精度:优于 01V 。
3、显示方式:四位数码管显示。
4、具备超量程报警功能。
三、系统总体设计本数字电压表系统主要由单片机最小系统、A/D 转换模块、数码管显示模块和报警模块组成。
单片机最小系统作为控制核心,负责整个系统的运行和数据处理。
A/D 转换模块将输入的模拟电压转换为数字量,供单片机读取。
数码管显示模块用于显示测量的电压值。
报警模块在测量电压超过设定范围时发出报警信号。
四、硬件设计1、单片机最小系统选用 STC89C52 单片机,其具有性能稳定、价格低廉等优点。
最小系统包括单片机芯片、晶振电路和复位电路。
2、 A/D 转换模块采用 ADC0809 芯片进行 A/D 转换。
ADC0809 是 8 位逐次逼近型A/D 转换器,具有 8 个模拟输入通道,能够满足本设计的需求。
3、数码管显示模块使用四位共阳极数码管进行电压显示。
通过单片机的 I/O 口控制数码管的段选和位选,实现数字的显示。
4、报警模块采用蜂鸣器作为报警元件,当测量电压超过 5V 时,单片机输出高电平驱动蜂鸣器发声报警。
五、软件设计软件部分主要包括主程序、A/D 转换子程序、数据处理子程序和显示子程序等。
1、主程序负责系统的初始化,包括单片机端口设置、A/D 转换器初始化等。
然后循环调用 A/D 转换子程序、数据处理子程序和显示子程序,实现电压的测量和显示。
2、 A/D 转换子程序控制 ADC0809 进行 A/D 转换,并读取转换结果。
3、数据处理子程序将 A/D 转换得到的数字量转换为实际的电压值,并进行精度处理。
目录1. 设计背景 02. 系统总体方案设计 03. 系统硬件电路的设计 (1)3.1 系统控制器的设计 (1)3.2 电压数据采集模块 (3)3.3 LCD1602显示电路 (4)3.4 按键设置模块 (5)3.5 报警电路模块 (6)3.6 上位机通信模块 (6)3.7 温度采集模块 (7)4. 软件电路设计 (7)4.2 量程自动切换子程序流程图 (8)4.3 A/D转换子程序流程图 (9)4.4 温度测量子程序流程图 (10)心得体会 (11)参考文献 (12)附录 (13)基于单片机的电压表设计1. 设计背景随着科学技术的发展,人们对宏观和微观世界逐步了解,越来越多的微弱信号需要被检测,例如:弱磁、弱光、微震动、小位移、心电、脑电等。
测控技术发展到现在,微弱信号检测技术已经相对成熟,基本上采用以下两种方法来实现:一种是先将信号放大滤波,再用低或中分辨率的ADC进行采样,转化为数字信号后,再做信号处理,另一种是使用高分辨率ADC,对微弱信号直接采样,再进行数字信号处理。
两种方法各有千秋,也都有自己的缺点。
前一种方法,ADC要求不高,特别是现在大部分微处理器都集成有低或中分辨率的ADC,大大节省了开支,但是增加了繁琐的模拟电路。
后一种方法省去了模拟电路,但是对ADC性能要求高,虽然∑-△ADC发展很快,已经可以做到24位分辨率,价格也相对低廉,但是它是用速度和芯片面积换取的高精度,导致采样率做不高,特别是用于多通道采样时,由于建立时间长,采样率还会显著降低,因此,它一般用于低频信号的单通道测量,满足大多数的应用场合。
在对采样精度要求不断提升的情况下,科技工作者也在其他方面对智能仪表的发展提出了新的要求,如:良好的人机界面、数据存储和通讯、阈值报警和较低的功耗等,同时还要求仪表具有较高的性价比。
本文主要设计的是基于单片机的量程自动选择的电压表的设计。
用来精确地采集不同等级的电压表。
数字电压表是采用数字化测量技术,把连续的量输入电压转换成不连续离散的数字化形式并加以显示的仪表作为现代电子测量中最基础与核心的一种测量仪器,对其测量精度和功能要求也越来越高,由于电压测量范围广特别是在微电压高电压及待测信号强弱相差极大情况下,既要保证弱信号测量精度又要兼顾强信号的测量范围,传统的手动转换量程的电压表在测量技术上有一定难度同时若量程选择不当不但会造成测量精度下降甚至损坏仪表。
基于单片机的简易数字电压表设计随着电子技术的迅猛发展,数字电压表在实验室、工业和日常生活中的应用越来越广泛。
本文将详细介绍基于单片机的简易数字电压表的设计过程,包括系统设计思路、硬件选型、软件实现以及调试过程。
设计一个简易数字电压表的目标是实现对直流电压的实时测量,并将其以数字形式显示。
该系统的核心是单片机,它负责数据采集、处理及结果显示。
选用单片机的原因在于其体积小、成本低、易于编程等优点。
在硬件设计方面,系统主要由输入电路、单片机、显示模块和电源模块组成。
输入电路的作用是将待测电压信号转化为单片机可处理的电信号。
一般采用分压电路,通过电阻分压的方法,将高电压降低至单片机的可接受范围。
还需考虑输入电压的范围,以确保测量精度和系统安全。
选用的单片机需具备一定的模拟输入功能,以便对电压进行采样。
常用的单片机型号有51系列、AVR系列及STM32系列等,其中STM32系列因其较高的性能和丰富的外设而受到广泛关注。
在设计中,应根据具体需求选择合适的单片机,并进行必要的引脚配置。
显示模块的选择是系统设计的重要环节,常用的有液晶显示屏(LCD)和七段数码管。
液晶显示屏具有显示内容丰富、可视角度广等优势,但其功耗相对较高。
而七段数码管则以其简洁明了的特性广泛应用于数字电压表中。
在本设计中,建议使用LCD显示模块,以便于显示多位数值及相关信息。
电源模块的设计需确保系统的稳定运行。
一般采用稳压电源,为单片机及其他外设提供稳定的电压供应。
需考虑电源的功耗及散热问题,确保系统在长期工作中不会出现故障。
数据处理模块是整个系统的核心,其主要任务是将采集到的模拟电压信号转换为相应的数字值。
可采用模数转换(ADC)技术,将模拟信号转换为数字信号,并进行必要的线性化处理。
处理过程中,应考虑量化误差及噪声对测量结果的影响。
数据显示模块负责将处理后的电压值通过LCD显示出来。
在这一过程中,需要对显示内容进行格式化,以确保信息的清晰易读。
基于单片机的数字电压表设计数字电压表在电子技术中使用非常广泛,可以用来测量电路中的直流电压、交流电压以及各种信号的幅度等等。
基于单片机的数字电压表实现了数字电压的读取和显示,具有精确、稳定、易操作等特点,下面将介绍基于单片机的数字电压表的设计原理及实现方法。
一、系统结构基于单片机的数字电压表主要是由程序控制模块、模数转换模块和数字显示模块组成。
程序控制模块主要用来完成开机、校准、测试、功能选择等功能;模数转换模块主要将电压信号转换成数字量,供数字显示模块使用;数字显示模块主要将转换后的数字量显示在LCD液晶屏上。
二、硬件设计1.电源电路电源电路主要用来为电路提供稳定的电压和电流,本电路采用稳压电源芯片LM7805实现,稳压芯片输入端连接外部DC12V/1A电源,输出端连接电路板上的整个电路。
2.输入电路输入电路主要用来将被测电源的电压传递给单片机,常规情况下采用分压电路实现。
在本电路中,电阻R1和电容C1为RC滤波电路,起到滤波作用,防止干扰信号的影响;电阻R2是分压电路中的电阻,它根据电压值的不同设置不同的值,以保证被测电压在单片机内部转换过程中不会对单片机产生影响。
3.单片机模块单片机模块是系统的核心部分,本电路中选用STM32F103C8T6单片机实现模数转换和数码管控制,使用C 语言编写程序,通过模拟输入端口读取电压并进行模数转换,将得到的数字使用查表法将其转换为数码管控制脉冲,控制数码管的亮灭实现数字显示。
4.数字显示模块数字显示模块主要由七段数码管、LCD液晶屏幕、导线和电容等器组成,七段数码管用于展示测量到的电压大小,LCD 液晶屏用于展示功能选项、单位等信息。
导线是电路板内部连接线路,电容等器用来平滑电压波动。
三、软件设计1.引脚定义在程序中首先定义STM32F103C8T6单片机内存地址、输入输出引脚和电平状态,其中A0口用来读取被测电压;B0-B7口用来控制七段数码管的亮灭;C0口用来输出PWM,控制风扇的旋转速度;D0口用来控制蜂鸣器的开启和关闭。
基于单片机的电压表设计目录1 引言 (2)2设计原理及要求 (1)2.1数字电压表的实现原理 (1)2.2数字电压表的设计指标............... 错误!未定义书签。
3软件仿真电路设计. (2)3.1设计思路 (2)3.2硬件电路设计图 (2)3.3 AT89C51的功能介绍 (3)3.3.1简单概述 (3)3.3.2主要功能特性 (3)3.3.3 AT89C51的引脚介绍 (4)3.4 ADC0804的引脚及功能介绍 (6)3.4.1芯片概述 (6)3.4.2 引脚简介 (7)3.4.3 ADC0804的转换原理 (8)3.5 74HC373芯片的引脚及功能 (8)3.5.1芯片概述 (8)3.5.2引脚介绍 (10)3.6 LED数码管的控制显示 (10)4系统软件程序的设计 (11)5测试及性能分析 ......................... 错误!未定义书签。
5.1 测试............................. 错误!未定义书签。
55.2 性能分析.......................... 错误!未定义书签。
6 设计总结 (17)参考文献 (17)附录原理电路............................ 错误!未定义书签。
1 引言随着微电子技术的不断发展,微处理器芯片的集成程度越来越高,单片机已可以在一块芯片上同时集成CPU、存储器、定时器/计数电路,这就很容易将计算机技术与测量控制技术结合,组成智能化测量控制系统。
数字电压表(DigitalVoltmeter)简称DVM,它是采用数字化测量技术,把连续的模拟量(直流输入电压)转换成不连续、离散的数字形式并加以显示的仪表。
与此同时,由DVM扩展而成的各种通用及专用数字仪器仪表,也把电量及非电量测量技术提高到崭新水平。
本设计重点介绍单片机、A/D 转换器以及由它们构成的数字电压表的工作原理。
摘要随着电子科学技术的发展,电子测量成为广大电子工作者必须掌握的手段,对测量的精度和功能的要求也越来越高,而电压的测量甚为突出,因为电压的测量最为普遍。
本设计在参阅了大量前人设计的数字电压表的基础上,利用单片机技术结合A/D转换芯片A/D0809构建了一个直流数字电压表。
本文首先简要介绍了设计电压表的主要方式以及单片机系统的优势;然后详细介绍了直流数字电压表的设计流程,以及硬件系统和软件系统的设计,并给出了硬件电路的设计细节,包括各部分电路的走向、芯片的选择以及方案的可行性分析等。
关键词:单片机(MCU);电压;A/D转换;ADC0809Abstract: With the development of electronical scientific technology, electronical measurement became a technic that everyone of engaging electronical had to master it. What’s more, the precision is higher and higher and, the function is more and more powerful, and voltage’s measurement is best important. Primarily, I designed a Digital-Voltmeter use MCU technic with A/D-switch chip(ADC0809) base on lots of predecessor design. In this article, introduce some methods that design Digital- Voltmeter and the advantages of use MCU system to do it on the first; then treat the procedure of design of direct- Digital-Voltmeter,contain the hardware and software.Keywords: Micro Controller Unit;Voltmeter;A/D switch;AD08091前言在电量的测量中,电压、电流和频率是最基本的三个被测量,其中电压量的测量最为经常。
引言在电量的测量中,电压、电流和频率是最基本的三个被测量,其中电压量的测量最为经常。
而且随着电子技术的发展,更是经常需要测量高精度的电压,所以数字电压表就成为一种必不可少的测量仪器。
数字电压表简称DVM,它是采用数字化测量技术,把连续的模拟量转换成不连续、离散的数字形式并加以显示的仪表。
由于数字式仪器具有读数准确方便、精度高、误差小、测量速度快等特而得到广泛应用[1]。
传统的指针式刻度电压表功能单一,进度低,容易引起视差和视觉疲劳,因而不能满足数字化时代的需要。
采用单片机的数字电压表,将连续的模拟量如直流电压转换成不连续的离散的数字形式并加以显示,从而精度高、抗干扰能力强,可扩展性强、集成方便,还可与PC实时通信。
数字电压表是诸多数字化仪表的核心与基础[2]。
以数字电压表为核心,可以扩展成各种通用数字仪表、专用数字仪表及各种非电量的数字化仪表。
目前,由各种单片机和A/D转换器构成的数字电压表作全面深入的了解是很有必要的。
最近的几十年来,随着半导体技术、集成电路(IC)和微处理器技术的发展,数字电路和数字化测量技术也有了巨大的进步,从而促使了数字电压表的快速发展,并不断出现新的类型[3]。
数字电压表从1952年问世以来,经历了不断改进的过程,从最早采用继电器、电子管和形式发展到了现在的全固态化、集成化(IC化),另一方面,精度也从0.01%-0.005%。
目前,数字电压表的内部核心部件是A/D转换器,转换的精度很大程度上影响着数字电压表的准确度,因而,以后数字电压表的发展就着眼在高精度和低成本这两个方面[4]。
本文是以简易数字直流电压表的设计为研究内容,本系统主要包括三大模块:转换模块、数据处理模块及显示模块。
其中,A/D转换采用ADC0808对输入的模拟信号进行转换,控制核心AT89C51再对转换的结果进行运算处理,最后驱动输出装置LED显示数字电压信号[5]。
1 设计总体方案1.1设计要求:完成系统的硬件电路设计与软件设计; 采用汇编或C 语言编程;采用Proteus 、KeilC 等软件实现系统的仿真调试。
基于单片机的数字电压表设计在当今的电子世界中,电压表是一种必不可少的测量工具。
随着技术的进步,数字电压表因其精度高、易于读取、稳定性好等优点逐渐取代了传统的模拟电压表。
本文将探讨如何基于单片机设计数字电压表。
一、硬件设计1、1传感器模块传感器模块是数字电压表的重要组成部分,负责将输入的模拟电压转化为可被单片机处理的数字信号。
通常,我们使用ADC(模数转换器)来实现这一功能。
ADC的精度直接决定了电压表的测量精度。
1、2单片机模块单片机是数字电压表的“大脑”,负责控制整个系统的运行。
我们选择具有较高性能和可靠性的单片机,如Arduino、STM32等。
这些单片机都具有丰富的外设接口,便于实现复杂的控制逻辑。
1、3显示模块显示模块负责将单片机的处理结果呈现给用户。
常用的显示模块包括LED数码管、LCD液晶屏等。
选择适合的显示模块,可以大大提升电压表的易用性。
二、软件设计2、1数据采集与处理软件首先通过ADC从传感器模块读取模拟电压,然后对其进行处理,得到实际的电压值。
这一步的关键在于选择合适的ADC算法和设置合适的参考电压。
2、2数据输出与存储处理后的电压值需要被输出并存储起来。
通常,我们使用LCD液晶屏将电压值实时显示出来,同时也可以通过串口将数据传输到计算机或云端进行存储和分析。
三、精度与稳定性优化3、1硬件校准为了提高电压表的测量精度,我们可以在生产过程中对每一块电压表进行硬件校准。
通过调整ADC的参考电压或者在软件中进行校准算法的优化,可以有效提高电压表的测量精度。
3、2软件滤波在实际应用中,由于各种噪声和干扰的存在,电压表的读数可能会出现波动。
我们可以通过软件滤波算法,如平均滤波、卡尔曼滤波等,来减小这些干扰对测量结果的影响。
四、应用与扩展基于单片机的数字电压表不仅可以在实验室或工业现场使用,还可以扩展出更多的应用场景。
例如,通过加入无线通信模块,我们可以实现远程监控;通过加入更多的传感器,我们可以实现多通道的电压测量;通过与计算机或云端进行数据交互,我们可以实现大数据分析和预测。
引言在电量的测量中,电压、电流和频率是最基本的三个被测量,其中电压量的测量最为经常。
而且随着电子技术的发展,更是经常需要测量高精度的电压,所以数字电压表就成为一种必不可少的测量仪器。
数字电压表简称DVM,它是采用数字化测量技术,把连续的模拟量转换成不连续、离散的数字形式并加以显示的仪表。
由于数字式仪器具有读数准确方便、精度高、误差小、测量速度快等特而得到广泛应用[1]。
传统的指针式刻度电压表功能单一,进度低,容易引起视差和视觉疲劳,因而不能满足数字化时代的需要。
采用单片机的数字电压表,将连续的模拟量如直流电压转换成不连续的离散的数字形式并加以显示,从而精度高、抗干扰能力强,可扩展性强、集成方便,还可与PC实时通信。
数字电压表是诸多数字化仪表的核心与基础[2]。
以数字电压表为核心,可以扩展成各种通用数字仪表、专用数字仪表及各种非电量的数字化仪表。
目前,由各种单片机和A/D转换器构成的数字电压表作全面深入的了解是很有必要的。
最近的几十年来,随着半导体技术、集成电路(IC)和微处理器技术的发展,数字电路和数字化测量技术也有了巨大的进步,从而促使了数字电压表的快速发展,并不断出现新的类型[3]。
数字电压表从1952年问世以来,经历了不断改进的过程,从最早采用继电器、电子管和形式发展到了现在的全固态化、集成化(IC化),另一方面,精度也从0.01%-0.005%。
目前,数字电压表的内部核心部件是A/D转换器,转换的精度很大程度上影响着数字电压表的准确度,因而,以后数字电压表的发展就着眼在高精度和低成本这两个方面[4]。
本文是以简易数字直流电压表的设计为研究内容,本系统主要包括三大模块:转换模块、数据处理模块及显示模块。
其中,A/D转换采用ADC0808对输入的模拟信号进行转换,控制核心AT89C51再对转换的结果进行运算处理,最后驱动输出装置LED显示数字电压信号[5]。
1 设计总体方案1.1设计要求:完成系统的硬件电路设计与软件设计; 采用汇编或C 语言编程;采用Proteus 、KeilC 等软件实现系统的仿真调试。
基于单片机的电压表设计目录1 引言 (2)2设计原理及要求 (1)2.1数字电压表的实现原理 (1)2.2数字电压表的设计指标.............. 错误!未定义书签。
3软件仿真电路设计. (2)3.1设计思路 (2)3.2硬件电路设计图 (2)3.3 AT89C51的功能介绍 (3)3.3.1简单概述 (3)3.3.2主要功能特性 (3)3.3.3 AT89C51的引脚介绍 (4)3.4 ADC0804的引脚及功能介绍 (6)3.4.1芯片概述 (6)3.4.2 引脚简介 (7)3.4.3 ADC0804的转换原理 (8)3.5 74HC373芯片的引脚及功能 (8)3.5.1芯片概述 (8)3.5.2引脚介绍 (10)3.6 LED数码管的控制显示 (10)4系统软件程序的设计 (11)5测试及性能分析 ........................ 错误!未定义书签。
5.1 测试............................ 错误!未定义书签。
55.2 性能分析......................... 错误!未定义书签。
6 设计总结 (17)参考文献 (17)附录原理电路........................... 错误!未定义书签。
1 引言随着微电子技术的不断发展,微处理器芯片的集成程度越来越高,单片机已可以在一块芯片上同时集成CPU、存储器、定时器/计数电路,这就很容易将计算机技术与测量控制技术结合,组成智能化测量控制系统。
数字电压表(DigitalVoltmeter)简称DVM,它是采用数字化测量技术,把连续的模拟量(直流输入电压)转换成不连续、离散的数字形式并加以显示的仪表。
与此同时,由DVM扩展而成的各种通用及专用数字仪器仪表,也把电量及非电量测量技术提高到崭新水平。
本设计重点介绍单片机、A/D 转换器以及由它们构成的数字电压表的工作原理。
目前,由各种单片机、A/D 转换器构成的数字电压表,已被广泛用于电子及电工测量、工业自动化仪表、自动测试系统等智能化测量领域,示出强大的生命力理。
智能仪器原理与应用题目基于单片机的电压表设计班级姓名指导教师年月日目录第1章设计背景 (1)第2章系统总体方案设计 (2)第3章系统硬件电路设计 (3)3.1 系统控制器的设计 (3)3.2 电压数据采集模块 (4)3.3 LCD1602显示电路 (5)3.4 按键设置模块 (6)3.5 报警电路模块 (7)3.6 上位机通信模块 (7)3.7 温度采集模块 (8)第4章软件电路设计 (9)4.1 主程序流程图 (9)4.2 量程自动切换子程序流程图 (9)4.3 A/D转换子程序流程图 (10)4.4 温度测量子程序流程图 (11)心得体会 (12)参考文献 (13)附录 (14)基于单片机的电压表设计第1章设计背景随着科学技术的发展,人们对宏观和微观世界逐步了解,越来越多的微弱信号需要被检测,例如:弱磁、弱光、微震动、小位移、心电、脑电等。
测控技术发展到现在,微弱信号检测技术已经相对成熟,基本上采用以下两种方法来实现:一种是先将信号放大滤波,再用低或中分辨率的ADC进行采样,转化为数字信号后,再做信号处理,另一种是使用高分辨率ADC,对微弱信号直接采样,再进行数字信号处理。
两种方法各有千秋,也都有自己的缺点。
前一种方法,ADC要求不高,特别是现在大部分微处理器都集成有低或中分辨率的ADC,大大节省了开支,但是增加了繁琐的模拟电路。
后一种方法省去了模拟电路,但是对ADC性能要求高,虽然∑-△ADC发展很快,已经可以做到24位分辨率,价格也相对低廉,但是它是用速度和芯片面积换取的高精度,导致采样率做不高,特别是用于多通道采样时,由于建立时间长,采样率还会显著降低,因此,它一般用于低频信号的单通道测量,满足大多数的应用场合。
在对采样精度要求不断提升的情况下,科技工作者也在其他方面对智能仪表的发展提出了新的要求,如:良好的人机界面、数据存储和通讯、阈值报警和较低的功耗等,同时还要求仪表具有较高的性价比。
本文主要设计的是基于单片机的量程自动选择的电压表的设计。
用来精确地采集不同等级的电压表。
数字电压表是采用数字化测量技术,把连续的量输入电压转换成不连续离散的数字化形式并加以显示的仪表作为现代电子测量中最基础与核心的一种测量仪器,对其测量精度和功能要求也越来越高,由于电压测量范围广特别是在微电压高电压及待测信号强弱相差极大情况下,既要保证弱信号测量精度又要兼顾强信号的测量范围,传统的手动转换量程的电压表在测量技术上有一定难度同时若量程选择不当不但会造成测量精度下降甚至损坏仪表。
第2章系统总体方案设计本文设计的数字电压表测量直流电压范围为0~200V。
共分为4个档位,0~0.2V档,0.2V~2V档,2V~20V档,20V~200V档。
并且在测量的时候可以进行自动量程切换。
系统设计框图如图2-1所示。
其主要由单片机作为主控芯片,将要实现的各个功能分为若干个模块来实现,有电压数据采集模块,按键设置模块,温度采集模块,LCD1602显示模块,数据报警模块,以及与上位机通信模块。
为了以后的扩展,预留了其他输入通道。
其中,电压数据采集模块包括两个部分,信号调理电路和量程自动选择电路,它要实现的功能即是将采用并联法采集到的电压信号调理为合适的数字信号和实现自动选择量程,在自动选择量程上体现了此电压表的只能化。
按键设置模块,有四个按键,用于手动选择量程,当自动选择量程功能出现故障时,即可用手动来选择量程,以此来为设计的完善性做一定的补充。
温度采集模块,用温度传感器对测量现场进行温度检测,一般温度的会对要测的电压电路内部元件、材料电阻产生影响,从而对电压产生影响,故加入温度采集模块,保证能在正常工作状态的温度下,进行相对准确的电压测量。
LCD1602显示模块,用两行来显示所选档位、现场温度、所测电压值,使使用者可以一目了然。
数据报警模块,当测量电压值高于此电压表的最大量程时,报警电路报警。
当测量的温度高于设定的最高温度时,报警电路也发出报警信息。
在得到报警后,我们可以及时采取措施,消除警报,正确使用电压表。
上位机通信模块,通过串口可以将采集的电压值或者温度值上传给上位机进行数据存储或者处理。
预留的其它的输入通道,是便于以后对此电压表的扩展和二次开发。
图2-1 数字电压表的功能框图第3章系统硬件电路的设计3.1 系统控制器的设计本系统控制核心采用增强型C51内核单片机,型号为STC12C5A60S2,该芯片为宏晶公司的主流型号,其片上资源丰富,包含八路精度为10位AD转换器,程序存储器为32KB,并集成有28KB的EEPROM,方便数据的存储,并能实现掉电不丢失。
数据存储器1280字节,其中1024字节使用片外寻址方式访问,256字节为直接访问,解决了51内核单片机数据存储器不足的问题,并且为ADC的过采样提供了充足的数据缓冲区。
此外,该芯片具有较高的性价比,能为整个系统的设计降低成本。
芯片的引脚图如图3-1所示。
图3-1 STC12C5A60S2引脚图以此芯片设计了数字电压表的最小系统,包括晶振电路和复位电路。
最小系统电路图如图3-2所示。
图3-2 单片机最小系统设计3.2 电压数据采集模块电压数据采集模块包括两个部分,信号调理电路和量程自动选择电路。
量程自动选择电路分为四档,0~0.2V档,0.2V~2V档,2V~20V档,20V~200V档。
多路模拟开关选择CD4051。
CD4051相当于一个单刀八掷开关,开关接通哪一通道,由输入的3位地址码ABC来决定。
INH”是禁止端,当“INH”=1时,各通道均不接通。
此外,CD4051还设有另外一个电源端VEE,以作为电平位移时使用,从而使得通常在单组电源供电条件下工作的 CMOS电路所提供的数字信号能直接控制这种多路开关,并使这种多路开关可传输峰-峰值达15V的交流信号。
该芯片由单片机控制A,B端来选择被测电压的量程。
信号调理电路包括电压信号放大器和电压跟随器。
此电路由LM324构成。
LM324内部包括有两个独立的、高增益、内部频率补偿的运算放大器,适合于电源电压范围很宽的单电源使用,也适用于双电源工作模式,在推荐的工作条件下,电源电流与电源电压无关。
它的使用范围包括传感放大器、直流增益模块和其他所有可用单电源供电的使用运算放大器的场合。
输入电压信号经过精密电阻分压以及CD4501选择后,通过LM324其中一个运放把输入信号调理到-5V~0V。
再经过另外一个运放,构成电压跟随器,将第一级负电压反向,转换到0~+5V。
输出电压信号通入单片机的一路AD端。
电路如图3-3所示。
图3-3 电压数据采集电路3.3 LCD1602显示电路该数据采集器具有液晶显示器的接口,16×2的字符型液晶显示器,液晶显示器的背光为可控式,在不需要时自动关闭,降低系统能耗。
以1602显示采集到的电压值或者温度值。
显示电路如下图3-4所示。
图3-4 LCD1602显示电路3.4 按键设置模块本电路采用四路独立按键输入设定值,基本满足日常设置需要。
按键输入电路如图3-5所示。
图3-5 按键设置电路3.5 报警电路模块当测量电压值高于此电压表的最大量程时,报警电路报警。
当测量的温度高于设定的最高温度时,报警电路也发出报警信息。
报警电路如图3-6所示。
图3-6 报警电路3.6 上位机通信模块本数字电压表设计了与上位机通信模块,通过串口可以将采集的电压值或者温度值上传给上位机进行数据存储或者处理。
通信模块电路如图3-7所示。
图3-7 上位机通信电路3.7 温度采集模块环境温度对于某些场合的数据测量具有非常大的影响,并且能判断测量仪表所处的环境是否适合测量,从而实现自我保护功能。
本系统中采用DS18B20作为温度传感器,用于对环境温度的采集。
独特的一线接口,只需要一条口线通信多点能力,简化了分布式温度传感应用无需外部元件可用数据总线供电,电压范围为3.0V至5.5V无需备用电源测量温度范围为-55℃至+125℃。
温度传感器可编程的分辨率为9~12位温度转换为12位数字格式最大值为750毫秒。
其电路如图3-8所示:图3-8 温度采集电路第4章软件电路设计4.1 主程序流程图系统上电后,初始化LCD1602液晶显示器,DS18B20温度传感器,A/D转换模块。
扫描按键,调用A/D转换模块测量电压,根据预测量电压选择量程,调用量程自动转换子程序,最后显示测量电压值。
主程序流程图如图4-1所示。
图4-1 主程序流程图4.2 量程自动切换子程序流程图单片机先以最大量程预测量电压的估计值,选择合适的量程再精确测量电压。
当所测电压高于最大量程时,报警电路报警。
量程自动切换子程序流程图如图4-2所示。
图4-2 量程自动切换子程序流程图4.3 A/D转换子程序流程图本设计采用软件滤波的方法。
通过连续采集40个电压值,去掉最大值和最小值,再求取平均值来确定最终电压值。
A/D转换子程序流程图如图4-3所示。
A/D 转换入口采样40次?出口是否图4-3 A/D 转换子程序流程图4.4 温度测量子程序流程图图4-4 温度测量子程序流程图心得体会当今社会在飞速发展,科学技术发展的速度更是迅猛无比,尤其是单片机技术在未来社会发展中一定会起着十分重要的作用,而通过本次设计无论是从硬件实现还是到整个程序的完成,无不是对我个人专业能力的一次提高和体现。
而本次设计主要是完成两方面工作,软件程序设计和硬件电路板设计。
软件设计包括用单片机设计语言设计控制系统并仿真、实现。
硬件设计包括绘制电路原理图,生成图后制作电路板、插件焊件、再做硬件测试。
通过这些都使我对采用单片机设计方法有了更深的理解和掌握,同时也让我把所学的知识广泛的应用到了实践中,充分的做到了理论与实践相结合。
无论从专业知识、动手能力,还是毅志品质,都使我受益非浅。
在电路调试中也遇到较多问题,但大部分问题都源自于单片机引脚的功能未配置正确,如在调试DS18B20时,发现单片机始终读不到数据,经过检查,发现硬件电路连接正确,最后发现连接DS18B20的IO引脚工作模式配置为高阻输入,而不是普通IO,从而导致DS18B20的数据无法读取;在调试液晶显示器时,由于LCD1602的响应速度较慢,在初始化时延时较短,导致初始化失败,进而在后续调试中无法正常工作;等等,这对于以后的学习都是一种经验。
通过本次课程设计,我了解到了过采样技术在现代测试领域和智能仪表中的重要地位,同时通过对数据采集器的整体设计,包括电路原理图设计、PCB设计、电路仿真及实际调试,我进一步加深了对单片机,数字电路,模拟电路及相关器件的使用体会,提高了调试电路的能力,对于以后的学习具有很大帮助。
总之,通过本次课程设计,我学习到了很多新知识,特别是过采样部分,虽然其原理较简单,但实际调试中会有很多问题,同时发现了自身还有很大的进步空间,为以后的生活和学习奠定了基础。