软件工程基础
- 格式:ppt
- 大小:291.00 KB
- 文档页数:107
软件工程的基础知识软件工程是一门综合性的学科,旨在通过系统化的方法和工具,对软件开发过程进行管理和控制,以提高软件的质量和效率。
下面将介绍软件工程的基础知识,包括软件生命周期、需求工程、软件设计和软件测试等方面。
1. 软件生命周期软件生命周期指软件从构思、开发、维护到废弃的整个过程。
通常包括以下几个阶段:- 计划阶段:确定需求、制定软件开发计划和预算。
- 需求分析阶段:分析用户需求、制定需求规格说明书。
- 设计阶段:制定系统设计方案、编写概要设计和详细设计文档。
- 编码阶段:根据设计文档编写源代码。
- 测试和验证阶段:进行单元测试、集成测试和系统测试,确保软件质量。
- 维护阶段:修复软件缺陷、进行功能扩展和性能优化。
在软件生命周期中,不同的阶段具有不同的目标和任务,需要进行严格的管理和控制。
2. 需求工程需求工程是软件工程的重要组成部分,旨在确定用户需求,并将其转化为明确、可靠的需求规格说明书。
需求工程包括以下几个关键步骤:- 需求获取:与用户沟通、收集需求,并进行需求分析和整理。
- 需求建模:使用UML等工具建立需求模型,包括用例图、活动图、类图等。
- 需求验证:与用户确认需求的正确性和完整性,并进行需求评审和验证。
- 需求管理:对需求进行版本控制、变更管理和跟踪,确保需求的准确性和一致性。
3. 软件设计软件设计是将需求规格转化为软件结构的过程,旨在确定软件的整体架构和详细设计方案。
软件设计包括以下几个主要方面: - 结构设计:确定软件的模块划分、接口设计和数据结构设计。
- 行为设计:设计软件的算法和逻辑处理流程,确定软件的具体功能。
- 用户界面设计:设计用户界面的布局、交互方式和视觉效果,提高用户体验。
- 数据库设计:设计软件所需的数据库结构和数据存储方案。
软件设计需要综合考虑软件的功能需求、性能需求和可维护性等因素,以确保设计的准确性和可靠性。
4. 软件测试软件测试是保证软件质量的重要手段,通过检测和验证软件的功能、性能和稳定性等来发现和修复缺陷。
软件工程基础知识点整理版1.软件生命周期:软件工程将开发和维护软件的过程划分为不同的阶段,包括需求分析、设计、编码、测试、部署和维护。
这些阶段构成了软件生命周期。
2.软件需求:软件需求工程是对软件需求进行分析、规划和定义的过程。
它包括对用户需求的收集、分析和确认,以及对系统功能和性能的详细规范。
3.软件设计:软件设计是定义软件的结构和组成部分的过程。
它包括对软件系统的整体架构和各个模块的设计。
4.软件编码:软件编码是将设计好的软件系统转化为具体的程序代码的过程。
编码过程需要使用编程语言,并遵循编码规范和最佳实践。
5.软件测试:软件测试是验证软件是否满足需求规格的过程。
它包括对软件的功能、性能和安全性进行测试,并发现和修复软件中的错误。
6.软件配置管理:软件配置管理是对软件开发过程中各个组成部分的控制和跟踪。
它包括版本控制、配置项管理和变更控制等活动。
7.软件质量保证:软件质量保证是确保软件达到高质量标准的一系列过程和活动。
它包括质量计划、质量评审、质量度量和缺陷管理等。
8.软件项目管理:软件项目管理是规划、组织和控制软件开发和维护活动的过程。
它包括项目计划、进度管理、团队管理和风险管理等。
9.软件工具和环境:软件工程使用各种工具和环境来辅助软件开发和维护。
这些工具包括集成开发环境、版本控制工具、测试工具和项目管理工具等。
10.软件工程伦理:软件工程伦理是软件工程师在工作中需要遵循的道德准则和原则。
它包括保护用户隐私、遵守知识产权法律和保持专业水平等方面。
以上是软件工程的一些基础知识点,但软件工程领域非常广泛,还有很多其他的知识点值得深入学习和研究。
尽管有一些基础知识点可以帮助我们理解和实践软件工程的基本原理和方法,但要成为一名优秀的软件工程师,还需要不断学习和提升自己的技能和知识。
软件工程的基础知识
软件工程的基础知识包括以下内容:
1. 软件开发生命周期:软件开发生命周期指的是软件从需求获取到维护和升级的整个过程。
常见的软件开发生命周期模型包括瀑布模型、迭代模型、增量模型等。
2. 软件需求工程:软件需求工程是明确用户需求并将其转化为可实现的软件系统的过程。
包括需求获取、需求分析、需求规格化和需求验证等阶段。
3. 软件设计:软件设计是确定软件系统结构和组件之间的关系,并描述其行为的过程。
包括结构设计、详细设计、接口设计、数据库设计等。
4. 编程与实现:根据软件设计的规范和要求,使用特定的编程语言开发软件系统,并进行测试和调试。
5. 软件配置管理:软件配置管理是对软件、文档和相关组件进行版本控制和配置管理的过程,包括变更控制、配置标识、配置状态管理等。
6. 软件测试与质量保证:软件测试是为了发现和修复软件中的缺陷和错误,确保软件质量符合预期要求的过程。
包括单元测试、集成测试、系统测试和验收测试等。
7. 软件维护:软件维护是在软件发布后对其进行更新、修复和
改进的过程。
常见的软件维护类型包括改正性维护、适应性维护、完善性维护和预防性维护等。
8. 软件项目管理:软件项目管理是为了有效地规划、组织和控制软件项目开发过程的活动。
包括项目计划、资源分配、进度控制、风险管理等。
9. 软件工程标准与规范:软件工程标准与规范是为了保证软件开发过程和软件质量的一致性和可重复性而制定的一套规则和指南,如ISO/IEC 12207、CMMI等。
以上是软件工程的基础知识,掌握这些知识可以帮助开发人员更好地理解和实践软件开发过程,提高软件质量和开发效率。
软件工程基础软件工程是日新月异、发展迅速的一门学科,它把软件设计、编程、分析和测试等工作捆绑在一起,致力于提供解决问题的方法和技术。
软件工程的核心思想是建立系统和可靠的软件,以适应不断变化的需求,实现客户期望的目标。
软件工程的基础是一种具有基本原则和模式的统一的分析和设计方法。
它的基本原则是系统的分析、设计、实施和改进的科学过程,它强调以软件可扩展性、可维护性、可复用性和可持续性为准则,以满足客户期望为目的的软件开发流程。
软件工程的基本原则是:重视质量,促进工程化,实现可维护性,提高能力,满足需求,实现可行性,提供便利,确保安全性,实现可持续发展。
这些原则可以帮助软件开发者设计高质量的软件,尤其是对系统有较高要求的大型企业级软件开发时起到关键作用。
软件工程模型主要有瀑布模型、迭代模型、螺旋模型、V模型、快速原型模型等,它们的不同点在于它们的参与者、项目生命周期的长短、资源管理的方式和发展阶段的控制方法。
瀑布模型是传统的软件开发模型,它将项目分为几个阶段,并且每个阶段只能完成一次,因此在每个阶段都需要确定该阶段的输入和输出资源,以确保下一个阶段的成功运行。
迭代模型认为软件的开发是一个迭代的过程,它将每个阶段进行重复,以达到一定的质量,这样一来,可以确保每个阶段的质量,以及最终的质量和完成的成果。
螺旋模型是一种可行的软件开发模型,它将开发流程作为一个螺旋状的轨迹,每完成一次螺旋环节就会获得一些可用的软件产品。
它强调以客户满意为目标,每一轮迭代都应有一个清晰的评估准则来进行反复测试和修正。
V模型是一种结合瀑布模型和迭代模型的软件工程模型,它将整个软件开发流程抽象成一个V形模型,从开发计划到软件释放,可以清晰地描述出开发流程,它结合了瀑布模型和迭代模型的优点,能够满足复杂项目的需求。
快速原型模型侧重于快速获得一个非常简单的系统运行状态,它适用于需求变更频繁、时间紧迫的项目。
该模型可以快速生成一个粗略的模型,用于验证需求的可行性,确保项目的成功实施。
软件工程基础知识软件工程基础知识一.什么是软件1.满足功能要求和性能的指令或计算机程序集合;2.处理信息的数据结构;3.描述程序功能以及程序如何操作和使用所要求的文档;二.软件危机以及产生软件危机的原因1.软件开发生产率提高的速度,远远跟不上计算机迅速普及的趋势.软件产品"供不应求".2.软件成本在计算机系统总成本中所占的比例逐年上升.3.软件开发人员和用户之间的信息交流往往很不充分,用户对"已完成的"的软件系统不满足的现象经常发生.4.软件产品的质量不容易保证.5.软件产品常常是不可维护的.6.软件产品的重用性差,同样的软件多次重复开发.7.软件通常没有适当的文档资料.产生软件危机的原因可归结为两个重要的方面:软件生产本身存在的复杂性;软件开发所使用的方法和技术.三.有哪些软件工程方法学及其要素1.使用最广泛的软件工程方法学是结构化方法学和面向对象的方法学.2.要素:方法,工具和过程.四.什么是软件生存周期有哪些活动4.1软件生存周期一个软件从提出开发要求开始到软件废弃不用的整个过程.4.2开发活动可行性分析和项目开发计划,需求分析和定义,软件设计(先后细分为:概要设计和详细设计),编码,测试和运行维护4.3各活动阶段主要文档4.3.1可行行分析和项目开发计划可性行研究报告项目开发计划4.3.2需求分析中的文档需求规格说明书初步用户使用手册确认测试计划修改完善的软件开发计划4.3.3概要设计阶段文档概要设计说明书数据库说明书用户手册修订的测试计划(测试的策略,方法,步骤)4.4.4详细设计阶段详细设计说明书4.4.5系统测试阶段系统测试计划文档五.有哪些主要生存期模型瀑布模型,原型开发模型(快速原型模型,演化模型,增量模型),螺旋模型,喷泉模型,基于知识的模型和变化模型.5.1瀑布模型瀑布模型(传统的软件周期模型)严格遵循软件生命周期各阶段的固定顺序:计划,分析,设计,编程,测试和维护,上一阶段完成后才能进入到下一阶段,整个模型就像一个飞流直下的瀑布,如图4-1所示.优点:可强迫开发人员采用规范的方法,严格规定了各阶段必须提交的文档;要求每一阶段结束后,都要进行严格的评审.与它最相适应的开发方法是结构化方法.缺点:不适应用户需求的改动.5.2原型模型5.2.1快速原型模型快速原型的用途是获知用户的真正需求,一旦需求确定了,原型即被抛弃.主要用于需求分析阶段.不追求也不可能要求对需求的严格定义,而是采用了动态定义需求的方法,所以不能定义完善的文档.特征:简化项目管理,尽快建立初步需求,加强用户参与和决策.具有广泛技能水平的原型化人员是原型实施的重要保证.原型化人员应该是具有经验与才干,训练有素的专业人员.衡量原型化人员能力的重要标准是他是否能够从用户的模糊描述中快速获取需求.5.2.2演化模型在快速原型模型中,原型的用途是获知用户的真正需求,一旦需求确定了,原型即被抛弃.而演化模型应用于整个软件开发过程,是从初始模型逐步演化为最终软件产品的渐进过程.也就是说,快速原型模型是一种"抛弃式"的原型化方法,而演化模型则是一种"渐进式"的原型化方法.5.2.3增量模型增量模型主要用于设计阶段,把软件产品划分为一系列的增量构件,分别进行设计,编程,集成和测试.新的增量构件不得破坏已经开发出来的产品.其示意图如图4-2所示.5.2.4原型模型小结从下面的有关原型化方法的叙述中,选择出正确的叙述:(1)快速原型方法是一种企图克服传统软件周期模型缺点的开发方法.(2)在用户的数据资源没有得到很好地组织和管理的时候,应该使用原型化方法.(3)在用户没有明确地肯定其需求的时候,应该使用原型化方法.(4)在用户不希望把自己的时间花在软件开发过程中的时候,应该使用原型化方法.(5)使用原型化方法时应该使用第三代编程语言.(6)原型化加强了开发过程中用户的参与和决策.(7)原型化方法大致可分为三类:抛弃式,演化式和递增式.(8)原型化方法大致可分为演化式和递增式.(9)采用原型化方法时,软件的开发成本较高.(10)采用原型化方法时,关键的因素是建立原形的速度,而不是原形运行的效率.5.3螺旋模型螺旋模型综合了瀑布模型和原型模型中的演化模型的优点,还增加了风险分析.螺旋线第一圈的开始点可能是一个概念项目.从第二圈开始,一个新产品开发项目开始了,新产品的演化沿着螺旋线进行若干次迭代,一直转到软件生命期结束.5.4喷泉模型喷泉模型主要用于描述面向对象的开发过程.喷泉一词体现了面向对象开发过程的迭代和无间隙特征.六.软件过程基础知识6.1软件过程软件过程是指人们用于开发和维护软件及相关产品的一系列活动,包括软件工程过程和软件管理过程.6.2评估工具软件过程的评估,通常采用软件能力成熟度模型(Capability Maturity Model,CMM).CMM1.1的5个等级(由低级到高级):初始级软件过程是无序的,有时甚至是混乱的,对过程几乎没有定义,成功取决于个人努力,管理是反应式(消防式)的.可重复级建立了基本的项目管理过程来跟踪费用,进度和功能特性.制定了必要的过程纪律,能重复早先类似应用项目取得的成功.已定义级已将软件管理和工程两方面的过程文档化,标准化,并综合成该组织的标准化软件过程.所有项目均使用经标准,裁减的标准软件过程来开发和维护软件.已管理级收集对软件过程和产品质量的详细度量,对软件过程和产品都有定量的理解与控制.优化级加强了定量分析,通过来自过程质量反馈和来自新观念,新技术的反馈使过程能持续不断地改进.七.软件工程项目管理基本知识软件项目管理开始于任何技术活动之前,并且贯穿于整个的软件生命周期.软件工程项目管理一般分为时间管理,成本管理,人力资源管理,风险管理.7.1时间管理7.1.1 Gantt图是一种简单的水平条形图,它以水平线段表示子任务的工作阶段,线段的起点和终点分别对应着子任务的起始时间,线段长度指示完成该任务所需要的时间.甘特图的优点:直观简明,易学易绘,可从图上清楚地标出子任务间的时间对比,但它也有缺点:(a)不能显示地描绘各项彼此间的依赖关系;(b)进度计划的关键部分不明显,难以判断哪些部分应当是主攻和主控的对象;(c)计划中有潜力的部分以及潜力的大小不明确,往往造成潜力的浪费.7.1.2 PERT网图与关键路径PERT网图是一个由箭头(标识任务)和结点(标识事件)组成的有向图.将网络方法用于工作计划安排的评审和检查.开发模块A,B,C模块的任务网络图PERT图不仅给出了每个任务的开始时间,结束时间和完成该任务所需的时间,还给出了任务之间的依赖关系,即哪些任务完成后才能开始另一些任务,以及如期完成整个工程的"关键路径".关键路径(Critical Path)是由一连串的任务所组成的链,距离最大的一条路径.软件项目的管理人员应该密切注视关键任务的进展情况.如果希望缩短工期,只有往关键任务中增加资源才会有效果.7.2成本管理一种常用的成本估算方法是先估计完成软件项目所需的工作量(人月数),然后根据每个人月的代价(金额)计算机软件的开发费用:开发费用=人月数×每个人月的代价另一种方法是估计软件的规模(通常指源代码行数),然后根据每行源代码的平均开发费用(包括分析,设计,编码,测试所花的费用),计算机软件的开发费用:开发费用=源代码行数×每行平均费用估算源代码行数时,可以请n为有经验的专家,每位专家对软件给出3各估计值:ai---最少源代码行数(该软件可能的最小规模)bi---最大源代码行数(该软件可能的最大规模)mi---最可能的代码行数(该软件最可能的规模)然后计算出每位专家的估算期,n位专家的估算期望值的平均值就是代码行数的估算值.7.3其他管理人力资源管理风险管理风险管理的主要活动有风险识别,风险估算,风险评价和风险控制.八.模块化基本知识模块是指执行某一特定任务的数据和可执行语句程序元素的集合,通常是指可通过名字来访问的过程,函数,子程序或宏调用等.模块化就是将一个待开发的软件划分成若干个可完成某一子功能的模块,每个模块可独立地开发,测试,最后组装成完整的程序.8.1模块特性8.1.1可分解性如果一种设计方法提供了将问题分解成子问题的系统化机制,它就能降低整个系统的复杂性,从而实现一种有效的模块化解决方案.8.1.2可组装性如果一种设计方法使现存的(可复用的)设计构件能被组装成新系统,它就能提供一种不需要一切从头开始的模块化解决方案.8.1.3可理解性如果一个模块可以作为一个独立的单位(不用参考其他模块)被理解,那么它就易于构造和修改.8.1.4连续性如果对系统需求的微小修改只导致对单个模块,而不是整个系统的修改,则修改引起副作用就会被最小化.8.1.5保护性如果模块内部出现异常情况,并且它的影响限制在模块内部,不会影响其他模块,则错误引起的副作用就会被最小化.8.2模块与模块的耦合性耦合是对一个软件结构内不同模块之间互连程序的度量.耦合可以分成下列几种,它们之间的耦合度由高到低排列.8.2.1内容耦合直接操作或修改另一模块的数据,或不通过正常入口转入另一个模块.软件设计时应坚决禁止内容耦合,应设计成单入口,单出口的模块,避免病态连接.8.2.2公共耦合多个模块引用同一全局数据区.例如,C语言中的external数据类型,磁盘文件等都是全局数据区.8.2.3外部耦合模块与软件以外的环境有关联.例如,输入输出把一个模块与特定的设备,格式,通信协议耦合在一起.8.2.4控制耦合一模块明显把开关量,名字等信息送入另一模块,控制另一模块的功能.8.2.5标记耦合两个模块之间通过传递公共指针或地址相互作用的耦合.8.2.6数据耦合模块间通过传递数据交换信息.8.2.7非直接耦合(无耦合)模块间无任何关系,独立工作原则上讲,模块化设计总是希望模块之间的耦合表现为非直接耦合方式.在以上耦合中,耦合度从高到低,内容耦合度最高,非直接耦合度最低.8.3模块的内聚性内聚是指一个模块内各个元素彼此结合的紧密程序,它是信息隐蔽和局部的概念的自然扩展.设计时应该力求高内聚,理想内聚的模块应当恰好做一件事情.1).偶然内聚:一个模块的各成分之间毫无关系.比如:一组语句在程序的多处出现,为了节省内存空间,这些语句放在一个模块中,该模块的内聚是偶然内聚的.2)逻辑内聚:把几种逻辑上相关的功能组放在同一模块中.3)瞬时内聚(时间内聚):一个模块所包含的任务必须在同一时间间隔内执行,例如初始化模块.4)过程内聚:一个模块的处理元素是相关的,而且必须按特定的次序执行.5)通信内聚:一个模块的所有成分都结合再同一个数据结构上.6)顺序内聚:模块的成分同一个功能密切相关,且输出,作为另外一个成分的输入.7)功能内聚:模块内的所有成分属于一个整体,完成单一的功能.在以上的内聚中,内聚度从低到高,偶然内聚度最低,功能内聚度最高.模块的高内聚,低耦合的原则称为模块独立原则,也称为模块设计的原则.8.4模块的深度,宽度,扇出与扇入深度:表示软件结构中控制的层数.宽度是软件结构中同一个层次上的模块总数的最大值一个模块的扇入是指直接调用该模块的上级模块的个数.一个模块的扇出是指该模块直接调用的下级模块的个数.设计原则:低扇出高扇入8.5模块作用域和控制域软件设计时,模块的作用域应在控制域之内.8.6模块化基础知识小结通过模块的合并和分解,降低模块的耦合度.模块的扇入应尽量大,扇出应尽量小.一个模块的扇入是指直接调用该模块的上级模块的个数.一个模块的扇出是指该模块直接调用的下级模块的个数.扇入大表示模块的重用性高,利用率高.扇出大表示模块的复杂度高.所以要高扇入低扇出.要将模块的作用范围限制在模块的控制范围之内.降低模块之间的复杂性,避免"病态连接".九.什么是软件开发方法有哪些主要方法软件开发方法:使用已定义好的技术集及符号表示习惯组织软件生产的过程.结构化方法,面向对象方法,JACKSON方法,维也纳开发方法(VDM).9.1结构化方法学结构化方法学也称为生命周期方法学(瀑布模型方法),是一种面向数据流的需求分析方法.它的基本思想是自顶向下逐层分解.为了在需求改变时对软件的影响较小,结构化分析时应该使程序结构与问题结构相对应.常用工具:数据流图(DFD),数据字典(DD),实例-关系图(E-R图)及描述加工处理的结构化语言,判定表,判定树.9.1.1数据流图(DFD图)DFD的基本成分数据流图主要由4种成分组成,如下表所示:数据流(data flow):由一组固定成分的数据组成,表示数据的流向.它可以从源,文件流向加工,也可以从加工流向文件和宿,还可以从一个加工流向另一个加工.通常每个数据流必须有一个合适的名字,一方面是为了区别,另一方面也给人一个直观的印象,使人容易理解这个数据流的含义.但流向文件或从文件流出的数据流不必命名,因为这种数据流的组成部分就是相应文件的组成部分.加工(process):描述了输入数据流到输出数据流之间的变换,也就是输入数据流做了什么处理后变成了输出数据流.每个加工有一个名字和一个编号.编号反映了该加工位于分层DFD的哪个层次和哪张图中以及它是哪个加工分解出来的子加工.文件(file):可以表示数据文件,也可以表示一个数据记录.流向文件的数据流表示写文件,流出文件的数据流表示读文件,双向箭头表示对文件既读又写.每个文件都有一个文件名.源/宿(source/sink):源是指系统所需数据的发源地,宿(也称数据池)是指系统所产生的数据的归宿地.无论源或宿,均对应于外部实体,在框内应加注实体的名字,在一个软件各级软件系统中,有些源和宿可以是一个外部实体,外部实体是指存在于软件系统之外的人员或组织,它指出系统所需数据的发源地和系统所产生数据的归宿地.分层数据流图一套分层的的数据流图由顶层,底层,和中间层组成.画分层数据流图基本原则与注意事项a.自外向内,自顶向下,逐层细化,完善求精.b.保持父图与子图的平衡.也就是说,父图中某加工的输入数据流中的数据必须与它的子图的输入数据流在数量和名字上相同.c.保持数据守恒.也就是说,一个加工所有输出数据流中的数据必须能从该加工的输入数据流中直接获得,或者是通过该加工能产生的数据.c.加工细节隐藏.根据抽象原则,在画父图时,只需画出加工和加工之间的关系,而不必画出各个加工内部的细节.d.简化加工间关系.在数据流图中,加工间的数据流越少,各加工就越相对独立,所以应尽量减少加工间输入输出数据流的数目.e.均匀分解.应该使一个数据流中的各个加工分解层次大致相同.f.适当地为数据流,加工,文件,源/宿命名,名字应反映该成分的实际意义,避免空洞的名字.g.忽略枝节.应集中精力于主要的数据流,而暂不考虑一些例外情况,出错处理等枝节性问题.h.表现的是数据流而不是控制流.i.每个加工必须既有输入数据流,又有输出数据流.在整套数据流图中,每个文件必须既有读文件的数据流又有写文件的数据流,但在某一张子图中可能只有读没有写或者只有写没有读.小结:一个软件系统,其数据流图往往有多层.如果父图有N个加工(Process),则父图允许有0~N张子图,但是每张子图只能对应一张父图.在一张DFD图中,任意两个加工之间可以有0条或多条名字互不相同的数据流;在画数据流图时,应该注意父图和子图的平衡,即父图中某加工的输入输出数据流必须与其输入输出流在数量和名字上相同.DFD信息流大致可分为两类:交换流和事务流.9.1.2数据字典数据字典是关于数据的信息的集合也就是对数据流图中包含的所有元素的定义的集合.组成部分:a.数据项条目b.数据流条目c.文件条目d.加工条目加工条目是对数据流图中每一个不能再分解的基本加工的精确说明.对于加工的描述是数据字典的组成内容之一,常用的加工描述方法有结构化语言,判定树和判定表.9.1.3结构化语言结构化语言实际上是一种半形式化语言,它的结构通常可分为内外两层.外层接近于形式化语言,而内层近似于自然语言的描述.9.1.4实体--关系图(E-R图)实体--关系图(Entity-Relabionship Diagram),简称E-R图,包含实体,关系和属性等3种基本成分.通常用矩形框代表实体,并用直线把实体(或关系)与其属性连接起来.E-R图通常用于数据库应用系统.9.2结构化设计结构化设计通常可分为概要设计和详细设计,但是主要用于概要设计阶段.概要设计的任务是确定软件系统的结构,进行模块划分,确定每个模块的功能,接口以及模块间的调用关系.详细设计的任务是为每个模块设计实现的细节.9.2.1概要设计经过需求分析阶段的工作,系统必须"做什么"已经清楚了,概要设计的基本目的就是回答"概括地说,系统应该如实现"这个问题.概要设计的重要任务:将一个复杂的系统按功能化分为模块,确定每个模块的功能,确定模块之间的调用关系,确定模块之间的接口(模块之间传递的信息),评价模块的结构质量.1.软件结构图形工具结构化设计方法(SD)方法采用结构图(Structure Chart),层次图和HIPO图描述软件结构.结构图的主要成分有模块,调用和数据,结构图中的模块用矩形表示,在矩形框内可标上模块的名字.模块间如有箭头或直线相连,表明它们之间有调用关系.层次图用来描绘软件的层次结构.层次图中一个矩形框代表一个模块,方框间的连线表示模块间的调用关系.HIPO图实际上就是层次图加输入/处理/输出图.HIPO图是美国IBM公司发明的"层次图加输入/处理/输出图",是在层次图里出了最顶层的方框之外,每个方框都加了编号.编号规则和数据流图的编号规则一样.2.概要设计中的信息流变换流:信息沿着输入通道进入系统,然后通过变换中心(也称主加工)处理,再沿着输出通道离开系统.具有这一特性的信息流称为变换流.具有变换流型的数据流图可明显地分成输入,变换(主加工),输出三大部分.事务流:信息流沿着输入通道到达一个事务中心,事务中心根据输入信息(即事务)的类型在若干个动作序列(称为活动流)中选择一个来执行,这种信息流称为事务流.事务流有明显的事务中心,各活动以事务中心为起点呈辐射状流出.9.2.2详细设计概要设计已经确定了每个模块的功能和接口,详细设计的任务就是为每个模块设计其实现的细节.详细设计阶段的根本目标是确定应该怎样具体地实现所要求的系统,得出对目标系统的精确描述.1.详细设计阶段的内容为每个模块进行详细的算法设计.为模块内部的数据结构进行设计.对数据库进行物理设计.其他详细设计工具主要包括程序流程图(系统流程图),盒图(N-S图),PAD 图和伪码(PDL).2.人机界面设计人机界面的设计质量,直接影响用户对软件产品的评价.界面的美观,灵活和风格都很重要,但人机界面设计中最重要的也是最基本的目标是软件的易操作性.人机界面设计主要包括系统响应时间,用户帮助设计,出错信息处理和命令交互设计等几个方面.9.3 Jackson方法上面讲的结构化设计方法是面向数据流的,另外还有一种面向数据结构的设计方法,Jackson方法是最著名的面向数据结构的设计方法,而不是面向数据流的设计方法.Jackson方法的基本步骤是:建立系统的数据结构;以数据结构为基础,对应地建立程序结构;列出程序中要用到的各种基本操作,再将这些操作分配到程序结构适当的模块中.9.4面向对象分析方法(00A)OTM方法的三个模型,分别从三个不同侧面描述了所要开发的系统:功能模型指明了系统应该"做什么";动态模型明确了什么时候做;对象模型则定义了做事情的实体.对象模型描述了系统中对象的静态结构及对象间的联系,用对象模型图来表示.动态模型描述了与时间和操作次序有关的系统属性.动态模型由多张状态图组成.各个类的状态图通过共享事件组成系统的动态模型.功能模型描述系统内数据值的变化,它由数据流图组成.数据流图说明数据流是如何从外部输入,经过操作和内部存储而得到输出的.十.软件工具软件工具是指用于辅助软件开发,运行,维护,管理,支持等过程中的活动的软件.通常也称为CASE(Computer Aided Software Engineering,计算机辅助软件工程)工具.按软件过程的活动分为软件开发工具,软件维护工具和软件管理工具等.十一.软件开发环境集成型开发环境通常可由工具集和环境集成机制两部分组成.这种环境应具有开放性和可裁减性.环境集成机制主要有数据集成机制,控制集成机制和界面集成机制.十二.软件质量管理基础知识12.1软件质量ISO/IEC 9126软件质量模型可从软件功能性,可靠性,可用性,效率,可维护性,可移植性6个方面来衡量.(1).功能性与功能及其指定的性质的一组软件属性.(2)可靠性软件在规定的一段时间内和规定的条件下保持其性能水平有关的一组软件属性.也可以称为在规定的条件下和规定的时间间隔内,软件实现其规定功能的概率.。
软件工程基础知识软件工程是指将系统化的、规范化的、量化的方法应用于软件的开发、运行和维护等各个环节的过程。
在软件工程的实践中,有一些基础知识是非常重要的,本文将从软件开发的生命周期、软件过程模型、需求工程和软件测试等几个方面进行论述。
一、软件开发的生命周期软件开发的生命周期是指从软件的概念形成到软件退役的全过程。
常见的软件开发生命周期模型有瀑布模型、迭代模型和敏捷开发模型。
瀑布模型是线性的开发过程,依次经历需求分析、系统设计、编码、测试和维护等阶段。
迭代模型则是将开发过程分为多个迭代周期,每个周期内包含需求分析、设计、编码、测试和评审等环节。
敏捷开发模型则是以快速迭代、持续交付为特点,更加注重团队协作和客户反馈。
二、软件过程模型软件过程模型描述了软件开发的一种组织形式,是指对软件开发过程中活动、任务、文档和人员等要素的规范和安排。
常见的软件过程模型有瀑布模型、螺旋模型和敏捷模型。
瀑布模型适用于需求稳定的项目,但缺点是对变更不够灵活。
螺旋模型以风险管理为核心,适用于复杂度较高的项目。
敏捷模型则强调迭代和协作,适用于需求易变的项目。
三、需求工程需求工程是为了明确软件开发过程中软件需求的产生、确定和变更等活动。
在需求工程中,需求的收集、分析、规范和验证是非常重要的环节。
常用的需求收集方法包括面谈、问卷调查和观察等。
需求分析一般通过用户故事、用例和活动图等方法来描述。
需求规范一般使用需求文档或者使用规范化的语言来表达。
需求验证一般通过评审、测试和模拟等方式来验证。
四、软件测试软件测试是为了评估软件产品的质量和发现潜在的缺陷而开展的活动。
软件测试分为静态测试和动态测试两种方式。
静态测试是对文档、代码等进行分析和评审,以发现潜在问题。
动态测试是通过运行软件,输入一些测试用例,观察程序的输出和行为,以评估软件的正确性和健壮性。
常见的测试方法包括黑盒测试、白盒测试、灰盒测试和自动化测试等。
总结软件工程基础知识是软件工程师的必备知识之一。
软件工程基础知识软件工程基础知识1. 软件工程的定义软件工程是一门应用技术和管理原则来开发、维护和演化软件的学科。
它涵盖了软件开发的各个阶段,包括需求分析、设计、编码、和维护。
软件工程的目标是提高软件的质量、可靠性和可维护性,以及提高开发效率。
2. 软件生命周期软件生命周期是指软件从概念阶段到退役阶段的全过程。
它包括需求分析、设计、编码、和运维等阶段。
软件生命周期的管理可以帮助团队合理规划、组织和控制软件项目的开发过程,以确保项目的成功。
3. 需求工程需求工程是软件开发过程中的重要阶段,它涉及确定用户需求、系统功能和约束条件。
需求工程的目标是确保软件系统能够满足用户的需求和期望。
在需求工程阶段,团队会采用多种技术和方法,如访谈、文档分析和原型设计等,以收集、分析和验证需求。
4. 软件设计软件设计是将需求转化为可执行代码的过程。
在软件设计阶段,团队会使用各种工具和技术,如UML图和结构化分析等,来定义系统的结构、功能和行为。
一个好的软件设计应该具有模块化、可维护性和可扩展性等特点。
5. 编码与编码是将软件设计转化为计算机可执行的代码的过程。
在编码过程中,程序员会使用特定的编程语言和开发工具来实现软件的功能。
是验证软件是否满足需求和正确运行的过程。
常见的方法包括单元、集成和验收等。
6. 软件配置管理软件配置管理是对软件项目进行版本控制和变更管理的过程。
它包括配置项的标识、变更控制、配置库管理和发布管理等活动。
软件配置管理的目标是确保团队能够有效管理和控制软件项目的变更、版本和发布。
7. 软件工程的方法论软件工程的方法论是一系列用于开发、维护和管理软件的方法和技术。
常见的软件工程方法论包括瀑布模型、敏捷开发和DevOps 等。
每种方法论都有其适用的场景和优缺点,团队需要根据项目的需求和特点选择合适的方法论。
8. 软件质量保证软件质量保证是确保软件满足用户需求和质量标准的过程。
它包括质量计划、质量控制和质量评估等活动。
软件工程基础知识点软件工程基础知识点1. 软件工程概述软件工程是一门研究和应用软件的系统化方法,通过应用工程原理和方法来开发和维护高质量的软件。
它涵盖了软件开发的整个生命周期,包括需求分析、设计、实现、测试和维护。
2. 软件开发生命周期软件开发生命周期是指软件从概念形成到最终退役的整个过程。
它通常包括需求分析、设计、编码、测试和维护等阶段。
这些阶段之间有相互依赖的关系,每个阶段都有相应的工作、产物和可交付成果。
3. 软件需求工程软件需求工程是指通过系统化和规范化的方法来理解和定义软件系统的功能和性能需求。
它包括需求获取、需求分析和需求规格等活动。
4. 软件设计原则软件设计原则是软件设计的指导原则,它包括单一职责原则、开放封闭原则、里氏替换原则、依赖倒置原则、接口隔离原则和迪米特法则等。
5. 软件开发方法软件开发方法是指在软件开发过程中应用的一种组织和管理方法。
常见的软件开发方法包括瀑布模型、迭代模型、敏捷方法和螺旋模型等。
6. 软件测试方法软件测试是为了发现和修复软件错误的过程。
常见的软件测试方法包括黑盒测试、白盒测试、灰盒测试、单元测试、集成测试和系统测试等。
7. 软件质量保证软件质量保证是确保软件满足用户需求和质量标准的过程。
它包括质量计划、质量控制和质量改进等活动。
8. 软件配置管理软件配置管理是一种管理软件配置项的过程。
它涉及到配置项的标识、控制、状态管理和变更管理等活动。
9. 软件工程工具软件工程工具是为了支持软件开发和维护而设计的工具。
常见的软件工程工具包括代码编辑器、集成开发环境、版本控制系统和缺陷跟踪系统等。
10. 软件项目管理软件项目管理是为了更好地组织和管理软件开发项目的过程。
它包括项目计划、项目追踪、项目风险管理和项目质量管理等活动。
软件工程是一门综合性的学科,它涵盖了软件开发的方方面面。
了解和掌握软件工程的基础知识对于我们在软件开发和维护过程中能够更好地理解和应用相关的原则和方法具有重要意义。
软件工程基础知识(事业单位计算机考试
常考知识点总结)
1. 软件工程概述
- 软件工程的定义
- 软件工程的发展历程
- 软件工程的目的和特点
2. 软件生命周期
- 软件生命周期的定义和阶段划分
- 软件开发过程中的需求分析、设计、编码、测试和维护等阶段
3. 软件需求工程
- 软件需求的定义和分类
- 软件需求获取的方法和技术
- 软件需求规格说明的编写方法
4. 软件设计
- 软件设计的目标和原则
- 软件设计模块化和结构化的方法- 软件设计中常用的各类图形工具
5. 软件测试与调试
- 软件测试的定义和目标
- 软件测试的原则和分类
- 软件测试用例的设计和执行方法- 软件调试的方法和技巧
6. 软件维护与演化
- 软件维护的定义和类型
- 软件维护的过程和策略
- 软件演化的原因和方法
7. 软件质量管理
- 软件质量的定义和评估
- 软件质量保证的方法和技术
- 软件缺陷管理和修复方法
8. 软件项目管理
- 软件项目管理的目标和原则
- 软件项目计划和进度管理
- 软件项目团队建设和沟通管理
9. 软件工程风险管理
- 软件工程风险的定义和分类
- 软件工程风险的识别和评估
- 软件工程风险的控制和应对
以上是关于软件工程基础知识的一些常考知识点总结,希望能帮助到您的事业单位计算机考试。
请按照考试大纲进行进一步的学习和复习。
软件工程基础知识详细讲解软件工程是一门涵盖软件开发全过程的学科,它包括了软件需求分析、软件设计、软件开发、软件测试、软件维护等诸多环节。
在现代社会中,软件的开发和应用已经成为了各个行业的重要组成部分。
为了能够具备基本的软件开发能力,我们有必要了解软件工程的基础知识。
一、软件需求分析软件需求分析是软件开发过程中第一个关键环节,它的主要任务是确定用户的需求,并将其转化为易于理解的需求规格说明。
在进行需求分析之前,我们需要与用户进行充分的沟通,了解他们的需求和期望。
需求分析的结果将指导后续的软件设计和开发工作。
在软件需求分析中,我们需要做到以下几点:1. 确定需求的背景和范围。
2. 收集用户需求,并进行详细的记录和整理。
3. 对需求进行分类和优先级排序。
4. 确定需求的可行性和实现难度。
5. 编写需求规格说明文档,明确描述软件功能和性能。
二、软件设计软件设计是软件工程中的核心环节,它的目标是根据需求规格说明,设计出满足用户需求的软件系统。
软件设计需要考虑系统的结构、功能、性能、可维护性等方面。
在进行软件设计时,我们应该采用模块化和层次化的方式,将整个系统分解为多个独立的模块,并确定模块之间的接口和关系。
软件设计的主要内容包括:1. 构建系统的整体结构和模块划分。
2. 定义数据结构和数据库设计。
3. 设计系统的具体功能和算法。
4. 确定软件界面和用户交互方式。
5. 进行系统的性能评估和优化。
三、软件开发软件开发是根据软件设计的要求,实现软件功能的过程。
在进行软件开发时,我们可以使用不同的编程语言和开发工具。
常见的开发方法包括结构化开发、面向对象开发和敏捷开发等。
软件开发的步骤包括:1. 编写程序代码,并进行模块测试。
2. 进行集成测试,测试不同模块之间的接口和交互。
3. 进行系统测试,验证整个软件系统的功能和性能。
4. 完善软件的用户文档和操作手册。
四、软件测试软件测试是确保软件质量的重要环节。
通过对软件系统进行全面的测试,可以发现并修复潜在的错误和缺陷。