八年级(下)期末数学综合复习试卷(六)及答案
- 格式:doc
- 大小:318.50 KB
- 文档页数:10
2022-2023学年华东师大新版八年级下册数学期末复习试卷一.选择题(共10小题,满分40分,每小题4分)1.关于反比例函数y=的图象,下列说法错误的是( )A.经过点(2,3)B.分布在第一、三象限C.关于原点对称D.x的值越大越靠近x轴2.若横坐标为3的点一定在( )A.与y轴平行,且与y轴的距离为3的直线上B.与x轴平行,且与x轴的距离为3的直线上C.与x轴正半轴相交,与y轴平行,且与y轴的距离为3的直线上D.与y轴正半轴相交,且与x轴的距离为3的直线上3.据科学研究表明,新型冠状病毒体直径的大小约为125纳米,1纳米就是0.000000001米.那么125纳米用科学记数法表示为( )A.125×10﹣9米B.1.25×10﹣8米C.1.25×10﹣7米D.1.25×10﹣6米4.“科学用眼,保护视力”是青少年珍爱生命的具体表现,某班50名同学的视力检查数据如表,其中有两个数据被遮盖.视力 4.6以下 4.6 4.7 4.8 4.9 4.9以上人数■■791411下列关于视力的统计量中,与被遮盖的数据均无关的是( )A.中位数,众数B.中位数,方差C.平均数,方差D.平均数,众数5.如图,正方形ABCD的边长为2,点E;F分别为边AD,BC上的点,点G,H分别为AB,CD边上的点,连接GH,若线段GH与EF的夹角为45°,GH=,则EF的长为( )A.B.C.D.6.如图,已知AB=DC,AD=BC,E,F是DB上两点且BF=DE,若∠AEB=100°,∠ADB =30°,则∠BCF的度数为( )A.150°B.40°C.80°D.70°7.直线y=ax+b经过第一、二、四象限,则直线y=bx+a的图象只能是图中的( )A.B.C.D.8.如图,四边形ABCD、CEFG均为正方形,其中正方形CEFG面积为36cm2,若图中阴影部分面积为10cm2,则正方形ABCD面积为( )A.6B.16C.26D.469.如图,点A在双曲线y1=(x>0)上,点B在双曲线y2=(x<0)上,AB∥x轴,点C是x轴上一点,连接AC、BC,若△ABC的面积是6,则k的值( )A.﹣6B.﹣8C.﹣10D.﹣1210.如图,正方形ABCD的边长为2,点P是对角线BD上一点,PE⊥BC于点E,PF⊥CD 于点F,连接EF,给出下列五个结论:①PB=AB;②AP=EF且AP⊥EF;③∠PFE=∠BAP;④EF的最小值为;⑤PB2+PD2=2PA2,其中正确的结论是( )A.①②③④B.②③④C.③④⑤D.②③④⑤二.填空题(共6小题,满分24分,每小题4分)11.某公司招聘一名公关人员,对甲进行了笔试和面试,面试和笔试的成绩分别为85分和90分,面试成绩和笔试成绩的权分别是6和4,则甲的平均成绩为 .12.如图所示,在▱ABCD中,∠BAD的平分线AE交BC于E,且AD=a,AB=b,用含a,b的代数式表示EC,则EC= .13.两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的,这时增加了乙队,两队又共同工作了半个月,总工程全部完成,求乙队单独施工完成次工程需要几个月?设乙队单独施工需要x个月,则列方程为: .14.已知关于x的分式方程的解是负数,则m的取值范围是 .15.已知直线y1=x+与y2=﹣4x﹣1相交于点P,则满足y1>y2的x的取值范围是 .16.写出一个与y=﹣x图象平行的一次函数: .三.解答题(共9小题,满分86分)17.(8分)解方程:.18.(8分)化简求值:(﹣),其中a满足a2+2a=2021.19.(8分)一次函数的图象过点A(﹣1,2)和点B(1,﹣4).(1)求该一次函数表达式;(2)若点C(a,8)也在直线AB上,求a的值;(3)若点P(m﹣1,n1)和点Q(m+1,n2)在该一次函数的图象上,求n1﹣n2的值.20.(8分)如图,在平行四边形ABCD中,E、F是对角线AC上的两点,且AF=CE.(1)求证:△ADE≌△CBF.(2)若AC平分∠BAD,则四边形BEDF的形状是 .21.(8分)如图,在平面直角坐标系中,直线l1:y=kx+b与直线l2:y=mx+n交于点A (1,2),直线l2与y轴交于点B(0,3),直线l1与x轴交于点C(﹣1,0).(1)求直线l1、l2的函数表达式;(2)连接BC,直接写出△ABC的面积.22.(10分)我校举行八年级汉字听写大赛,每班各派五名同学参加(满分为100分).其中八(1)班和八(2)班五位参赛同学的成绩如图所示:(1)根据条形统计图完成表格平均数中位数众数八(1)班83 90八(2)班 85 (2)已知八(1)班参赛选手成绩的方差为56分2,请计算八(2)班参赛选手成绩的方差,并分析哪一个班级的成绩比较稳定.23.(10分)如图,反比例函数y=(k≠0)与一次函数y=﹣x+b的图象交于点A(1,5)和点B(m,1).(1)求m,b的值.(2)结合图象,直接写出不等式<﹣x+b成立时x的取值范围.(3)若Q为y轴上的一点,使QA+QB最小,求点Q的坐标.24.(12分)某商场销售国外、国内两种品牌的智能手机,这两种手机的进价和售价如表所示国外品牌国内品牌进价(万元/部)0.440.2售价(万元/部)0.50.25该商场计划购进两种手机若干部,共需14.8万元,预计全部销售后可获毛利润共2.7万元.[毛利润=(售价﹣进价)×销售量](1)该商场计划购进国外品牌、国内品牌两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少国外品牌手机的购进数量,增加国内品牌手机的购进数量.已知国内品牌手机增加的数量是国外品牌手机减少的数量的3倍,而且用于购进这两种手机的总资金不超过15.6万元,该商场应该怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润25.(14分)综合与实践【问题背景】矩形纸片ABCD中,AB=6,BC=10,点P在AB边上,点Q在BC边上,将纸片沿PQ 折叠,使顶点B落在点E处.【初步认识】(1)如图1,折痕的端点P与点A重合.①当∠CQE=50°时,∠AQB= °;②若点E恰好在线段QD上,则BQ的长为 ;【深入思考】(2)若点E恰好落在边AD上.①请在图2中用无刻度的直尺和圆规作出折痕PQ(不写作法,保留作图痕迹);②如图3,过点E作EF∥AB交PQ于点F,连接BF.请根据题意,补全图3并证明四边形PBFE是菱形;③在②的条件下,当AE=3时,菱形PBFE的边长为 ,BQ的长为 ;【拓展提升】(3)如图4,若DQ⊥PQ,连接DE,若△DEQ是以DQ为腰的等腰三角形,则BQ的长为 .参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.解:A、反比例函数y=,当x=2时y=3,故本选项不符合题意;B、反比例函数y=中的6>0,则该函数图象经过第一、三象限,故本选项不符合题意;C、反比例函数y=的图象关于原点对称,故本选项不符合题意;D、反比例函数y=,不是单调函数,当x<0时,x的值越大越远离x轴,故错误,故本选项符合题意.故选:D.2.解:A.与y轴平行,且距离为3的直线上的点的横坐标为3或﹣3,故原说法不对;B.与x轴平行,且距离为3的直线上的点的纵坐标为3或﹣3,故原说法不对;C.与x轴正半轴相交,与y轴平行,且距离为3的直线上,说法正确;D.与y轴正半轴相交,与x轴平行,且距离为3的直线上的点的纵坐标为3,故原说法不对.故选:C.3.解:∵1纳米=1×10﹣9米.∴125纳米=125×10﹣9米=1.25×102×10﹣9米=1.25×10﹣7米.故选:C.4.解:由表格数据可知,成绩为4.6、4.6以下的人数为50﹣(7+9+14+11)=19(人),视力为4.9出现次数最多,因此视力的众数是4.9,视力从小到大排列后处在第25、26位的两个数都是4.7,因此中位数是4.7,因此中位数和众数与被遮盖的数据无关,故选:A.5.解:如图,过点B作BK∥EF交AD于K,作BM∥GH交CD于M,则BK=EF,BM=GH=,∵线段GH与EF的夹角为45°,∴∠ABK+∠CBM=90°﹣45°=45°,作∠KBN=45°交DA的延长线于N,则∠ABN+∠ABK=45°,∴∠ABN=∠CBM,在△ABN和△CBM中,,∴△ABN≌△CBM(ASA),∴BN=BM,AN=CM,在Rt△BCM中,CM===1,过点K作KP⊥BN于P,∵∠KBN=45°,∴△BKP是等腰直角三角形,设EF=BK=x,则BP=KP=BK=x,∵tan N==,∴=,解得x=,所以EF=.解法二:如图,过点B作BK∥EF交AD于K,作BM∥GH交CD于M,则BK=EF,BM=GH,∵线段GH与EF的夹角为45°,∴∠KBM=45°,∴∠ABK+∠CBM=90°﹣45°=45°,作∠KBN=45°交DA的延长线于N,则∠ABN+∠ABK=45°,在△ABN和△CBM中,,∴△ABN≌△CBM(ASA),∴BN=BM,AN=CM,在Rt△BCM中,CM===1,∴DM=1,在△KBN和△KBM中,,∴△KBN≌△KBM(SAS),∴KM=KN设AK为x,则KM=KN=x+1,KD=2﹣x,连接KM,在Rt△KDM中,DK2+DM2=KM2,∴(2﹣x)2+12=(x+1)2,∴x=,∴AK=,∴BK===,∴EF=BK=,故选:B.6.解:在△ABD和△CDB中,,∴△ABD≌△CDB(SSS),∴∠ADE=∠CBF,在△ADE和△CBF中,,∴△ADE≌△CBF(SAS),∴∠BCF=∠DAE,∵∠DAE=∠AEB﹣∠ADE=100°﹣30°=70°,∴∠BCF=70°.故选:D.7.解:∵直线y=ax+b经过第一、二、四象限,∴a<0,b>0,∴直线y=bx+a的图象经过第一、三、四象限,故选:D.8.解:∵阴影部分面积=DE×(BC+CG),∴阴影部分面积=×(CE﹣DC)(BC+CG)=(CE2﹣BC2),∵正方形CEFG面积为36cm2,图中阴影部分面积为10cm2,∴10=×(36﹣S正方形ABCD),∴S正方形ABCD=16,故选:B.9.解:如图,连接OA,OB,AB与y轴交于点M,∵AB∥x轴,点A双在曲线y1=(x>0)上,点B在双曲线y2=(x<0)上,∴S△AOM=×|2|=1,S△BOM=×|k|=﹣k,∵S△ABC=S△AOB=6,∴1﹣k=6,∴k=﹣10.故选:C.10.解:连接PC,延长AP交EF于点H,如图所示:∵点P是对角线BD上一点,∴PB和AB的大小不能确定,故①选项不符合题意;在正方形ABCD中,AD=CD,∠ADP=∠CDP=45°,PD=PD,∴△ADP≌△CDP(SAS),∴AP=CP,∠PAD=∠PCD,∵PE⊥BC,PF⊥CD,∴∠PFC=∠PEC=90°,∵∠C=90°,∴四边形PECF是矩形,∴EF=PC,∴AP=EF,∵∠ADC=∠PFC=90°,∴AD∥PF,∴∠DAP=∠FPH,在矩形PECF中,∠PCD=∠EFC,∴∠FPH=∠EFC,∵∠EFC+∠EFP=90°,∴∠FPH+∠EFP=90°,∴AP⊥EF,故②选项符合题意;在矩形PECF中,∠PFE=∠PCE,∵△ADP≌△CDP,∴∠DAP=∠DCP,∴∠BAP=∠PCB,∴∠BAP=∠PFE,故③选项符合题意;∵AB=AD=2,根据勾股定理得BD=2,当AP⊥BD时,AP最小,此时AP最小值为BD=,∵AP=EF,∴EF的最小值为,故④选项符合题意;根据勾股定理,得PB2=2PE2,PD2=2PF2,∴PB2+PD2=2(PE2+PF2)=2EF2=2PA2,故⑤选项符合题意;综上,正确的选项有②③④⑤,故选:D.二.填空题(共6小题,满分24分,每小题4分)11.解:甲的平均成绩为=87(分),故答案为:87分.12.解:∵AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴BE=AB=b,∵BC=AD=a,∴EC=BC﹣BE=a﹣b.故填空答案:a﹣b.13.解:由题意可得,+()×=1,故答案为:+()×=1.14.解:,m﹣3=x+1,∴x=m﹣4.∵关于x的分式方程的解是负数,∴m﹣4<0且m﹣4+1≠0.∴m<4且m≠3.故答案为:m<4且m≠3.15.解:∵y1>y2,∴x+>﹣4x﹣1,解得:x>﹣,故答案为:x>﹣.16.解:由题意得,k=﹣1,则可出一次函数y=﹣x+1,答案不唯一.三.解答题(共9小题,满分86分)17.解:方程两边同乘(x﹣3),得:2x﹣1=x﹣3+1,整理解得:x=﹣1,经检验:x=﹣1是原方程的解.18.解:原式====,∵a2+2a=2021,则原式=.19.解:(1)设一次函数表达式为:y=kx+b,∵一次函数的图象过点A(﹣1,2)和点B(1,﹣4),∴,解得:,∴一次函数表达式为:y=﹣3x﹣1;(2)∵点C(a,8)在直线AB上,∴﹣3a﹣1=8,解得a=﹣3;(3)∵点P(m﹣1,n1)和点Q(m+1,n2)在该一次函数的图象上,∴,解得:n1﹣n2=6.20.证明:(1)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAE=∠BCF,∵AF=CE.∴AF﹣EF=CE﹣EF,∴AE=CF,∴△ADE≌△CBF(SAS);(2)四边形BEDF的形状是菱形,理由如下:∵AC平分∠BAD,∴∠DAC=∠BAC,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠DAC=∠BCA,∴∠BAC=∠BCA,∴BA=BC,∴AD=AB,∵AE=AE,∴△ADE≌△ABE(SAS),∴DE=BE,∵△ADE≌△CBF,∴DE=BF,∠DEA=∠BFC,∴∠DEF=∠BFE,∴DE∥BF,∴四边形BEDF是平行四边形,∵DE=BE,∴平行四边形BEDF是菱形.故答案为:菱形.21.解:(1)根据题意得,,解得,∴直线l1:y=x+1,解得,∴直线l2:y=﹣x+3;(2)设直线l1与y轴的交点为D,则D(0,1),∴BD=3﹣1=2,∴S△ABC=S△ABD+S△BCD=+×1=2.22.解:(1)八(1)班的成绩从大到小排列为70,80,85,90,90,处于第三位的是85,因此中位数为85,八(2)班平均数为(70+85+85+90+95)÷5=85,出现次数最多的数是85,所以表格中依次填写85,85,85.(2)八(2)班的方差:S2=[(95﹣85)2+(70﹣85)2+(90﹣85)2+(85﹣85)2+(85﹣85)2]=70,∵56<70,∴八(1)班成绩比较稳定,答:八(1)班成绩比较稳定.23.解:(1)将点A的坐标代入y=(k≠0)得:5=,解得:k=5,∴反比例函数为y=,将点B的坐标代入y=得1=,解得:m=5,∴点B(5,1),∵一次函数y=﹣x+b的图象过点A(1,5),∴5=﹣1+b,解得b=6;(2)从函数图象看,不等式<﹣x+b成立时x的取值范围是1<x<5或x<0;(3)作A关于y轴的对称点A′,连接A′B,与y轴的交点即为Q点,此时AQ+BQ 的和最小,∵A(1,5),∴A关于y轴的对称点A′的坐标为(﹣1,5),设直线A′B的解析式为y=mx+n,∴,解得,∴直线A′B的解析式为y=﹣x+,令x=0,则y=,∴Q(0,).24.解:(1)设商场计划购进国外品牌手机x部,国内品牌手机y部,由题意,得:,解得,答:商场计划购进国外品牌手机20部,国内品牌手机30部;(2)设国外品牌手机减少a部,则国内手机品牌增加3a部,由题意,得:0.44(20﹣a)+0.2(30+3a)≤15.6,解得:a≤5,设全部销售后获得的毛利润为w万元,由题意,得:w=0.06(20﹣a)+0.05(30+3a)=0.09a+2.7,∵k=0.09>0,∴w随a的增大而增大,∴当a=5时,w最大=3.15,答:当该商场购进国外品牌手机15部,国内品牌手机45部时,全部销售后获利最大,最大毛利润为3.15万元.25.(1)解:①∵∠CQE=50°,∴∠BQE=130°,由折叠可知,∠AQB=∠BQE=65°,故答案为:65;②解:由折叠可知,AB=AE,∠ABE=∠AEQ=90°,BQ=QE,∵AB=6,BC=10,∴AE=6,∴DE=8,在Rt△CDQ中,(8+QE)2=62+(10﹣QE)2,∴QE=2,∴BQ=2,故答案为:2;(2)解:①连接BE,作BE的垂直平分线交AB于P,交BC于Q,则PQ为所求;②证明:∵EF∥AB,∴∠BPF=∠EFP,由折叠可知,PB=PE,∠BPF=∠EPF,∴∠EFP=∠EPF,∴PE=EF,∴PB=EF,∴四边形PBFE是平行四边形,∵PE=EF,∴四边形PBFE是菱形;③解:由折叠可知PB=PE,∵AB=6,∴AP=6﹣PE,在Rt△APE中,PE2=(6﹣PE)2+32,∴PE=,∴菱形PBFE的边长为,由折叠可知,EQ=BQ,∵AE=3,∴BG=3,在Rt△EGQ中,BQ2=62+(BQ﹣3)2,∴BQ=,故答案为:,;(3)解:由折叠可知BQ=EQ,设BQ=m,则EQ=m,CQ=10﹣m,①当DQ=EQ时,在Rt△CDQ中,62+(10﹣m)2=m2,∴m=,∴BQ=;②当DE=DQ时,过点D作DF⊥EQ交于F,∴FQ=EQ=m,由折叠可知∠PQB=∠PQE,∵DQ⊥PQ,∴∠PQB+∠CQD=90°=∠PQE+∠FQD,∴∠CQD=∠FQD,∴△CDQ≌△FDQ(AAS),∴CQ=FQ,∴10﹣m=m,∴m=,∴BQ=;综上所述:BQ的长为或,故答案为:或.。
八年级下期末数学试卷6(有答案)一、选择题:本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅笔涂在答题卡相应位置上.1.下列图案中既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.下列调查中,适合普查的是()A.一批手机电池的使用寿命B.中国公民保护环境的意识C.你所在学校的男、女同学的人数D.端午节期间苏州市场上粽子的质量3.若正方形的面积是12cm2,则边长a满足()A.2cm<a<3cm B.3cm<a<4cm C.4cm<a<5cm D.5cm<a<6cm4.下列运算正确的是()A.﹣=B.÷=4 C.=﹣2 D.(﹣)2=25.已知▱ABCD中,AC、BD交于点O.下列结论中,不一定成立的是()A.▱ABCD关于点O对称B.OA=OCC.AC=BD D.∠B=∠D6.一个不透明的袋子中装有2个红球、3个白球,每个球除颜色外都相同.从中任意摸出3个球,下列事件为必然事件的是()A.至少有1个球是红球B.至少有1个球是白球C.至少有2个球是红球D.至少有2个球是白球7.若点P、Q都在函数y=的图象上,则下列结论中正确的是()A.a>b B.a=bC.a<b D.a、b的大小关系无法确定8.如图,已知在正方形网格中的两个格点三角形是位似形,它们的位似中心是()A.点A B.点B C.点C D.点D9.将矩形OABC如图放置,O为原点.若点A(﹣1,2),点B的纵坐标是,则点C的坐标是()A.(4,2)B.(2,4)C.(,3)D.(3,)10.如图,正方形纸片ABCD的边长为4cm,点M、N分别在边AB、CD上.将该纸片沿MN折叠,使点D落在边BC上,落点为E,MN与DE相交于点Q.随着点M的移动,点Q移动路线长度的最大值是()A.4cm B.2cm C.cm D.1cm二、填空题:本大题共8小题,每小题2分,共16分.把答案直接填在答题卡相应位置上.11.若3a=2b,则a:b=.12.计算:(+1)2=.13.若式子在实数范围内有意义,则x的取值范围是.14.若点P是线段AB的黄金分割点(PA>PB),且AB=10cm,则PA≈cm.(精确到0.01cm)15.如图,是某射手在相同条件下进行射击训练的结果统计图,该射手击中靶心的概率的估计值为.16.如图,小明站在距离灯杆6m的点B处.若小明的身高AB=1.5m,灯杆CD=6m,则在灯C的照射下,小明的影长BE=m.17.如图,点A在函数y=(x>0)的图象上,点B在函数y=(x>0)的图象上,点C在x轴上.若AB∥x轴,则△ABC的面积为.18.已知菱形ABCD中,AC=6cm,BD=4cm.若以BD为边作正方形BDEF,则AF=cm.三、解答题:本大题共11小题,共64分.把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔.19.计算:(+×)×.20.解方程: +=1.21.求代数式÷(1+)的值,其中x=+1.22.某校开展学生安全知识竞赛.现抽取部分学生的竞赛成绩(满分为100分,得分均为整数)进行统计,(1)a=,n=;(2)补全频数分布直方图;(3)该校共有2 000名学生.若成绩在80分以上的为优秀,请你估计该校成绩优秀的学生人数.23.一个不透明的袋子中装有2个白球,1个红球,1个黑球,每个球除颜色外都相同,将球搅匀.(1)从中任意摸出1个球,恰好摸到白球的概率是;(2)先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,求两次都摸到白球的概率.(用树状图或列表法求解).24.如图,已知四边形ABCD是平行四边形.(1)用直尺和圆规作出∠ABC的平分线BE,BE交CD的延长线于点E,交AD于点F;(保留作图痕迹,不写作法)(2)若AB=2cm,BC=3cm,BE=5cm,求BF的长.25.在“爱心捐款”活动中,甲班共捐款300元,乙班共捐款225元.已知甲班的人均捐款额是乙班的1.2倍,且甲班人数比乙班多5人.请你根据以上信息,提出一个用分式方程解决的问题,并写出解答过程.26.如图,在△ABC中,∠BAC=50°,将△ABC绕点A按逆时针方向旋转后得△AB1C1.当B1B∥AC时,求∠BAC1的度数.27.如图,△ABC的中线AD、BE、CF相交于点G,H、I分别是BG、CG的中点.(1)求证:四边形EFHI是平行四边形;(2)①当AD与BC满足条件时,四边形EFHI是矩形;②当AD与BC满足条件时,四边形EFHI是菱形.28.如图,点A(1,4)、B(2,a)在函数y=(x>0)的图象上,直线AB与x轴相交于点C,AD⊥x轴于点D.(1)m=;(2)求点C的坐标;(3)在x轴上是否存在点E,使以A、B、E为顶点的三角形与△ACD相似?若存在,求出点E的坐标;29.如图,已知直线a∥b,a、b之间的距离为4cm.A、B是直线a上的两个定点,C、D是直线b上的两个动点(点C在点D的左侧),且AB=CD=10cm,连接AC、BD、BC,将△ABC沿BC翻折得△A1BC.(1)当A1、D两点重合时,AC=cm;(2)当A1、D两点不重合时,①连接A1D,求证:A1D∥BC;②若以点A1、C、B、D为顶点的四边形是矩形,求AC的长.八年级(下)期末数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅笔涂在答题卡相应位置上.1.下列图案中既是轴对称图形,又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形;B、不是轴对称图形,也不是中心对称图形;C、不是轴对称图形,也不是中心对称图形;D、是轴对称图形,不是中心对称图形.故选A.2.下列调查中,适合普查的是()A.一批手机电池的使用寿命B.中国公民保护环境的意识C.你所在学校的男、女同学的人数D.端午节期间苏州市场上粽子的质量【考点】全面调查与抽样调查.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断即可.【解答】解:一批手机电池的使用寿命适合抽样调查;中国公民保护环境的意识适合抽样调查;你所在学校的男、女同学的人数适合普查;端午节期间苏州市场上粽子的质量适合抽样调查,故选:C.3.若正方形的面积是12cm2,则边长a满足()A.2cm<a<3cm B.3cm<a<4cm C.4cm<a<5cm D.5cm<a<6cm【考点】估算无理数的大小.【分析】设正方形的边长为acm,根据正方形的面积公式求出a的值即可.【解答】解:设正方形的边长为acm,(a>0),∵正方形的面积是12cm2,∴a2=12,A.2<a<3,所以4<a2<9,故A错,B.3<a<4,所以9<a2<16,故B正确,C.4<a<5,所以16<a2<25,故C错,D.5<a<6,所以25<a2<36,故D错,故选:B4.下列运算正确的是()A.﹣=B.÷=4 C.=﹣2 D.(﹣)2=2【考点】二次根式的混合运算.【分析】根据二次根式的化简、二次根式的除法进行计算即可.【解答】解:A、﹣=,故本选项错误;B、÷=2,故本选项错误;C、=2,故本选项错误;D、(﹣)2=2,故本选项正确;故选D.5.已知▱ABCD中,AC、BD交于点O.下列结论中,不一定成立的是()A.▱ABCD关于点O对称B.OA=OCC.AC=BD D.∠B=∠D【考点】平行四边形的性质.【分析】根据平行四边形的性质:平行四边形的对边相等,对角线互相平分即可作出判断.【解答】解:A、▱ABCD关于点O对称,正确,不合题意;B、根据平行四边形的对角线互相平分可得AO=CO,正确,不合题意;C、平行四边形的对角线不一定相等,则AC=BD错误,符合题意;D、根据平行四边形的对角相等可得∠B=∠D,正确,不合题意.故选:C.6.一个不透明的袋子中装有2个红球、3个白球,每个球除颜色外都相同.从中任意摸出3个球,下列事件为必然事件的是( )A .至少有1个球是红球B .至少有1个球是白球C .至少有2个球是红球D .至少有2个球是白球 【考点】随机事件.【分析】必然事件就是一定发生的事件,根据定义即可判断. 【解答】解:A 、至少有1个球是红球是随机事件,选项错误; B 、至少有1个球是白球是必然事件,选项正确; C 、至少有2个球是红球是随机事件,选项错误; D 、至少有2个球是白球是随机事件,选项错误. 故选B .7.若点P 、Q 都在函数y=的图象上,则下列结论中正确的是( )A .a >bB .a=bC .a <bD .a 、b 的大小关系无法确定【考点】反比例函数图象上点的坐标特征.【分析】分别把各点代入反比例函数y=,求出a 、b 的值,再比较大小即可.【解答】解:∵点P 、Q 都在函数y=的图象上,∴a=,b=,∴a >b . 故选A .8.如图,已知在正方形网格中的两个格点三角形是位似形,它们的位似中心是( )A .点AB .点BC .点CD .点D 【考点】位似变换.【分析】利用对应点的连线都经过同一点进行判断. 【解答】解:如图,位似中心为点A .故选A .9.将矩形OABC 如图放置,O 为原点.若点A (﹣1,2),点B 的纵坐标是,则点C 的坐标是( )【考点】矩形的性质;坐标与图形性质.【分析】首先构造直角三角形,利用相似三角形的判定与性质以及结合全等三角形的判定与性质得出CM=,MO=3,进而得出答案.【解答】解:过点A作AE⊥x轴于点E,过点B作BF⊥⊥x轴于点F,过点A作AN⊥BF于点N,过点C作CM⊥x轴于点M,∵∠EAO+∠AOE=90°,∠AOE+∠MOC=90°,∴∠EAO=∠COM,又∵∠AEO=∠CMO,∴∠AEO∽△COM,∴=,∵∠BAN+∠OAN=90°,∠EAO+∠OAN=90°,∴∠BAN=∠EAO=∠COM,在△ABN和△OCM中,∴△ABN≌△OCM(AAS),∴BN=CM,∵点A(﹣1,2),点B的纵坐标是,∴BN=,∴CM=,∴MO=3,∴点C的坐标是:(3,).故选:D.10.如图,正方形纸片ABCD的边长为4cm,点M、N分别在边AB、CD上.将该纸片沿MN折叠,使点D落在边BC上,落点为E,MN与DE相交于点Q.随着点M的移动,点Q移动路线长度的最大值是()A.4cm B.2cm C.cm D.1cm【考点】轨迹;翻折变换(折叠问题).【分析】如图,取AB、CD中点K、G,连接KG、BD交于点O,根据点Q运动的路线就是线段OG即可解决问题.【解答】解:如图,取AB、CD中点K、G,连接KG、BD交于点O.由题意可知点Q运动的路线就是线段OG,∵DO=OB,DG=GC,∴OG=BC=×4=2.∴点Q移动路线长度的最大值是2.故选B.二、填空题:本大题共8小题,每小题2分,共16分.把答案直接填在答题卡相应位置上.11.若3a=2b,则a:b=2:3.【考点】比例的性质.【分析】利用比例的性质内项之积等于外项之积求解.【解答】解:∵3a=2b,∴a:b=2:3.故答案为2:3.12.计算:(+1)2=3+2.【考点】二次根式的混合运算.【分析】利用完全平方公式计算.【解答】解:原式=2+2+1=3+2.故答案为3+2.13.若式子在实数范围内有意义,则x的取值范围是x≥﹣1且x≠0.【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据二次根式和分式有意义的条件,被开方数大于等于0,分母不等于0,就可以求解.【解答】解:∵式子在实数范围内有意义,∴x+1≥0,且x≠0,解得:x≥﹣1且x≠0,故答案为:x≥﹣1且x≠014.若点P是线段AB的黄金分割点(PA>PB),且AB=10cm,则PA≈ 6.18cm.(精确到0.01cm)【考点】黄金分割.【分析】根据黄金分割点的定义,知AP是较长线段,那么AP=AB≈0.618AB,代入计算即可.【解答】解:∵点P是线段AB的黄金分割点(PA>PB),且AB=10cm,∴AP=AB≈0.618×10≈6.18(cm).故答案为6.18.15.如图,是某射手在相同条件下进行射击训练的结果统计图,该射手击中靶心的概率的估计值为0.600.【考点】利用频率估计概率.【分析】观察表格的数据可以得到击中靶心的频率,然后用频率估计概率即可求解.【解答】解:依题意得击中靶心频率逐渐稳定在0.600附近,估计这名射手射击一次,击中靶心的概率约为0.600.故答案为:0.600.16.如图,小明站在距离灯杆6m的点B处.若小明的身高AB=1.5m,灯杆CD=6m,则在灯C的照射下,小明的影长BE=2m.【考点】相似三角形的应用;中心投影.【分析】首先判定△ABE∽△CDE,根据相似三角形的性质可得=,然后代入数值进行计算即可.【解答】解:∵AB⊥ED,CD⊥ED,∴AB∥DC,∴△ABE∽△CDE,∴=,∵AB=1.5m,CD=6m,BD=6m,∴=,解得:EB=2,故答案为:2.17.如图,点A在函数y=(x>0)的图象上,点B在函数y=(x>0)的图象上,点C在x轴上.若AB∥x轴,则△ABC的面积为2.【考点】反比例函数系数k的几何意义.【分析】由AB∥x轴,设点A(,m),B(,m),根据三角形的面积公式即可得出结论.【解答】解:设点A(,m),B(,m),=•(﹣)•m=2.∴S△ABC18.已知菱形ABCD中,AC=6cm,BD=4cm.若以BD为边作正方形BDEF,则AF=或cm.【考点】正方形的性质;菱形的性质.【分析】作出图形,根据菱形的对角线互相垂直平分求出AO、BO,然后分正方形在A、C的两边两种情况延长CA(或AC)交EF于点M(或点N),根据勾股定理求出AF的长度即可得出结论.【解答】解:以BD为边作正方形BDEF分两种情况:①如图1,正方形BDEF在点A一侧时,延长CA交EF于点M.∵四边形ABCD为菱形,AC=6cm,BD=4cm,∴OB=2cm,OA=3cm.∵四边形BDEF为正方形,∴FM=BO=2cm,AM=DE﹣OA=1cm,∴AF==cm;②如图2,正方形BDEF在点C一侧时,延长AC交EF于点N,∵四边形ABCD为菱形,AC=6cm,BD=4cm,∴OB=2cm,OA=3cm.∵四边形BDEF为正方形,∴FN=BO=2cm,AN=DE+OA=7cm,∴AF==cm.故答案为:或.三、解答题:本大题共11小题,共64分.把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔.19.计算:(+×)×.【考点】二次根式的混合运算.【分析】直接利用二次根式的性质化简求出答案.【解答】解:原式=3+=3+15=18.20.解方程: +=1.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2﹣1=x﹣2,解得:x=3,经检验x=3是分式方程的解.21.求代数式÷(1+)的值,其中x=+1.【解答】解:原式=÷=•=,当x=+1时,原式==.22.某校开展学生安全知识竞赛.现抽取部分学生的竞赛成绩(满分为100分,得分均为整数)进行统计,绘制了图中两幅不完整的统计图.根据图中信息,回答下列问题:(1)a=60,n=54;(2)补全频数分布直方图;(3)该校共有2 000名学生.若成绩在80分以上的为优秀,请你估计该校成绩优秀的学生人数.【考点】频数(率)分布直方图;用样本估计总体;扇形统计图.【分析】(1)根据A组的人数是30人,所占的百分比是10%,据此即可求得抽取的总人数,然后利用百分比的计算方法求得B组的人数,进而求得a和E组的人数,利用360乘以E组对应的比例求得n的值;(2)利用(1)的结果可以补全直方图;(3)利用总人数乘以对应的比例即可求解.【解答】解:(1)抽取的总人数是30÷10%=300(人),则B组的人数是300×20%=60(人),a=300×25%=75,E组的人数是300﹣30﹣60﹣75﹣90=45(人)n=360×=54.故答案是:75,54;(2);(3)估计该校成绩优秀的学生人数是:2000×=900(人).答:估计该校成绩优秀的学生人数是900人.23.一个不透明的袋子中装有2个白球,1个红球,1个黑球,每个球除颜色外都相同,将球搅匀.(1)从中任意摸出1个球,恰好摸到白球的概率是;(2)先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,求两次都摸到白球的概率.(用树状图或列表法求解).【考点】列表法与树状图法;概率公式.【分析】(1)根据4个小球中白球的个数,即可确定出从中任意摸出1个球,恰好摸到白球的概率;(2)列表得出所有等可能的情况数,找出两次都摸到白球的情况数,即可求出所求的概率.【解答】解:(1)4个小球中有2个白球,则任意摸出1个球,恰好摸到白球的概率,故答案为:;则P(两次摸到白球)==.24.如图,已知四边形ABCD是平行四边形.(1)用直尺和圆规作出∠ABC的平分线BE,BE交CD的延长线于点E,交AD于点F;(保留作图痕迹,不写作法)(2)若AB=2cm,BC=3cm,BE=5cm,求BF的长.【考点】平行四边形的性质;作图—基本作图.【分析】(1)利用尺规作出∠ABC的平分线即可.(2)先证明AB=AF=2,BC=CE=3,再根据AB∥DE,推出=,列出方程即可解决问题.【解答】解:(1)答案如图所示.(2)∵四边形ABCD是平行四边形,∴AB=CD=2,BC=AD=3,AD∥BC,AB∥CD,∵BE平分∠ABC,∴∠ABF=∠CBE,∠CBE=∠AFB,∴∠ABF=∠AFB,∴AB=AF=2,同理BC=CE=3,设BF=x,∵AB∥DE,∴=,∴=,∴x=.25.在“爱心捐款”活动中,甲班共捐款300元,乙班共捐款225元.已知甲班的人均捐款额是乙班的1.2倍,且甲班人数比乙班多5人.请你根据以上信息,提出一个用分式方程解决的问题,并写出解答过程.【考点】分式方程的应用.【分析】首先把应用题补充完整,可以求甲班的人数;然后设甲班有x人,则乙班有(x﹣5)人,再根据甲班的人均捐款额是乙班的1.2倍列出方程,再解即可.【解答】在“爱心捐款”活动中,甲班共捐款300元,乙班共捐款225元.已知甲班的人均捐款额是乙班的1.2倍,且甲班人数比乙班多5人,求甲班的人数.解:设甲班有x人,则乙班有(x﹣5)人,由题意得:=×1.2,解得:x=50,经检验:x=50是分式方程的解,答:甲班有50人.26.如图,在△ABC中,∠BAC=50°,将△ABC绕点A按逆时针方向旋转后得△AB1C1.当B1B∥AC时,求∠BAC1的度数.【考点】旋转的性质;平行线的性质.【分析】先依据平行的性质可求得∠ABB1的度数,然后再由旋转的性质得到△AB1B为等腰三角形,∠B1AC1=50°,再求得∠BAB1的度数,最后依据∠BAC1=∠BAB1﹣∠C1AB1求解即可.【解答】解:∵B1B∥AC,∴∠ABB1=∠BAC=50°.∵由旋转的性质可知:∠B1AC1=∠BAC=50°,AB=AB1.∴∠ABB1=∠AB1B=50°.∴∠BAB1=80°∴∠BAC1=∠BAB1﹣∠C1AB1=80°﹣50°=30°.27.如图,△ABC的中线AD、BE、CF相交于点G,H、I分别是BG、CG的中点.(1)求证:四边形EFHI是平行四边形;(2)①当AD与BC满足条件AD⊥BC时,四边形EFHI是矩形;②当AD与BC满足条件BC=AD时,四边形EFHI是菱形.【考点】矩形的判定;三角形中位线定理;平行四边形的判定与性质;菱形的判定.【分析】(1)证出EF、HI分别是△ABC、△BCG的中位线,根据三角形中位线定理可得EF∥BC且EF=BC,HI∥BC且PQ=BC,进而可得EF∥HI且EF=HI.根据一组对边平行且相等的四边形是平行四边形可得结论;(2)①由三角形中位线定理得出FH∥AD,再证出EF⊥FH即可;②与三角形重心定理得出AG=AD,证出AG=BC,由三角形中位线定理和添加条件得出FH=EF,即可得出结论.【解答】(1)证明:∵BE,CF是△ABC的中线,∴EF是△ABC的中位线,∴EF∥BC且EF=BC.∵H、I分别是BG、CG的中点.,∴HI是△BCG的中位线,∴HI∥BC且HI=BC,∴EF∥HI且EF=HI.∴四边形EFHI是平行四边形.(2)解:①当AD与BC满足条件AD⊥BC时,四边形EFHI是矩形;理由如下:同(1)得:FH是△ABG的中位线,∴FH∥AG,FH=AG,∴FH∥AD,∵EF∥BC,AD⊥BC,∴EF⊥FH,∴∠EFH=90°,∵四边形EFHI是平行四边形,∴四边形EFHI是矩形;故答案为:AD⊥BC;②当AD与BC满足条件BC=AD时,四边形EFHI是菱形;理由如下:∵△ABC的中线AD、BE、CF相交于点G,∴AG=AD,∵BC=AD,∴AG=BC,∵FH=AG,EF=BC,∴FH=EF,又∵四边形EFHI是平行四边形,∴四边形EFHI是菱形;故答案为:BC=AD.28.如图,点A(1,4)、B(2,a)在函数y=(x>0)的图象上,直线AB与x轴相交于点C,AD⊥x轴于点D.(1)m=4;(2)求点C的坐标;(3)在x轴上是否存在点E,使以A、B、E为顶点的三角形与△ACD相似?若存在,求出点E的坐标;若不存在,说明理由.【考点】反比例函数综合题.【分析】(1)有点A的坐标结合反比例函数图象上点的坐标特征,即可得出m的值;(2)由反比例函数的解析式结合反比例函数图象上点的坐标特征即可得出点B的坐标,利用待定系数法即可求出直线AB的解析式,再领y=0求出x值即可得出点C的坐标;(3)假设存在,设点E的坐标为(n,0),分∠ABE=90°、∠BAE=90°以及∠AEB=90°三种情况考虑:①当∠ABE=90°时,根据等腰三角形的性质,利用勾股定理即可找出关于n的一元二次方程,解方程即可得出结论;②当∠BAE=90°时,根据∠ABE>∠ACD可得出两三角形不可能相似;③当∠AEB=90°时,根据A、B的坐标可得出AB的长度,以AB为直径作圆可知圆与x轴无交点,故该情况不存在.综上即可得出结论.【解答】解:(1)∵点A(1,4)在反比例函数y=(x>0)的图象上,∴m=1×4=4,故答案为:4.(2)∵点B(2,a)在反比例函数y=的图象上,∴a==2,∴B(2,2).设过点A、B的直线的解析式为y=kx+b,∴,解得:,∴过点A、B的直线的解析式为y=﹣2x+6.当y=0时,有﹣2x+6=0,解得:x=3,∴点C的坐标为(3,0).(3)假设存在,设点E的坐标为(n,0).①当∠ABE=90°时(如图1所示),∵A(1,4),B(2,2),C(3,0),∴B是AC的中点,∴EB垂直平分AC,EA=EC=n+3.由勾股定理得:AD2+DE2=AE2,即42+(x+1)2=(x+3)2,解得:x=﹣2,此时点E的坐标为(﹣2,0);②当∠BAE=90°时,∠ABE>∠ACD,故△EBA与△ACD不可能相似;③当∠AEB=90°时,∵A(1,4),B(2,2),∴AB=,2>,∴以AB为直径作圆与x轴无交点(如图3),∴不存在∠AEB=90°.综上可知:在x轴上存在点E,使以A、B、E为顶点的三角形与△ACD相似,点E的坐标为(﹣2,0).29.如图,已知直线a ∥b ,a 、b 之间的距离为4cm .A 、B 是直线a 上的两个定点,C 、D 是直线b 上的两个动点(点C 在点D 的左侧),且AB=CD=10cm ,连接AC 、BD 、BC ,将△ABC 沿BC 翻折得△A 1BC . (1)当A 1、D 两点重合时,AC= 10 cm ; (2)当A 1、D 两点不重合时, ①连接A 1D ,求证:A 1D ∥BC ;②若以点A 1、C 、B 、D 为顶点的四边形是矩形,求AC 的长.【考点】四边形综合题. 【分析】(1)当A 1、D 两点重合时,可以证到四边形ACDB 是菱形,从而得到AC=AB=10cm .(2)①过点A 1作A 1E ⊥BC ,垂足为E ,过点D 作DF ⊥BC ,垂足为F ,如图2,可以证到S △DBC =S △ABC =S △A1BC ,从而得到DF=A 1E ,由A 1E ⊥BC ,DF ⊥BC 可以证到A 1E ∥DF ,从而得到四边形A 1DFE 是平行四边形,就可得到A 1D ∥BC .②若以A 1、C 、B 、D 为顶点的四边形是矩形,则有三个位置,分别是图3①、图3②、图3③.对于图3①、图3②,过点C 作CH ⊥AB ,垂足为H ,运用相似三角形的性质建立方程就可求出AH ,然后运用勾股定理就可求出AC 的长;对于图3③,直接运用勾股定理就可求出AC 的长 【解答】解:(1)当A 1、D 两点重合时,如图1①和图1②,∵CD ∥AB ,CD=AB ,∴四边形ACDB 是平行四边形.∵△ABC 沿BC 折叠得△A 1BC ,A 1、D 两点重合,∴AC=A1C=DC.∴平行四边形ACDB是菱形.∴AC=AB=10(cm).故答案为:10.(2)当A1、D两点不重合时,①A1D∥BC.证明:过点A1作A1E⊥BC,垂足为E,过点D作DF⊥BC,垂足为F,如图2,∵CD∥AB,CD=AB,∴四边形ACDB是平行四边形.∴S△ABC =S△DBC.∵△ABC沿BC折叠得△A1BC,∴S△ABC =S△A1BC.∴S△DBC =S△A1BC.∴BC•DF=BC•A1E.∴DF=A1E.∵A1E⊥BC,DF⊥BC,∴∠A1EB=∠DFB=90°.∴A1E∥DF.∴四边形A1DFE是平行四边形.∴A1D∥EF.∴A1D∥BC.②Ⅰ.如图3①,过点C作CH⊥AB,垂足为H,此时AH<BH.∵四边形A1DBC是矩形,∴∠A1CB=90°.∵△ABC沿BC折叠得△A1BC,∴∠ACB=∠A1CB.∴∠ACB=90°.∵CH⊥AB,∴∠AHC=∠CHB=90°.∴∠ACH=90°﹣∠HCB=∠CBH.∴△AHC∽△CHB.∴.∴CH2=AH•BH.∵AB=10,CH=4,∴3=AH•(10﹣AH).解得:AH=2或AH=8.∵AH<BH,∴AH=2.∴AC2=CH2+AH2=16+4=20.∴AC=2.Ⅱ.如图3②,过点C作CH⊥AB,垂足为H,此时AH>BH.同理可得:AH=8.∴AC2=CH2+AH2=16+64=80.∴AC=4.Ⅲ.如图3③,∵四边形A1DCB是矩形,∴∠A1BC=90°.∵△ABC沿BC折叠得△A1BC,∴∠ABC=∠A1BC.∴∠ABC=90°.∴AC2=BC2+AB2=16+100=116.∴AC=2.综上所述;当以A1、C、B、D为顶点的四边形是矩形时,AC的长为2或24或2.2016年11月21日。
八年级下学期数学期末综合试卷一、选择题(每题3分,共30分)1. 下列计算正确的是()A. $3a + 2b = 5ab$B. $a^6 ÷ a^2 = a^3$C. $(a + b)^2 = a^2 + b^2$D. $a^{m+n} = a^m \cdot a^n$ ($a \neq 0$,$m$、$n$为正整数)答案:D2. 下列图形中,是轴对称图形但不是中心对称图形的是()A. 等边三角形B. 平行四边形C. 正方形D. 圆答案:A3. 下列说法中,正确的是()A. 无限小数都是无理数B. 绝对值等于它本身的数是非负数C. 垂直于同一直线的两条直线互相平行D. 两条直线被第三条直线所截,同位角相等答案:B4. 下列方程中,是一元一次方程的是()A. $x^2 - 2x = 3$B. $x + y = 5$C. $\frac{1}{x} = 3$D. $2x - 1 = 7$答案:D5. 下列不等式组中,解集为空集的是()A. $\left\{ \begin{array}{l} x > 2 \\ x < 1 \end{array} \right.$B. $\left\{ \begin{array}{l} x > -1 \\ x < 3 \end{array} \right.$C. $\left\{ \begin{array}{l} x \leq -2 \\ x \geq -2 \end{array} \right.$D. $\left\{ \begin{array}{l} x < 0 \\ x > -1 \end{array} \right.$答案:A6. 下列命题中,是真命题的是()A. 两个无理数的和一定是无理数B. 两条直线被第三条直线所截,内错角相等C. 平行于同一条直线的两条直线互相平行D. 三角形的一个外角大于任何一个内角答案:C7. 下列函数中,是一次函数但不是正比例函数的是()A. $y = -2x$B. $y = \frac{x}{2}$C. $y = -2x + 1$D. $y = \frac{1}{x}$答案:C8. 下列说法中,错误的是()A. 矩形的对角线相等B. 菱形的对角线互相垂直且平分C. 平行四边形的对角线互相平分且相等D. 等腰梯形的对角线相等答案:C9. 下列各数中,是无理数的是()A. $\sqrt{4}$B. $3\pi$C. $\frac{1}{3}$D. $\sqrt[3]{-8}$答案:B10. 下列关于数据的说法中,正确的是()A. 平均数一定大于中位数B. 众数一定等于这组数据中出现次数最多的数C. 极差就是这组数据中的最大值D. 方差越大,数据的离散程度越小答案:B二、填空题(每题3分,共30分)11. 若关于$x$的方程$2x - a = 3$的解是$x = 2$,则$a =$ _______。
人教版八年级下册数学期末试卷综合测试卷(word 含答案)一、选择题1.要使式子﹣3x -有意义,则x 的值可以为( )A .﹣6B .0C .2D .π2.下列语句不能判定ABC 是直角三角形的是( )A .2220a b c +-=B .::3:4:5A BC ∠∠∠= C .::3:4:5a b c =D .A B C ∠+∠=∠3.如图,四边形ABCD 的对角线AC 、BD 相交于O ,下列判断正确的是( )A .若AC ⊥BD ,则四边形ABCD 是菱形B .若AC =BD ,则四边形ABCD 是矩形C .若AB =DC ,AD ∥BC ,则四边形ABCD 是平行四边形 D .若AO =OC ,BO =OD ,则四边形ABCD 是平行四边形4.为了丰富校园文化,学校艺术节举行初中生书法大赛,设置了10个获奖名额.结果共有21名选手进入决赛,且决赛得分均不相同.若知道某位选手的决赛得分,要判断它是否获奖,只需知道学生决赛得分的( ) A .平均数B .中位数C .众数D .方差5.如图,在△ABC 中,AC =6,AB =8,BC =10,点D 是BC 的中点,连接AD ,分别以点A ,B 为圆心,CD 的长为半径在△ABC 外画弧,两弧交于点E ,连接AE ,BE .则四边形AEBC 的面积为( )A .2B .3C .24D .366.如图,在平面直角坐标系上,直线y =34x ﹣3分别与x 轴、y 轴相交于A 、B 两点,将△AOB 沿x 轴翻折得到△AOC ,使点B 刚好落在y 轴正半轴的点C 处,过点C 作CD ⊥AB 交AB 于D ,则CD 的长为( )A.185B.245C.4 D.57.如图,在平行四边形ABCD上,尺规作图:以点A为圆心,AB的长为半径画弧交AD于点F,分别以点B、F为圆心,以大于12BF的长为半径画弧交于点P,作射线AP交BC于点E,连接EF.若12BF=,10AB=,则线段AE的长为()A.18 B.17 C.16 D.148.如图,在平面直角坐标系中,点A的坐标是(4,0),点B的坐标是(3,4),点P 是y轴正半轴上的动点,连接AP交线段OB于点Q,若△OPQ是等腰三角形,则点P的坐标是()A.(0,53)B.(0,43)C.(0,43)或(0,163)D.(0,53)或(0,163)二、填空题9.2x-x的取值范围为__________.10.如图,在菱形ABCD中,AC=6,BD=8,则菱形的面积等于 ___.11.图中阴影部分是一个正方形,则此正方形的面积为_______ .12.在平行四边形ABCD 中,AB =5,AD =3,AC ⊥BC ,则BD 的长为____.13.已知一次函数y=kx +b 图像过点(0,5)与(2,3),则该一次函数的表达式为_____. 14.如图,O 是矩形ABCD 的对角线AC 、BD 的交点,OM ⊥AD ,垂足为M ,若AB=8,则OM 长为_______.15.如图,将一块等腰直角三角板ABC 放置在平面直角坐标系中,90,ACB AC BC ∠=︒=,点A 在y 轴的正半轴上,点C 在x 轴的负半轴上,点B 在第二象限,AC 所在直线的函数表达式是22y x =+,若保持AC 的长不变,当点A 在y 轴的正半轴滑动,点C 随之在x 轴的负半轴上滑动,则在滑动过程中,点B 与原点O 的最大距离是_______.16.如图,矩形ABCD 中,AB=8,AD=5,点E 为DC 边上一个动点,把△ADE 沿AE 折叠,点D 的对应点D ’落在矩形ABCD 的对称轴上时,DE 的长为____________.三、解答题17.计算:(1)80205-+;+-.(2)(53)(53)18.由于过度采伐森林和破坏植被,我国部分地区频频遭受沙尘暴的侵袭.近日,A城气象局测得沙尘暴中心在A城的正西方向240km的B处,以每时12km的速度向北偏东60°方向移动,距沙尘暴中心150km的范围为受影响区域.(1)A城是否受到这次沙尘暴的影响?为什么?(2)若A城受这次沙尘暴影响,那么遭受影响的时间有多长?A B C均在格点上.19.如图,网格中的每个小正方形的边长为1,点、、(1)直接写出AC的长为___________,ABC的面积为_____;(2)请在所给的网格中,仅用无刻度的直尺作出AC边上的高BD,并保留作图痕迹.20.已知:如图,在Rt△ABC中,D是AB边上任意一点,E是BC边中点,过点C作CF∥AB,交DE的延长线于点F,连接BF、CD.(1)求证:四边形CDBF是平行四边形.(2)当D点为AB的中点时,判断四边形CDBF的形状,并说明理由.21.先化简,再求值:a+2-+,其中a=1007.12a a如图是小亮和小芳的解答过程.(1)的解法是错误的;(2)错误的原因在于未能正确地运用二次根式的性质:;(3)先化简,再求值:a+2269-+,其中a=﹣2018.a a22.某电商在线销售甲、乙、丙三种水果,已知每千克乙水果的售价比每千克甲水果的售价多3元,每千克丙水果的售价是每千克甲水果售价的2倍,用200元购买丙水果的数量是用80元购买乙水果数量的2倍.(1)求丙水果每千克的售价是多少元?(2)电商推出如下销售方案:甲、乙、丙三种水果搭配销售共7千克,其中乙水果的数量是丙水果数量的2倍,且甲、乙两种水果数量之和不超过丙水果数量的6倍.请直接写出按此方案购买7千克水果最少要花费元.23.如图1,以平行四边形的顶点O为坐标原点,以所在直线为x轴,建立平面直角坐标系,,D是对角线AC的中点,点P从点A出发,以每秒1个单位的速度沿AB方向运动到点B,同时点Q从点O出发,以每秒3个单位的速度沿x轴正方向运动,当点P到达点B时,两个点同时停止运动.(1)求点A的坐标.(2)连结PQ,AQ,CP,当PQ经过点D时,求四边形的面积.(3)在坐标系中找点F,使以Q、D、C、F为顶点的四边形是菱形,则点F的坐标为________.(直接写出答案)24.(1)[探究]对于函数y=|x|,当x≥0时,y=x;当x<0时,y=﹣x.在平面直角坐标系中画出函数图象,由图象可知,函数y=|x|的最小值是.(2)[应用]对于函数y =|x ﹣1|+12|x +2|.①当x ≥1时,y = ;当x ≤﹣2时,y = ;当﹣2<x <1时,y = . ②在平面直角坐标系中画出函数图象,由图象可知,函数y =|x ﹣1|+12|x +2|的最小值是 .(3)[迁移]当x = 时,函数y =|x ﹣1|+|2x ﹣1|+|3x ﹣1|+…+|8x ﹣1|取到最小值.(4)[反思]上述问题解决过程中,涉及了一些重要的数学思想或方法,请写出其中一种. 25.如图,已知平面直角坐标系中,1,0A 、()0,2C ,现将线段CA 绕A 点顺时针旋转90︒得到点B ,连接AB .(1)求出直线BC 的解析式;(2)若动点M 从点C 出发,沿线段CB 10,过M 作//MN AB 交y 轴于N ,连接AN .设运动时间为t 分钟,当四边形ABMN 为平行四边形时,求t 的值. (3)P 为直线BC 上一点,在坐标平面内是否存在一点Q ,使得以O 、B 、P 、Q 为顶点的四边形为菱形,若存在,求出此时Q 的坐标;若不存在,请说明理由. 26.如图1,ABC ∆中,CD AB ⊥于D ,且::2:3:4BD AD CD =; (1)试说明ABC ∆是等腰三角形;(2)已知Δ40ABC S =cm 2,如图2,动点M 从点B 出发以每秒1cm 的速度沿线段BA 向点A 运动,同时动点N 从点A 出发以相同速度沿线段AC 向点C 运动,当其中一点到达终点时整个运动都停止.设点M 运动的时间为t (秒). ①若DMN ∆的边与BC 平行,求t 的值;②在点N 运动的过程中,ADN ∆能否成为等腰三角形?若能,求出t 的值;若不能,请说明【参考答案】一、选择题 1.D 解析:D 【分析】根据二次根式有意义的条件列出不等式,解不等式即可. 【详解】解:由题意得:x ﹣3≥0, 解得:x ≥3,各个选项中,π符合题意, 故选:D . 【点睛】此题主要考查二次根式有意义的条件,解题的关键是熟知二次根式的性质.2.B解析:B 【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方或最大角是否是90°即可. 【详解】解:A 、由2220a b c +-=,可得222+=a b c ,故是直角三角形,不符合题意; B 、∵::3:4:5A B C ∠∠∠=,∴∠C =180°×575345=︒++,故不是直角三角形,符合题意;C 、32+42=52,能构成直角三角形,不符合题意;D 、∵∠A +∠B =∠C ,∴∠C =90°,故是直角三角形,不符合题意; 故选:B . 【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.3.D解析:D【分析】根据平行四边形及特殊平行四边形的判定方法,对选项逐个判断即可. 【详解】解:A :对角线相互垂直平行四边形才是菱形,四边形ABCD 不一定是平行四边形,故选项错误,不符合题意;B :对角线相等的平行四边形才是矩形,四边形ABCD 不一定是平行四边形,故选项错误,不符合题意;C :一组对边相等,另外一组对边平行,不一定是平行四边形,还有可能是等腰梯形,故选项错误,不符合题意;D :对角线互相平分的四边形是平行四边形,故选项正确,符合题意; 故选D . 【点睛】此题考查了平行四边形的判定方法,熟练掌握平行四边形及特殊平行四边形的判定方法是解题的关键.4.B解析:B 【解析】 【分析】由于书法大赛设置了10个获奖名额,共有21名选手进入决赛,根据中位数的意义分析即可. 【详解】解:将21名选手进入决赛不同的分数按从小到大排序后,中位数及中位数之后的共有11个数,故只要知道自己的分数和中位数就可以知道是否获奖了, 故选B . 【点睛】本题主要考查中位数,以及相关平均数、众数、方差的意义,熟练掌握相关知识是解题的关键.5.D解析:D 【分析】根据勾股定理的逆定理求出90BAC ∠=,求出BD CD AD AE BE ====,根据菱形的判定求出四边形AEBD 是菱形,根据菱形的性质求出//AE BD ,求出1122ABE ABD ACD ABC S S S S ∆∆∆∆====,再求出四边形AEBC 的面积即可.【详解】 解:6AC =,8AB =,10BC =,222AB AC BC ∴+=,ABC ∆∴是直角三角形,即90BAC ∠=︒,点D 是BC 的中点,10BC =,5BD DC AD ∴===,即5BE AE BD AD ====,∴四边形AEBD 是菱形,//AE BC ∴,1116812222ABE ABD ACD ABC S S S S ∆∆∆∆∴====⨯⨯⨯=,∴四边形AEBC 的面积是12121236++=,故选:D . 【点睛】本题考查了勾股定理的逆定理,直角三角形斜边上的中线的性质,菱形的性质和判定,三角形的面积等知识点,解题的关键是能求出12ABE ABD ACD ABC S S S S ∆∆∆∆===是解此题的关键,注意:①如果一个三角形的两边a 、b 的平方和等于第三边c 的平方,那么这个三角形是直角三角形,②等底等高的三角形的面积相等.6.B解析:B 【解析】 【分析】利用一次函数图象上点的坐标特征可求出点A ,B 的坐标,在Rt △AOB 中,利用勾股定理可求出AB 的长,由折叠的性质可得出OC =OB ,进而可得出BC 的长,再利用面积法,即可求出CD 的长. 【详解】解:当x =0时,y =34×0﹣3=﹣3,∴点B 的坐标为(0,﹣3);当y =0时,34x ﹣3=0,解得:x =4,∴点A 的坐标为(4,0).在Rt △AOB 中,∠AOB =90°,OA =4,OB =3, ∴5AB = 由折叠可知:OC =OB =3, ∴BC =OB +OC =6.∵S △ABC =12BC •OA =12AB •CD , ∴245BC OA CD AB == 故选B . 【点睛】本题主要考查了一次函数与坐标轴的交点问题,折叠的性质,三角形的面积公式,勾股定理等等,解题的关键在于能够熟练掌握相关知识进行求解.7.C解析:C 【解析】 【分析】证明四边形ABEF 是菱形,得到OA=OE ,OB=OF =6,AE ⊥BF ,再在Rt △AOB 中由勾股定理求出OA 即可解决问题. 【详解】解:∵以点A 为圆心,AB 的长为半径画弧交AD 于点F , ∴AF=AB ,∵分别以点B 、F 为圆心,以大于12BF 的长为半径画弧交于点P ,作射线AP 交BC 于点E ,∴直线AE 是线段BF 的垂直平分线, 且AP 为∠F AB 的角平分线, ∴EF=EB ,∠F AE=∠BAE , ∵四边形ABCD 为平行四边形, ∴AD ∥BC ,∠F AE =∠AEB , ∴∠AEB =∠BAE , ∴BA =BE , ∴BA =BE=AF=FE , ∴四边形ABEF 是菱形; ∴AE ⊥BF ,OB =OF =6,OA =OE , ∴∠AOB =90°,在Rt △AOB 中:8AO =, ∴216AE AO ==, 故选:C . 【点睛】本题考查的是菱形的判定、垂直平分线、角平分线的尺规作图、勾股定理等相关知识点,掌握特殊四边形的判定方法及重要图形的尺规作图是解决本题的关键.8.C解析:C 【分析】利用待定系数法分别求出OB 、PA 的函数关系式,设(0,)P m ,4(,)3Q n n ,并由P 、Q 点坐标,可表示出OP 、OQ 和PQ ,根据△OPQ 是等腰三角形,可得OP OQ =或OP PQ =或OQ PQ =,则可得到关于m 的方程,求得m 的值,即可求得P 点坐标.【详解】解:设OB 的关系式为y kx =,将B (3,4)代入得:43k =, ∴43OB y x =, 设(0,)P m ,4(,)3Q n n , ∴OP m =,53OQ n =,PQ = 设PA 的关系式为y kx b =+,将(0,)P m ,(4,0)A 代入得:40b m k b =⎧⎨+=⎩, 解得4b m m k =⎧⎪⎨=-⎪⎩, ∴4PA m y x m =-+, 将4PA m y x m =-+,43OB y x =联立方程组得: 443PA OB m y x m y x ⎧=-+⎪⎪⎨⎪=⎪⎩, 解得12163Q m x n m==+, 若△OPQ 是等腰三角形,则有OP OQ =或OP PQ =或OQ PQ =,当OP OQ =时,53m n =,12163m n m =+, 即5123163m m m=⨯+, 解得43m =,则P 点坐标为(0,43), 当OP PQ =时,m =,12163m n m =+, 解得176m =-,不合题意,舍去, 当OQ PQ =时,根据等腰三角形性质可得:点Q 在OP 的垂直平分线上,12Q y OP =, ∴4132n m =,且12163m n m =+, 即412131632m m m ⨯=+, 解得163m =,则P 点坐标为(0,163)综上可知存在满足条件的点P,其坐标为(0,43)或(0,163).故选:C.【点睛】本题是一次函数的综合问题,考查了待定系数法、等腰三角形的性质等知识,掌握待定系数法与两点间的距离公式并注意分类讨论思想及方程思想的应用是解题的关键,综合性较强.二、填空题9.x≥2且x≠3【解析】【分析】0,且分子二次根式的被开方数非负,则可求得x的取值范围.【详解】由题意得:3020xx-≠⎧⎨-≥⎩,解不等式组得:x≥2且x≠3.故答案为:x≥2且x≠3.【点睛】本题是求使式子有意义的自变量的取值范围的问题,涉及二次根式的意义,分母不为零,不等式组的解法等知识;一般地,当式子为分式时,分母不为零;当式子中含有二次根式时,要求被开方数非负.10.24【解析】【分析】根据菱形的面积=对角线积的一半,可求菱形的面积.【详解】四边形ABCD是菱形,∴116824 22S AC BD=⋅=⨯⨯=.故答案为:24.【点睛】本题考查菱形的性质,解题的关键是熟练运用菱形的性质.11.36cm2【解析】【分析】利用勾股定理求正方形边长,从而求正方形的面积.【详解】6∴正方形的面积为:6²=36故答案为:36 cm 2.【点睛】本题考查勾股定理解直角三角形,题目比较简单,正确计算是解题关键.12.A 解析:213【分析】根据AC ⊥BC ,AB =5,AD =3,可以得到AC 的长,再根据平行四边形的性质,可以得到DE 和BE 的长,然后根据勾股定理即可求得BD 的长.【详解】解:∵四边形ABCD 是平行四边形,∴AD =BC ,∵AC ⊥BC ,AB =5,AD =3,∴∠ACB =90°,BC =3,∴AC =4,作DE ⊥BC 交BC 的延长线于点E ,∵AC ⊥BC ,∴AC ∥DE , 又∵AD ∥CE ,∴四边形ACED 是矩形,∴AC =DE ,AD =CE ,∴DE =4,BE =6,∵∠DEB =90°,∴BD 222264213BE DE ++=故答案为:213【点睛】本题考查了平行四边形的判定和性质、勾股定理,解答本题的关键是熟练掌握勾股定理. 13.y =-x +5【分析】由直线y =kx +b 经过(0,5)、(2,3)两点,代入可求出函数关系式.【详解】解:把点(0,5)和点(2,3)代入y =kx +b 得532b k b =⎧⎨=+⎩,解得:15k b =-⎧⎨=⎩,所以一次函数的表达式为y =-x +5,故答案为:y =-x +5.【点睛】此题主要考查了待定系数法求一次函数解析式,注意利用一次函数的特点,来列出方程组求解是解题关键.14.A解析:4【解析】【分析】根据三角形的中位线即可求解.【详解】∵O 是矩形ABCD 的对角线AC 、BD 的交点,∴O 是AC 中点,又OM ⊥AD ,AD ⊥CD ∴12∥OM CD ,又AB=CD=8 故OM=4故填:4【点睛】此题主要考查矩形的性质,解题的关键是熟知三角形中位线的性质.15.【分析】根据自变量与函数值得对应关系,可得A ,C 点坐标,根据勾股定理,可得AC 的长度;根据全等三角形的判定与性质,可得CD ,BD 的长,可得B 点坐标;首先取AC 的中点E ,连接BE ,OE ,OB ,可求【分析】根据自变量与函数值得对应关系,可得A ,C 点坐标,根据勾股定理,可得AC 的长度;根据全等三角形的判定与性质,可得CD ,BD 的长,可得B 点坐标;首先取AC 的中点E ,连接BE ,OE ,OB ,可求得OE 与BE 的长,然后由三角形三边关系,求得点B 到原点的最大距离.【详解】解:当x =0时,y =2x +2=2,∴A (0,2);当y =2x +2=0时,x =-1,∴C (-1,0).∴OA =2,OC =1,∴AC如图所示,过点B 作BD ⊥x 轴于点D .∵∠ACO +∠ACB +∠BCD =180°,∠ACO +∠CAO =90°,∠ACB =90°,∴∠CAO =∠BC D .在△AOC 和△CDB 中,AOC CDB CAO BCD AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△AOC ≌△CDB (AAS ),∴CD =AO =2,DB =OC =1,OD =OC +CD =3,∴点B 的坐标为(-3,1).如图所示.取AC 的中点E ,连接BE ,OE ,OB ,∵∠AOC =90°,AC =5, ∴OE =CE =12AC =52, ∵BC ⊥AC ,BC =5,∴BE =22BC CE +=52, 若点O ,E ,B 不在一条直线上,则OB <OE +BE =5522, 若点O ,E ,B 在一条直线上,则OB =OE +BE =5522, ∴当O ,E ,B 三点在一条直线上时,OB 取得最大值,最大值为552+, 故答案为:552+.【点睛】此题考查了一次函数综合题,利用自变量与函数值的对应关系是求AC 长度的关键,又利用了勾股定理;求点B 的坐标的关键是利用全等三角形的判定与性质得出CD ,BD 的长;求点B 与原点O 的最大距离的关键是直角三角形斜边上的中线的性质以及三角形三边关系.此题难度较大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.16.或【详解】分析:过点D′作MN ⊥AB 于点N ,MN 交CD 于点M ,由矩形有两条对称轴可知要分两种情况考虑,根据对称轴的性质以及折叠的特性可找出各边的关系,在直角△EMD′与△AND′中,利用勾股定理解析:52或533【详解】分析:过点D′作MN⊥AB于点N,MN交CD于点M,由矩形有两条对称轴可知要分两种情况考虑,根据对称轴的性质以及折叠的特性可找出各边的关系,在直角△EMD′与△AND′中,利用勾股定理可得出关于DM长度的一元二次方程,解方程即可得出结论.详解:过点D′作MN⊥AB于点N,MN交CD于点M,如图1、所示.设DE=a,则D′E=a.∵矩形ABCD有两条对称轴,∴分两种情况考虑:①当DM=CM时,AN=DM=12CD=12AB=4,AD=AD′=5,由勾股定理可知:22=3AD AN'-,∴MD′=MN-ND′=AD-ND′=2,EM=DM-DE=4-a,∵ED′2=EM2+MD′2,即a2=(4-a)2+4,解得:a=52;②当MD′=ND′时,MD′=ND′=12MN=12AD=52,由勾股定理可知:2253 =AD ND'-'∴53,∵ED′2=EM2+MD′2,即a2=53−a)2+(52)2,解得:53.综上知:DE=5253.故答案为52.. 点睛:本题考查了翻转变换、轴对称的性质、矩形的性质以及勾股定理,解题的关键是找出关于DM 长度的一元二次方程.本题属于中档题,难度不大,但在做题过程中容易丢失一种情况,解决该题型题目时,结合勾股定理列出方程是关键.三、解答题17.(1)3;(2)2【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用平方差公式计算即可.【详解】解:(1)原式=(2)原式=5﹣3=2.【点睛】本题考查的是二次根式解析:(1)2)2【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用平方差公式计算即可.【详解】解:(1)原式==(2)原式=5﹣3=2.【点睛】本题考查的是二次根式的加减运算,二次根式的混合运算,掌握利用平方差公式进行简便运算是解题的关键.18.(1)受影响,理由见解析;(2)15小时【分析】(1)过点作AC ⊥BM ,垂足为C ,在Rt △ABC 中,由题意可知∠ABC=30°,由此可以求出AC 的长度,然后和150km 比较大小即可判断A 城是否解析:(1)受影响,理由见解析;(2)15小时【分析】(1)过点作AC ⊥BM ,垂足为C ,在Rt △ABC 中,由题意可知∠ABC =30°,由此可以求出AC 的长度,然后和150km 比较大小即可判断A 城是否受到这次沙尘暴的影响;(2)如图,设点E 、F 是以A 为圆心,150km 为半径的圆与BM 的交点,根据勾股定理可以求出CE 的长度,也就求出了EF 的长度,然后除以沙尘暴的速度即可求出遭受影响的时间.【详解】解:(1)过点A 作AC ⊥BM ,垂足为C ,在Rt △ABC 中,由题意可知∠CBA =30°,∴AC =12AB =12×240=120,∵AC =120<150,∴A 城将受这次沙尘暴的影响.(2)设点E ,F 是以A 为圆心,150km 为半径的圆与MB 的交点,连接AE ,AF , 由题意得,222221*********CE AE AC =-=-=,CE =90∴EF =2CE =2×90=180180÷12=15(小时)∴A 城受沙尘暴影响的时间为15小时.【点睛】本题考查了直角三角形中30°的角所对的直角边等于斜边的一半及勾股定理的应用,正确理解题意,把握好题目的数量关系是解决问题的关键.19.(1),;(2)见解析【解析】 【分析】(1)根据勾股定理和三角形的面积公式即可得到结论;(2)根据无刻度直尺作图中作垂直的技巧画出线段BD 即可;【详解】解:(1),:(2)如图所示,解析:(1)29AC =9ABC S=;(2)见解析【解析】【分析】(1)根据勾股定理和三角形的面积公式即可得到结论;(2)根据无刻度直尺作图中作垂直的技巧画出线段BD 即可;【详解】解:(1)222529,AC +, 111452425149222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯=:(2)如图所示,BD 即为所求.【点睛】本题考查了作图-应用与设计作图,三角形的面积的计算,勾股定理,正确的作出图形是解题的关键.20.(1)见解析;(2)四边形CDBF 是菱形,理由见解析【分析】(1)证△CEF ≌△BED (ASA ),得CF=BD ,再由CF ∥DB ,即可得出结论; (2)由直角三角形斜边上的直线性质得CD=DB ,即解析:(1)见解析;(2)四边形CDBF 是菱形,理由见解析【分析】(1)证△CEF ≌△BED (ASA ),得CF =BD ,再由CF ∥DB ,即可得出结论;(2)由直角三角形斜边上的直线性质得CD =DB ,即可证平行四边形CDBF 是菱形.【详解】(1)证明:∵CF ∥AB ,∴∠ECF =∠EBD ,∵E 是BC 中点,∴CE =BE ,在△CEF 和△BED 中,ECF EBD CE BECEF BED ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△CEF ≌△BED (ASA ),∴CF =BD ,又∵CF ∥AB ,∴四边形CDBF 是平行四边形.(2)解:四边形CDBF 是菱形,理由如下:∵D 为AB 的中点,∠ACB =90°,∴CD =12AB =BD ,由(1)得:四边形CDBF 是平行四边形,∴平行四边形CDBF 是菱形.【点睛】本题考查了平行四边形的判定和性质、菱形的判定、全等三角形的判定和性质、直角三角形斜边上的中线性质等知识;熟练掌握平行四边形的判定与性质,证明△CEF ≌△BED 是解题的关键,属于中考常考题型.21.(1)小亮(2)=-a (a <0)(3)2024.【解析】【详解】试题分析:(1)根据二次根式的性质=|a|,判断出小亮的计算是错误的; (2)错误原因是:二次根式的性质=|a|的应用错误;(解析:(1)小亮(2(a <0)(3)2024.【解析】【详解】试题分析:(1,判断出小亮的计算是错误的;(2的应用错误;(3)先根据配方法把被开方数配成完全平方,然后根据正确的性质化简,再代入计算即可. 试题解析:(1)小亮(2(a <0)(3)原式=a+2(3-a )=6-a=6-(-2018)=2024.22.(1)10;(2)46【分析】(1)设每千克甲水果的售价是元,则每千克乙水果的售价是元,每千克丙水果的售价是元,利用数量总价单价,结合用200元购买丙水果的数量是用80元购买乙水果数量的2倍,即解析:(1)10;(2)46【分析】(1)设每千克甲水果的售价是x 元,则每千克乙水果的售价是(3)x +元,每千克丙水果的售价是2x 元,利用数量=总价÷单价,结合用200元购买丙水果的数量是用80元购买乙水果数量的2倍,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设搭配方案中含丙水果m 千克,则含乙水果2m 千克,甲水果(72)m m --千克,根据甲、乙两种水果数量之和不超过丙水果数量的6倍,即可得出关于m 的一元一次不等式,解之即可得出m 的取值范围,设购买7千克水果的费用为w 元,利用总价=单价⨯数量,即可得出w 关于m 的函数关系式,再利用一次函数的性质即可解决最值问题.【详解】解:(1)设每千克甲水果的售价是x 元,则每千克乙水果的售价是(3)x +元,每千克丙水果的售价是2x 元, 依题意得:80200232x x⨯=+, 解得:5x =,经检验,5x =是原方程的解,且符合题意,3538x ∴+=+=,22510x =⨯=.答:每千克丙水果的售价是10元.(2)设搭配方案中含丙水果m 千克,则含乙水果2m 千克,甲水果(72)m m --千克, 依题意得:7226m m m m --+,解得:1m .设购买7千克水果的费用为w 元,则5(72)82101135w m m m m m =--+⨯+=+.110>,w ∴随m 的增大而增大,∴当1m =时,w 取得最小值,最小值1113546=⨯+=(元).故答案为:46.【点睛】本题考查了分式方程的应用、一元一次不等式的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,找出w 关于m 的函数关系式.23.(1);(2)21;(3)或或或【分析】(1)过点作轴于,求出AH 和OH 即可;(2)证明≌,表示出AP ,CQ ,根据OC=14求出t 值,得到AP ,CQ ,再根据面积公式计算;(3)由Q 、D 、C 、解析:(1);(2)21;(3)或或或【分析】(1)过点A 作轴于H ,求出AH 和OH 即可; (2)证明≌,表示出AP ,CQ ,根据OC =14求出t 值,得到AP ,CQ ,再根据面积公式计算;(3)由Q 、D 、C 、F 为顶点的四边形是菱形得到以C ,D ,Q 为顶点的三角形是等腰三角形,求出CD ,得到点Q 坐标,再分情况讨论.【详解】解:(1)过点A 作轴于H , ∵,,, ∴, ∴A 点坐标为.(2)∵,∴C点坐标为,∵点D是对角线AC的中点,∴点D的坐标为,∵四边形ABCD是平行四边形,∴,∴,当PQ经过点D时,,在和中,,∴≌,∴,∵,∴,∴,∴,∴四边形APCQ的面积为,即当PQ经过点D时,四边形APCQ的面积为21.(3)∵F是平面内一点,以Q,D,C,F为顶点的四边形是菱形,则以C,D,Q为顶点的三角形是等腰三角形,∵,,∴,∴当时,Q点坐标为或,当Q点坐标为时,F点坐标为,当Q点坐标为时,F点坐标为,当时,点F与点D关于x轴对称,∴点F的坐标为,当时,设Q点坐标为,∴,解得,∴Q点坐标为,∴F点坐标为,∴综上所述,以Q,D,F,C为顶点的四边形是菱形,点F的坐标为或或或.【点睛】本题考查了平行四边形的性质,全等三角形的判定和性质,菱形的性质,等腰直角三角形的判定和性质,综合性较强,解题的关键是根据菱形的性质进行分类讨论.24.(1)见解析;0;(2)①x,﹣x,﹣x+2,②见解析;;(3);(4)分段去绝对值.【解析】【分析】(1)画出函数图象,直接得出结论;(2)先去绝对值,得出函数关系式,再画出函数图象,即可解析:(1)见解析;0;(2)①32x,﹣32x,﹣12x+2,②见解析;32;(3)16;(4)分段去绝对值.【解析】【分析】(1)画出函数图象,直接得出结论;(2)先去绝对值,得出函数关系式,再画出函数图象,即可得出结论;(3)分段去绝对值,合并同类项,得出函数关系式,即可得出结论;(4)直接得出结论.【详解】解:(1)[探究]图象如图1所示,函数y=|x|的最小值是0,故答案为0;(2)[应用]①当x≥1时,y=x﹣1+12(x+2)=32x;当x≤﹣2时,y=﹣x+1﹣12(x+2)=﹣32x;当﹣2<x<1时,y=﹣x+1+12(x+2)=﹣12x+2;②函数图象如图2所示,由图象可知,函数y=|x﹣1|+12|x+2|的最小值是32,故填:①32x,﹣32x,﹣12x+2,②32;(3)[迁移]当x≤18时,y=﹣x+1﹣2x+1﹣3x+1﹣4x+1﹣5x+1﹣6x+1﹣7x+1﹣8x+1=﹣36x+8,∴y≥72,当18<x≤17时,y=﹣x+1﹣2x+1﹣3x+1﹣4x+1﹣5x+1﹣6x+1﹣7x+1+8x﹣1=﹣20x+6,∴227≤y<72,当17<x≤16时,y=﹣x+1﹣2x+1﹣3x+1﹣4x+1﹣5x+1﹣6x+1+7x﹣1+8x﹣1=﹣6x+4,∴3≤y<227,当16<x≤15时,y=﹣x+1﹣2x+1﹣3x+1﹣4x+1﹣5x+1+6x﹣1+7x﹣1+8x﹣1=6x+2,∴3<y≤165,当15<x≤14时,y=﹣x+1﹣2x+1﹣3x+1﹣4x+1+5x﹣1+6x﹣1+7x﹣1+8x﹣1=16x,∴165<y≤4,当14<x≤13时,y=﹣x+1﹣2x+1﹣3x+1+4x﹣1+5x﹣1+6x﹣1+7x﹣1+8x﹣1=24x﹣2,∴4<y≤6,当13<x≤12时,y=﹣x+1﹣2x+1+3x﹣1+4x﹣1+5x﹣1+6x﹣1+7x﹣1+8x﹣1=30x﹣4,∴6<y≤11,当12<x≤1时,y=﹣x+1+2x﹣1+3x﹣1+4x﹣1+5x﹣1+6x﹣1+7x﹣1+8x﹣1=34x﹣6,∴11<y≤28,当x>1时,y=x﹣1+2x﹣1+3x﹣1+4x﹣1+5x﹣1+6x﹣1+7x﹣1+8x﹣1=36x﹣8,∴y>28,∴当x=16时,函数y=|x﹣1|+|2x﹣1|+|3x﹣1|+…+|8x﹣1|取到最小值;(4)[反思]用到的数学思想有:数形结合的数学思想,分段去绝对值,故答案为:分段去绝对值.【点睛】此题主要考查了一次函数的应用,去绝对值,函数图象的画法,用分类讨论的思想解决问题是解本题的关键.25.(1);(2)t=s时,四边形ABMN是平行四边形;(3)存在,点Q坐标为:或或或.【分析】(1)如图1中,作BH⊥x轴于H.证明△COA≌△AHB(AAS),可得BH=OA=1,AH=OC=2解析:(1)123y x=-+;(2)t=23s时,四边形ABMN是平行四边形;(3)存在,点Q坐标为:618,55⎛⎫⎪⎝⎭或(3,1)-或(3,1)-或155,88⎛⎫-⎪⎝⎭.【分析】(1)如图1中,作BH⊥x轴于H.证明△COA≌△AHB(AAS),可得BH=OA=1,AH=OC=2,求出点B坐标,再利用待定系数法即可解决问题.(2)利用平行四边形的性质求出点N的坐标,再求出AN,BM,CM即可解决问题.(3)如图3中,当OB为菱形的边时,可得菱形OBQP,菱形OBP1Q1.菱形OBP3Q3,当OB为菱形的对角线时,可得菱形OP2BQ2,点Q2在线段OB的垂直平分线上,分别求解即可解决问题.【详解】(1)如图1中,作BH⊥x轴于H.∵A(1,0)、C(0,2),∴OA=1,OC=2,∵∠COA=∠CAB=∠AHB=90°,∴∠ACO+∠OAC=90°,∠CAO+∠BAH=90°,∴∠ACO=∠BAH,∵AC=AB,∴△COA≌△AHB(AAS),∴BH=OA=1,AH=OC=2,∴OH=3,∴B(3,1),设直线BC的解析式为y=kx+b,则有231 bk b=⎧⎨+=⎩,解得:132k b ⎧=-⎪⎨⎪=⎩, ∴123y x =-+; (2)如图2中,∵四边形ABMN 是平行四边形,∴AN ∥BM ,∴直线AN 的解析式为:1133y x =-+, ∴10,3N ⎛⎫ ⎪⎝⎭, ∴103BM AN ==, ∵B (3,1),C (0,2),∴BC=10,∴2103CM BC BM =-=, ∴21021033t =÷=, ∴t=23s 时,四边形ABMN 是平行四边形; (3)如图3中,如图3中,当OB 为菱形的边时,可得菱形OBQP ,菱形OBP 1Q 1.菱形OBP 3Q 3, 连接OQ 交BC 于E ,∵OE⊥BC,∴直线OE的解析式为y=3x,由3123y xy x=⎧⎪⎨=-+⎪⎩,解得:3595xy⎧=⎪⎪⎨⎪=⎪⎩,∴E(35,95),∵OE=OQ,∴Q(65,185),∵OQ1∥BC,∴直线OQ1的解析式为y=-13x,∵OQ1,设Q1(m,-1m3),∴m2+19m2=10,∴m=±3,可得Q1(3,-1),Q3(-3,1),当OB为菱形的对角线时,可得菱形OP2BQ2,点Q2在线段OB的垂直平分线上,易知线段OB的垂直平分线的解析式为y=-3x+5,由3513y xy x=-+⎧⎪⎨=-⎪⎩,解得:15858xy⎧=⎪⎪⎨⎪=-⎪⎩,∴Q2(158,58-).综上所述,满足条件的点Q坐标为:618,55⎛⎫⎪⎝⎭或(3,1)-或(3,1)-或155,88⎛⎫-⎪⎝⎭.【点睛】本题属于一次函数综合题,考查了平行四边形的判定和性质,菱形的判定和性质,一次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.26.(1)证明见解析;(2)①t值为5或6;②点N运动的时间为6s,,或时,为等腰三角形. 【分析】(1)设BD=2x,AD=3x,CD=4x,则AB=5x,由勾股定理求出AC,即可得出结论;(2解析:(1)证明见解析;。
八年级第二学期期末数学试卷一、选择题(共12小题,每小题2分,共24分,在每小题给出的四个选项中只有一项是符合要求的1.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.已知点A的坐标为(3,﹣6),则点A所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.长度分别如下的四组线段中,可以构成直角三角形的是()A.1.5,2,2.5B.4,5,6C.1,,3D.2,3,44.直线y=x﹣1的图象经过()A.第二、三象限B.第一、二、四象限C.第一、三、四象限D.第一、二、三象限5.已知四边形ABCD,下列说法正确的是()A.当AD=BC,AB∥DC时,四边形ABCD是平行四边形B.当AD=BC,AB=DC时,四边形ABCD是平行四边形C.当AC=BD,AC平分BD时,四边形ABCD是矩形D.当AC=BD,AC⊥BD时,四边形ABCD是正方形6.如图,AC=BC,AE=CD,AE⊥CE于点E,BD⊥CD于点D,AE=7,BD=2,则DE的长是()A.7B.5C.3D.27.P1(x1,y1),P2(x2,y2)是正比例函数y=﹣2x图象上的两点,则下列判断正确的是()A.y1>y2B.y1<y2C.当x1<x2时,y1>y2D.当x1<x2时,y1<y28.调查50名学生的年龄,列频数分布表时,这些学生的年龄落在5个小组中,第一、二、三、五组数据个数分别是2,8,15,5,则第四组的频数是()A.20B.30C.0.4D.0.69.如果P点的坐标为(a,b),它关于y轴的对称点为P1,P1关于x轴的对称点为P2,已知P2的坐标为(﹣2,3),则点P的坐标为()A.(﹣2,﹣3)B.(2,﹣3)C.(﹣2,3)D.(2,3)10.顺次连接对角线互相垂直且相等的四边形各边的中点所得四边形是()A.平行四边形B.矩形C.菱形D.正方形11.某商店在节日期间开展优惠促销活动:凡购买原价超过200元的商品,超过200元的部分可以享受打折优惠若购买商品的实际付款金额y(单位:元)与商品原价x(单位:元)之间的函数关系的a图象如图所示,则图中a的值是()A.300B.320C.340D.36012.如图,正方形ABCD的对角线AC与BD相交于点O.将∠COB绕点O顺时针旋转,设旋转角为α(0<α<90°),角的两边分别与BC,AB交于点M,N,连接DM,CN,MN,下列四个结论:①∠CDM=∠COM;②CN⊥DM;③△CNB≌△DMC;④AN2+CM2=MN2;其中正确结论的个数是()A.1B.2C.3D.411题图12题图二、填空题(共6小题,每小题3分,共18分)请将答案填在答题卡上13.直线y=2x+6经过点(0,a),则a=.14.一个多边形的内角和等于1260°,则这个多边形是边形.15.已知△ABC中,AB=12,AC=13,BC=15,点D、E、F分别是AB、AC、BC的中点,则△DEF的周长是.16.已知y轴上的点P到原点的距离为7,则点P的坐标为.17.如图,已知在Rt△ABC中,∠A=90°,AB=3,BC=5,分别以Rt△ABC三条边为直径作半圆,则图中阴影部分的面积为.18.正方形A1B1C1O、A2B2C2C1、A3B3C3C2…按如图的方式放置,A1、A2、A3…和点C1、C2、C3…分别在直线y =x+2和x轴上,则点∁n的横坐标是.(用含n的代数式表示)17题图18题图三、解答题(本大题共8题,共58分)请将答案填在答题卡上19.(6分)如图,在Rt△ABC中,∠C=90°,AC=5,AB=13,求BC.20.(6分)如图,在▱ABCD中,M为AD的中点,BM=CM.求证:(1)△ABM ≌△DCM ; (2)四边形ABCD 是矩形.21.(6分)八年级(1)班同学为了解某小区家庭月均用水情况,随机调査了该小区部分家庭,并将调查数据整理成如下两幅不完整的统计图表: 请根据以上信息,解答以下问题:(1)直接写出频数分布表中的m 、n 的值并把频数直方图补充完整; (2)求出该班调查的家庭总户数是多少? (3)求该小区用水量不超过15的家庭的频率.22.(6分)图中折线ABC 表示从甲地向乙地打长途电话时所需付的电话费y (元)与通话时间t (分钟)之间的关系图象.(1)从图象知,通话2分钟需付的电话费是 元; (2)当t ≥3时求出该图象的解析式(写出求解过程); (3)通话7分钟需付的电话费是多少元?23.(8分)如图,在网格平面直角坐标系中,△ABC 的顶点均在格点上.(1)请把△ABC 向上平移2个单位长度,再向左平移1个单位长度得到△A 'B ′C ',画出△A 'B ′C ’并写出点A ′,月均用水量x (t )频数(户) 频率 0<x ≤5 6 0.12 5<x ≤10 m 0.24 10<x ≤15 16 0.32 15<x ≤20100.2020<x ≤25 4 n 25<x ≤3020.04B′的坐标.(2)求△ABC的面积.24.(8分)如图所示,AC是▱ABCD的一条对角线,过AC中点O的直线EF分别交AD,BC于点E,F.(1)求证:△AOE≌△COF;(2)连接AF和CE,当EF⊥AC时,判断四边形AFCE的形状,并说明理由25.(8分)蒙蒙和贝贝都住在M小区,在同一所学校读书.某天早上,蒙蒙7:30从M小区站乘坐校车去学校,途中停靠了两个站点才到达学校站点,且每个站点停留2分钟,校车在每个站点之间行驶速度相同;当天早上,贝贝7:38从M小区站乘坐出租车沿相同路线出发,出租车匀速行驶,结果比蒙蒙乘坐的校车早2分钟到学校站点.他们乘坐的车辆从M小区站出发所行驶路程y(千米)与校车离开M小区站的时间x(分)之间的函数图象如图所示.(1)求图中校车从第二个站点出发时点B的坐标;(2)求蒙蒙到达学校站点时的时间;(3)求贝贝乘坐出租车出发后经过多少分钟追上蒙蒙乘坐的校车,并求此时他们距学校站点的路程.26.(10分)如图,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点C在x轴的正半轴上,AB 边交y轴于点H,OC=4,∠BCO=60°.(1)求点A的坐标(2)动点P从点A出发,沿折线A﹣B一C的方向以2个单位长度秒的速度向终点C匀速运动,设△POC的面积为S,点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);(3)在(2)的条件下,直接写出当t为何值时△POC为直角三角形.参考答案与试题解析一、选择题(共12小题,每小题2分,共24分,在每小题给出的四个选项中只有一项是符合要求的,1.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选:D.【点评】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.【分析】根据点的横、纵坐标的符号可得所在象限.【解答】解:∵A的横坐标的符号为正,纵坐标的符号为负,∴点A(3,﹣6)第四象限,故选:D.【点评】本题考查点的坐标的相关知识;用到的知识点为:横坐标的符号为正,纵坐标的符号为负的点在第四象限.3.【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、1.52+22=2.52,能构成直角三角形,故符合题意;B、52+42≠62,不能构成直角三角形,故不符合题意;C、12+()2≠32,不能构成直角三角形,故不符合题意;D、22+32≠42,不能构成直角三角形,故不符合题意.故选:A.【点评】本题考查勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.4.【分析】由y=x﹣1可知直线与y轴交于(0,﹣1)点,且y随x的增大而增大,可判断直线所经过的象限.【解答】解:直线y=x﹣1与y轴交于(0,﹣1)点,且k=1>0,y随x的增大而增大,∴直线y=x﹣1的图象经过第一、三、四象限.故选:C.【点评】本题考查了一次函数的性质.关键是根据图象与y轴的交点位置,函数的增减性判断图象经过的象限.5.【分析】由平行四边形的判定方法得出A不正确、B正确;由矩形和正方形的判定方法得出C、D不正确.【解答】解:∵一组对边平行且相等的四边形是平行四边形,∴A不正确;∵两组对边分别相等的四边形是平行四边形,∴B正确;∵对角线互相平分且相等的四边形是矩形,∴C不正确;∵对角线互相垂直平分且相等的四边形是正方形,∴D不正确;故选:B.【点评】本题考查了平行四边形的判定、矩形的判定、正方形的判定;熟练掌握平行四边形、矩形、正方形的判定方法是解决问题的关键.6.【分析】根据垂直的定义得到∠AEC=∠D=90°,根据全等三角形的性质即可得到结论.【解答】解:∵AE⊥CE于点E,BD⊥CD于点D,∴∠AEC=∠D=90°,在Rt△AEC与Rt△CDB中,∴Rt△AEC≌Rt△CDB(HL),∴CE=BD=2,CD=AE=7,∴DE=CD﹣CE=7﹣2=5,故选:B.【点评】本题考查了全等三角形的判定与性质,解答本题的关键是根据已知条件判定三角形的全等.7.【分析】根据正比例函数图形的增减性,结合函数图象上的点的横坐标的大小关系,即可得到答案.【解答】解:∵正比例函数y=﹣2x上的点y随着想的增大而减小,又∵P1(x1,y1),P2(x2,y2)是正比例函数y=﹣2x图象上的两点,若x1<x2,则y1>y2,故选:C.【点评】本题考查了一次函数图象上点的坐标特征,正确掌握一次函数图象的增减性是解题的关键.8.【分析】由五个小组的频数总和等于50即可算出第四组的频数.【解答】解:∵第一、二、三、五组的数据个数分别是2,8,15,5,∴第四小组的频数是50﹣(2+8+15+5)=20.故选:A.【点评】本题考查了频数分布表的知识,解题的关键是了解各小组频数之和等于数据总和.9.【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变分别确定P1和P的坐标即可.【解答】解:∵P2的坐标为(﹣2,3),P1关于x轴的对称点为P2,∴P1(﹣2,﹣3),∵P点的坐标为(a,b),它关于y轴的对称点为P1,∴a=2,b=﹣3,∴点P的坐标为(2,﹣3),故选:B.【点评】此题主要考查了关于x、y轴对称点的坐标,关键是掌握点的坐标的变化规律.10.【分析】根据三角形中位线定理得到所得四边形的对边都平行且相等,那么其必为平行四边形,若邻边互相垂直且相等,那么所得四边形是正方形.【解答】解:∵E、F、G、H分别是AB、BC、CD、AD的中点,∴EH∥FG∥BD,EF∥AC∥HG,∴四边形EFGH是平行四边形,∵AC⊥BD,AC=BD,∴EF⊥FG,FE=FG,∴四边形EFGH是正方形,故选:D.【点评】本题考查的是三角形中位线定理以及正方形的判定,解题的关键是构造三角形利用三角形的中位线定理解答.11.【分析】根据分段函数的意义,可以求出当原价等于200元的y与x的函数关系式,再求当x=400时,对应的y的值即可.【解答】解:设y与x的函数关系式为y=kx+b(x>200)图象过点(200,200)和(500,410)∴解得:k=0.7,b=60,∴y=0.7x+60,当x=400时,y=340.图中的a的值为340,故选:C.【点评】考查分段函数,一次函数的图象、待定系数法求函数的关系式等知识,待定系数法求函数的关系式是常用的方法,应很好的掌握.12.【分析】由“ASA”可证△OCM≌△OBN,可得CM=BN,∠CDM=∠BCN,由余角的性质可判断②,由点O,点M,点B,点N四点共圆可判断①,由“SAS”可证△DCM≌△CNB,由勾股定理可判断④.【解答】解:∵四边形ABCD是正方形∴CD=BC,BO=CO,AC⊥BD,∠ACB=∠ABD=45°∵将∠COB绕点O顺时针旋转,∴∠COM=∠BON,且BO=CO,∠ACB=∠ABD∴△OCM≌△OBN(ASA)∴CM=BN,∠CDM=∠BCN∵∠CDM+∠CMD=90°∴∠BCN+∠CMD=90°∴CN⊥DM故②正确∵∠MON=∠ABC=90°∴点O,点M,点B,点N四点共圆∴∠BON=∠BMN=∠COM>∠BCN=∠CDM故①错误∵CM=BN,CD=BC,∠ABC=∠DCB=90°∴△DCM≌△CNB(SAS)故③正确∵AB=BC,BN=CM∴AN=BM∵BN2+BM2=MN2,∴AN2+CM2=MN2;故④正确故选:C.【点评】本题主要考查了旋转的性质,正方形的性质、全等三角形的判定与性质,勾股定理的综合应用,熟练掌握正方形的性质,证明三角形全等是解题的关键.二、填空题(共6小题,每小题3分,共18分)请将答案填在答题卡上13.【分析】令x=0,求出y的值即可.【解答】解:∵令x=0,则y=2,∴a=6故答案为:6【点评】本题考查的是一次函数图象上点的坐标特点,熟知y轴上点的坐标特点是解答此题的关键.14.【分析】这个多边形的内角和是1260°.n边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:根据题意,得(n﹣2)•180=1260,解得n=9.【点评】已知多边形的内角和求边数,可以转化为方程的问题来解决.15.【分析】根据三角形中位线定理易得所求的三角形的各边长为原三角形各边长的一半,那么所求的三角形的周长就等于原三角形周长的一半.【解答】解:∵点D、E、F分别是AB、AC、BC的中点,∴DE=BC,EF=AB,DF=AC,∴△DEF的周长=(AB+BC+AC)=×(12+13+15)=20.故答案为:20.【点评】此题考查的是三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半.16.【分析】y轴上任意一点的横坐标为0,点P可能在原点的上方,也可能在原点的下方.【解答】解:当点P在x轴的上方时,点P的坐标为(0,7);当点P在x轴的下方时,点P的坐标为(0,﹣7).故答案为:(0,7)或(0,﹣7).【点评】本题主要考查的是点的坐标的定义,分类讨论是解题的关键.17.【分析】根据勾股定理求出AB,分别求出三个半圆的面积和△ABC的面积,即可得出答案.【解答】解:在Rt△BAC中,∠BAC=90°,AB=3,BC=5,由勾股定理得:BC==5,所以阴影部分的面积S=×π×()2+×()2+×3×4﹣×π×()2=6.故答案为:6.【点评】本题考查了勾股定理和三角形的面积、圆的面积,能把不规则图形的面积转化成规则图形的面积是解此题的关键.18.【分析】根据直线解析式先求出A1(0,2),OC1=OA1=2,得出C1的横坐标是2=21,再求出C2的横坐标是6=21+22,C3的纵坐标是14=21+22+23,得出规律,即可得出结果.【解答】解:∵直线y=x+2,当x=0时,y=2,∴A1(0,2),OC1=OA1=2∴C1(2,0),其中2=21∴A2(2,4),OC2=2+4=6∴C2(6,0),其中6=21+22∴A3(6,8),OC3=6+8=14∴C3(14,0),其中14=21+22+23…∴点∁n的坐标是(21+22+23+…+2n,0)∴∁n的坐标是(2n+1﹣2,0)∴点∁n的横坐标是2n+1﹣2故答案为:2n+1﹣2.【点评】本题考查了一次函数图象上点的坐标特征以及正方形的性质;通过求出C1、C2、C3的坐标得出规律是解决问题的关键.三、解答题(本大题共8题,共58分)请将答案填在答题卡上19.【分析】利用勾股定理求出BC的长即可.【解答】解:∵在Rt△ABC中,∠C=90°,AC=5,AB=13,∴BC==12.【点评】此题考查了勾股定理的知识,掌握勾股定理的内容是解答本题的关键.20.【分析】(1)根据平行四边形的性质得到AB=CD,根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到∠A=∠D,根据平行线的性质得到∠A+∠D=180°,于是得到结论.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,∵M为AD的中点,∴AM=DM,在△ABM和△DCM中,,∴△ABM≌△DCM(SSS);(2)∵△ABM≌△DCM,∴∠A=∠D,∵AB∥DC,∴∠A+∠D=180°,∴∠A=90°,∴平行四边形ABCD是矩形.【点评】此题考查了平行四边形的性质及矩形的判定,解答本题的关键是证明△ABM≌△DCM,从而得出∠A =∠D,属于基础题,难度一般.21.【分析】(1)由0<x≤5的频数及其频率求出被调查的总户数,再利用频率=频数÷总数可得答案;(2)由以上所求结果可得答案;(3)将前三组频率相加即可得.【解答】解:(1)∵被调查的总户数为6÷0.12=50(户),∴m=50×0.24=12,n=4÷50=0.08,补全图象如下:(2)由(1)知该班调查的家庭总户数是50户;(3)该小区用水量不超过15的家庭的频率为0.12+0.24+0.32=0.68.【点评】本题考查频数(率)分布直方图:提高读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了用样本估计总体.22.【分析】图象分为两段:AB表示通话3分钟以内的电话费是2.4元,BC表示超过3分钟的电话费随时间的增加而增加.所以此题不难解.【解答】解:(1)通话2分钟需付的电话费是2.4元.(2)y=1.5t﹣2.1;过程如下:设直线BC的解析式为y=kt+b,因为图象过(3,2.4)和(5,5.4),所以有,解之得,所以解析式为y=1.5t﹣2.1(t≥3).(3)当t=7时,∵t=7>3,∴代入解析式y=1.5t﹣2.1得:y=1.5×7﹣2.1=8.4.【点评】此题为分段函数,主要搞清楚各段的意义及所求问题对应的部分.23.【分析】(1)依据△ABC向上平移2个单位长度,再向左平移1个单位长度,即可得到△A'B′C',进而得出点A′,B′的坐标;(2)依据割补法即可得到△ABC的面积.【解答】解:(1)如图所示,△A'B′C'即为所求,A′(﹣3,0),B′(2,3).(2)△ABC的面积=4×5﹣×5×3﹣×2×4﹣×1×3=7.【点评】本题考查了根据平移变换作图,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接.24.【分析】(1)由平行四边形的性质得出AD∥BC,得出∠EAO=∠FCO,由ASA即可得出结论;(2)由△AOE≌△COF,得出对应边相等AE=CF,证出四边形AFCE是平行四边形,再由对角线EF⊥AC,即可得出四边形AFCE是菱形.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,∴∠EAO=∠FCO,∵O是AC的中点,∴OA=OC,在△AOE和△COF中,,∴△AOE≌△COF(ASA);(2)EF⊥AC时,四边形AFCE是菱形;理由如下:∵△AOE≌△COF,∴AE=CF,∵AE∥CF,∴四边形AFCE是平行四边形,∵EF⊥AC,∴四边形AFCE是菱形.【点评】本题考查了平行四边形的性质与判定、全等三角形的判定与性质、菱形的判定;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.25.【分析】(1)根据速度=路程÷时间,可求出校车的速度,再结合图象即可求出点B的坐标;(2)求出校车到达学校站点所需时间即可求解;(3)运用待定系数法求出直线BC与EF的解析式,联立组成方程组,即可得出相遇时他们距学校站点的路程.【解答】解:(1)校车的速度为:3÷6=0.5(千米/分),点B的纵坐标为:3+0.5×(12﹣8)=5,点B的横坐标为:12+2=14,∴点B的坐标为(14,5);(2)校车到达学校站点所需时间为:9÷0.5+4=22(分),∴7点30分钟+22分钟=7点52分钟,∴蒙蒙到达学校站点时的时间为7点52分钟;(3)∵C(22,9),B(14,5),设直线BC的表达式为:y=kx+b(k≠0),,解得,∴直线BC的表达式为:y=0.5x﹣2,由题意得F(8,0),E(20,9),设直线EF的表达式为y=k1+b1(k1≠0),,解答,∴直线EF的表达式为y=0.75x﹣6,由,解得,16﹣8=8(分钟),9﹣6=3(千米),∴贝贝乘坐出租车出发后经过8分钟追上蒙蒙乘坐的校车,此时他们距学校站点的路程为3千米.【点评】本题考查了一次函数的应用,解题的关键是:(1)根据数量关系列式计算;(2)(方法一)根据相遇时间=校车先出发时间×速度÷两车速度差,求出小刚乘坐出租车追到小强所乘坐的校车的时间;(方法二)利用待定系数法求出线段BC、EF的解析式.26.【分析】(1)由菱形的性质得出∠A=60°,AO=4,∠AHO=∠HOC=90°,在Rt△AHO中,∠HOA=90°﹣∠A=30°,则AH=AO=2,OH==2,即可得出结果;(2)①当点P在AB上运动时,△POC的高不变,始终为2;②当点P在BC上运动时,即2<t≤4时,过点P作PE⊥OC于E,在Rt△PCE中,∠PCE=60°,PC=8﹣2t,PE=PC sin60°=(4﹣t),S=OC•PE=﹣2t+8,即可得出结果;(3)①当点P与点H重合时,△POC为直角三角形,此时t==1;②当点P在BC上时,OP⊥BC,证出∠POC=30°,则CP=OC=2,则t=3,即可得出结果.【解答】解:(1)∵四边形ABCO是菱形,OC=4,∠BCO=60°,∴∠A=60°,AO=4,∠AHO=∠HOC=90°,在Rt△AHO中,∠HOA=90°﹣∠A=30°,∴AH=AO=2,OH===2,∴点A的坐标为:(﹣2,2);(2)①当点P在AB上运动时,△POC的高不变,始终为2;②当点P在BC上运动时,即2<t≤4时,过点P作PE⊥OC于E,如图1所示:在Rt△PCE中,∠PCE=60°,PC=8﹣2t,∴PE=PC sin60°=(8﹣2t)×=(4﹣t),S=OC•PE=×4×(4﹣t)=﹣2t+8,∴S=;(3)①当点P与点H重合时,△POC为直角三角形,此时t==1;②当点P在BC上时,OP⊥BC,如图2所示:∵∠BCO=60°,∴∠POC=30°,∴CP=OC=2,∴t==3,综上所述,当t=1或t=3时,△POC为直角三角形.【点评】本题是四边形综合题目,考查了图形与点的坐标、菱形的性质、直角三角形的性质、勾股定理、三角函数、三角形面积的计算等知识,熟练掌握菱形的性质和含30°角直角三角形的性质是解题的关键.。
八年级数学下册期末综合测试卷(一)一、相信你的选择(每小题2分,共20分)1.化简2244xy yx x --+的结果是( ). (A )2x x + (B )2x x - (C )2y x + (D )2yx -2.反比例函数y=xm32-,当x>0时,y 随x 的增大而增大,那么x 的取值范围是( ).(A) m>32 (B)m<32 (C)m>23 (D)m<233.将一张三角形纸片沿中位线剪开,拼成一个新的图形,这个新的图形可能是( ). (A )三角形 (B )平行四边形 (C )矩形 (D )正方形4.某校七年级有13名同学参加百米竞赛,预赛成绩各不相同,要取前6名参加决赛,小梅已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的( ).(A )中位数 (B )众数 (C )平均数 (D )极差5.已知3=a ,且2(4)b -=0,以a 、b 、c 为边组成的三角形面积等于( ). (A )6 (B )7 (C )8 (D )9 8、 如图1所示,A 、B 、C 分别表示三个村庄,AB=1000米,BC=600米, AC=800米,在社会主义新农村建设中,为了丰富群众生活,拟建一个 文化活动中心,要求这三个村庄到活动中心的距离相等,则活动中心P 的位置应在( ).(A )AB 中点 (B )BC 中点(C )AC 中点(D )∠C 的平分线与AB 的交点6.关于x 的方程11=+x a的解是负数,则a 取值范围是( ) (A)a <1 (B)a <1且a ≠0 (C)a ≤1 (D)a ≤1且a ≠0 7.当身边没有量角器时,怎样得到一些特定度数的角呢?动手操作有时可以解“燃眉之急”.如图2,已知矩形纸片ABCD (矩形纸片要足够长),我们按如下步骤操作可以得到一个特定的角:AB CD图2图1(1)以点A 所在直线为折痕,折叠纸片,使点B 落在AD 上,折痕与BC 交于E ; (2)将纸片展平后,再一次折叠纸片,以E 所在直线为折痕,使点A 落在BC 上,折痕EF 交AD 于F .则∠AFE ( ). (A )60°(B )67.5°(C )72°(D )75°9.图3是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A 、B 、C 、D 的边长分别是3、5、2、3,则最大正方形E 的面积是( ). (A )13 (B )26 (C )47 (D )9410.如图4直线l 和双曲线ky x=(0k >)交于A 、B 两点,P 是线段AB 上的点(不与A 、B 重合),过点A 、B 、P 分别向x 轴作垂线,垂足分别为C 、D 、E ,连接OA 、OB 、OP ,设△AOC 的面积为1S 、△BOD 的面积为2S 、△POE 的面积为3S ,则有( ). (A )123S S S << (B )123S S S >> (C ) 123S S S =< (D )123S S S => 二、试试你的身手(每小题3分,共30分) 11.菱形的对角线长分别是16cm 、12cm ,周长是12.已知三个不相等的正整数的平均数、中位数都是3,则这三个数分别为 .13.若关于x 的分式方程311x a x x --=-无解,则a = . 14.若反比例函数1y x=-的图象上有两点1(1)A y ,,2(2)B y ,,则1y ______2y (填“>”或“=”或“<”).15.如图5所示,在□ABCD 中,对角线AC 、BD 相交于点O ,过点O 的直线分别交AD 、BC 于点M 、N ,若△CON 的面积为2,△DOM 的面积为4,则△AOB 的面积为 .图3图4ABC DO 图6N图516.如图6,在四边形ABCD 中,AB=BC=CD=DA ,对角线AC 与BD 相交于点O ,若不增加任何字母与辅助线,要使四边形ABCD 是正方形,则还需增加一个条件是 . 17.从甲、乙两个工人做同一种零件中各抽取4个,量得它们的直径见下表:甲 9.98 10.02 10.00 10.00 乙10.0010.0310.009.97他们做的尺寸符合规定较好的是_____________.18.如图7,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个锐角为60︒ 的菱形,剪口与折痕所成的角α 的度数应为________.19.如图8,在四边形ABCD 中,P 是对角线BD 的中点,E,F 分别是AB,CD 的中点,AD=BC,∠PEF=18°,则∠PFE 的度数是 .20.某市甲、乙两景点今年5月上旬每天接待游客的人数如图9所示,甲、乙两景点日接待游客人数的方差大小关系为:2S 甲 2S 乙. 三、挑战你的技能(共50分)21.(8分)先化简,再选择一个合适的x 值代入求值:11)131()11(22-⋅--÷++x x x x x .α图7图8人数28002600 2400 2200 2000 1800 1 2 3 4 5 6 7 8 9 10甲 乙图922.(8分)已知一次函数y=x+3的图象与反比例函数y =kx都经过点A (a ,4). (1)求a 和k 的值;(2)判断点B(22,-2)是否在该反比例函数的图象上.23.(8分)如图10,已知等腰三角形ABC 中,底边BC=24cm,△ABC 的面积等于60cm 2.请你计算腰AB 的长.24.(8分)如图11,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,D 为AB 边上一点,求证:(1)ACE BCD △≌△;(2)222AD DB DE +=.图10ADBE图1125.(8分)如图 5,ABCD 是菱形,对角线AC 与BD 相交于O ,306ACD BD ∠==°,. (1)求证:△ABD 是正三角形; (2)求 AC 的长(结果可保留根号).26.(10分)A ,B ,C 三名大学生竞选系学生会主席,他们的笔试成绩和口试成绩(单位:分)分别用了两种方式进行了统计,如下表和图10:(1)请将上表和图10中的空缺部分补充完整.(2)竞选的最后一个程序是由本系的300名学生进行投票,三位候选人的得票情况如图11(没有弃权票,每名学生只能推荐一人),请计算每人的得票数.(3)若每票计1分,系里将笔试、口试、得票三项测试得分按4∶3∶3的比例确定个人成绩,请计算三位候选人的最后成绩,并根据成绩判断谁能当选.O DB A图12(图11)四、超越你的极限(20分)27.(10分)已知四边形ABCD ,AD ∥BC ,连接BD .(1)小明说:“若添加条件BD 2=BC 2+CD 2,则四边形ABCD 是矩形.”你认为小明的说法是否正确?若正确,请说明理由;若不正确,请举出一个反例说明.(2)若BD 平分∠ABC ,∠DBC =∠BDC ,∠DBC =45°.求证:四边形ABCD 是正方形. 28.(10分) 阅读下列材料:111(1)1323=-⨯,1111()35235=-⨯,1111()57257=-⨯,…,你能发现有什么规律吗?请你根据规律回答下列问题:(1)请写出第n 个等式,并证明这个等式; (2)计算:111(2)(2)(4)(4)(6)x x x x x x +++++++.八年级数学下册期末综合测试卷(二)一、细心选一选(每题3分,共30分)1、某校七年级有13名同学参加百米竞赛,预赛成绩各不相同,要取前6名参加决赛,小梅已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的()A .中位数B .众数C .平均数D .极差2、若分式21x -有意义,则x 的取值范围是( ) A .x≠1 B .x>1 C . x=1 D .x<1 3、在反比例函数1ky x-=的图象的每一条曲线上,y x 都随的增大而增大,则k 的值可以是( ) A .1-B .0C .1D .28、有一组数据如下:3、a 、4、6、7,它们的平均数是5,那么这组数据的方差是( ) A 、10B 、10C 、2D 、24、如图1,已知△ABC 中,AB =17,AC =10,BC 边上的高AD =8, 则边BC 的长为( ) A .21B .15C .6D .以上答案都不对5、如图2,□ABCD 中,AC .BD 为对角线,BC =6,BC 边上的高为4,则阴影部分的面积为( ).A .3B .6C .12D .24 6、学完分式运算后,老师出了一道题“化简:23224x xx x +-++-” 小明的做法是:原式222222(3)(2)26284444x x x x x x x x x x x +--+----=-==----;小亮的做法是:原式22(3)(2)(2)624x x x x x x x =+-+-=+-+-=-;图2 AC D B图1O D CA B图3小芳的做法是:原式32313112(2)(2)222x x x x x x x x x x +-++-=-=-==++-+++. 其中正确的是( ) A .小明B .小亮C .小芳D .没有正确的7、如图3,矩形ABCD 的两条对角线相交于点O ,∠AOB =60°,AB =3,则矩形的对角线AC 的长是( ) A .4B .6C.D.9.木工要做一个长方形桌面,做成功后,贝贝量得桌面的长为60cm ,宽为32cm ,对角线为68cm ,则对于这个桌面下列说法正确的是( )A.合格B.不一定合格C.不合格D.可能合格 10、如图,在同一直角坐标系中,正比例函数y =kx+3与反比例函数y=xk的图象位置可能是( ) A B二、用心做一做(每题3分,共30分) 11、分式方程131x x x x +=--的解为__________。
人教版八年级第二学期期末数学试卷及答案一.选择题(共10小题)1.二次根式中,x的取值范围是()A.x≥1B.x>1C.x≤1D.x<12.以下列长度的三条线段为边,能组成直角三角形的是()A.6,7,8B.2,3,4C.3,4,6D.6,8,103.如图,平行四边形ABCD的对角线AC和BD相交于点O,AB⊥BD,若AB=4,BD=6,则AC的长是()A.8B.9C.10D.114.某商场对某品牌女装一周以来的销售情况进行了统计,销售情况如表所示,为了提升该品牌女装的销售量,该商场决定多进红色女装,做出这一决策的依据是()颜色黄色紫色白色蓝色红色数量(件)10018020080350A.平均数B.众数C.中位数D.方差5.下列各图能表示y是x的函数是()A.B.C.D.6.某校把学生数学的期中、期末两次成绩分别是按40%,60%的比例计入学期总成绩,小明数学期中成绩是85分,期末成绩是90分,那么他的数学学期总成绩为()A.88分B.87.5分C.87分D.86分7.如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=28°,则∠OBC的度数为()A.28°B.52°C.62°D.72°8.若0<x<1,则x,x2,的大小关系是()9.如图,数轴的原点为O,点A在数轴上表示的数是2,AB=1,且AB⊥OA,以点O为圆心,OB长为半径画弧,交数轴于点C,则点C表示的数是()A.B.+1C.D.+110.用固定的速度往如图形状的杯子里注水,用x表示注水时间,y表示水杯底部到水面的高度,下列图象大致能表示y与x之间的对应关系的是()A.B.C.D.二.填空题(共6小题)11.计算:﹣=.12.为从甲乙两名射击运动员中选出一人参加竞标赛,特统计了他们最近10次射击训练的成绩,其中,他们射击的平均成绩为8.9环,方差分别是S甲2=0.8,S乙2=13,从稳定性的角度看,的成绩更稳定(填“甲”或“乙”)13.如图,以Rt△ABC的三边为边向外作正方形,已知正方形ABDE和正方形ACMN的面积分别是21和8,那么正方形BCFG的面积为.14.若函数y=kx﹣3的图象与两坐标轴围成的三角形面积为6,那么k=.15.“敲7”是一种日常小游戏,规则是:从1开始依次数自然数,若数到7的整数倍或数位有7的数,则应敲一下桌子,比如:当数到37(个位数为7),91(7的13倍)均应敲一下桌子,若从1开始数到100,则应敲桌子下.16.如图,在正方形ABCD中,已知AB=2,点E,G分别是边AD,CD的中点,点F是边BC上的动点,连接EF,将正方形ABCD沿EF折叠,A,B的对应点分别为A',B',则线段GB'的最小值与最大值的和是.17.计算:(1)()×;(2)(π+1)0﹣+|﹣|.18.已知x=2﹣,y=2+,求:x2+xy+y2的值.19.如图,将▱ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F.(1)求证:△ABF≌△ECF;(2)若∠AFC=2∠D,连接AC、BE,求证:四边形ABEC是矩形.20.如图是一个三级台阶,每级台阶都是长、宽和高分别等于90cm,25cm和15cm的长方体,A和B是这个台阶的两个相对的端点.在A点处有一只蚂蚁,想到B点去吃可口的食物,请你算一算,这只蚂蚁从A点出发,沿着台阶面爬到B点,最短路程是多少?21.已知一次函数y=kx+b的图象如图所示.(1)求k,b的值;(2)请在图中作出函数y=2x+6的图象;(3)利用图象解答下列问题:当y=kx+b的函数值大于y=2x+6的函数值时,求x的取值范围.学生的成绩,把数据整理成频数分布统计表如表(各组数据包括左端点不包括右端点):等级D C B A分数范围60~7070~8080~9090~100八年级2675七年级11081(1)如果七年级共有学生600人,则估计此次测试中七年级成绩在C级以上(包括C 级)的人数为人;(2)请从两个不同的角度分析七年级和八年级中哪个年级的成绩更好.23.某手工艺人用A,B两种规格的绒布片拼制成甲、乙两款玩具进行销售,拼制每款玩具所需不同规格绒布片用量如表所示.该艺人制作甲款玩具x个,乙款玩具y个,共用去A种绒布3000片.玩具款式A种绒布(片)B种绒布(片)甲款玩具3020乙款玩具1530(1)求y关于x的函数表达式;(2)已知每个甲款玩具的利润为a元(8≤a≤14),每个乙款玩具的利润为6元,假设两款玩具均能全部卖出;①当a=8时,若要获得总利润不少于850元,则至少要用去B绒布多少片?②该艺人现有B种绒布数量在4800~5200片,求他加工这批玩具所获利润的取值范围.24.如图,四边形ABCD是菱形,点M在CD边上,点N在菱形ABCD外部,且满足MN∥AD,CM=MN,连接AN,CN,取AN的中点E,连接BE,AC.(1)探究BE与AC的关系;(2)若∠ABC=120°,探究线段BE、AD、CM所满足的等量关系;(3)若∠ABC=60°,M在DC的延长线上时,其余条件不变,CM=1,AD=3,请求出BE的长度.参考答案与试题解析一.选择题(共10小题)1.二次根式中,x的取值范围是()A.x≥1B.x>1C.x≤1D.x<1【分析】根据二次根式有意义的条件即可求出答案.【解答】解:由题意可知:x﹣1≥0,∴x≥1,故选:A.2.以下列长度的三条线段为边,能组成直角三角形的是()A.6,7,8B.2,3,4C.3,4,6D.6,8,10【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、∵62+72≠82,∴不能构成直角三角形,故本选项错误;B、∵22+32≠42,∴不能构成直角三角形,故本选项错误;C、∵32+42≠62,∴不能构成直角三角形,故本选项错误;D、∵62+82=102,∴能构成直角三角形,故本选项正确.故选:D.3.如图,平行四边形ABCD的对角线AC和BD相交于点O,AB⊥BD,若AB=4,BD=6,则AC的长是()A.8B.9C.10D.11【分析】利用平行四边形的性质和勾股定理易求AO的长,进而可求出AC的长.【解答】解:∵▱ABCD的对角线AC与BD相交于点O,∴BO=DO,AO=CO,∵BD=6,∴BO=3,∵AB⊥BD,AB=4,∴AO=∴AC=2OA=10,故选:C.商场决定多进红色女装,做出这一决策的依据是()颜色黄色紫色白色蓝色红色数量(件)10018020080350A.平均数B.众数C.中位数D.方差【分析】在决定本周进女装时多进一些红色的,主要考虑的是各色女装的销售的数量,而红色上周销售量最大.【解答】解:在决定本周进女装时多进一些红色的,主要考虑的是各色女装的销售的数量,而红色上周销售量最大.由于众数是数据中出现次数最多的数,故考虑的是各色女装的销售数量的众数.故选:B.5.下列各图能表示y是x的函数是()A.B.C.D.【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此对各选项分析判断后利用排除法求解.【解答】解:A、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故A选项错误;B、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故B选项错误;C、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故C选项错误;D、对于x的每一个取值,y都有唯一确定的值与之对应关系,所以y是x的函数,故D选项正确.故选:D.6.某校把学生数学的期中、期末两次成绩分别是按40%,60%的比例计入学期总成绩,小明数学期中成绩是85分,期末成绩是90分,那么他的数学学期总成绩为()A.88分B.87.5分C.87分D.86分【分析】根据学期数学总成绩=期中数学成绩×所占的百分比+期末数学成绩×所占的百分比即可求得学期总成绩.【解答】解:他的数学学期总成绩为85×40%+90×60%=88(分),7.如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=28°,则∠OBC的度数为()A.28°B.52°C.62°D.72°【分析】根据菱形的性质以及AM=CN,利用ASA可得△AMO≌△CNO,可得AO=CO,然后可得BO⊥AC,继而可求得∠OBC的度数.【解答】解:∵四边形ABCD为菱形,∴AB∥CD,AB=BC,∴∠MAO=∠NCO,∠AMO=∠CNO,在△AMO和△CNO中,∵,∴△AMO≌△CNO(ASA),∴AO=CO,∵AB=BC,∴BO⊥AC,∴∠BOC=90°,∵∠DAC=28°,∴∠BCA=∠DAC=28°,∴∠OBC=90°﹣28°=62°.故选:C.8.若0<x<1,则x,x2,的大小关系是()A.x<x2<B.x2<x<C.<x2<x D.x<<x2【分析】已知x的取值范围,可运用取特殊值的方法,选取一个符合条件的实数代入选项求得答案.【解答】解:∵0<x<1,∴可假设x=0.1,则x2=(0.1)2=,==,∵<0.1<,∴x2<x<.9.如图,数轴的原点为O,点A在数轴上表示的数是2,AB=1,且AB⊥OA,以点O为圆心,OB长为半径画弧,交数轴于点C,则点C表示的数是()A.B.+1C.D.+1【分析】根据勾股定理,结合数轴即可得出结论.【解答】解:∵在Rt△AOB中,OA=2,AB=1,∴OB==.∵以O为圆心,以OB为半径画弧,交数轴的正半轴于点C,∴OC=OB=,∴点C表示的实数是.故选:C.10.用固定的速度往如图形状的杯子里注水,用x表示注水时间,y表示水杯底部到水面的高度,下列图象大致能表示y与x之间的对应关系的是()A.B.C.D.【分析】根据题目中的图形可知,刚开始水面上升的比较快,后来越来越慢,从而可以判断哪个选项中的函数图象,符合题意,从而可以解答本题.【解答】解:由题目中的图形可知,y随着x的增大,增加的速度越来越慢,故选:C.二.填空题(共6小题)【分析】先化简=2,再合并同类二次根式即可.【解答】解:=2﹣=.故答案为:.12.为从甲乙两名射击运动员中选出一人参加竞标赛,特统计了他们最近10次射击训练的成绩,其中,他们射击的平均成绩为8.9环,方差分别是S甲2=0.8,S乙2=13,从稳定性的角度看,甲的成绩更稳定(填“甲”或“乙”)【分析】根据方差的定义,方差越小数据越稳定.【解答】解:∵S甲2=0.8,S乙2=13,∴S甲2<S乙2,∴成绩更稳定的运动员是甲,故答案是:甲.13.如图,以Rt△ABC的三边为边向外作正方形,已知正方形ABDE和正方形ACMN的面积分别是21和8,那么正方形BCFG的面积为13.【分析】由勾股定理即可得出正方形BCFG的面积的值.【解答】解:正方形ABDE的面积=AB2=21,正方形ACMN的面积=AC2=8,正方形BCFG的面积=BC2,∵△ABC是直角三角形,∴AB2=AC2﹣BC2,∴正方形BCFG的面积=21﹣8=13.故答案为:13.14.若函数y=kx﹣3的图象与两坐标轴围成的三角形面积为6,那么k=±.【分析】不妨设函数与x轴和y轴分别交于点A、B,用k可表示出A、B的坐标,则可分别表示出OA和OB,由△AOB的面积为6可得到关于k的方程,可求得k的值.【解答】解:不妨设函数与x轴和y轴分别交于点A、B,在y=kx﹣3中,令y=0可解得x=,令x=0,可得y=﹣3,∴OA=||,OB=3,∵S△AOB=6,∴×3×||=6,解得k=±,故答案为:±.15.“敲7”是一种日常小游戏,规则是:从1开始依次数自然数,若数到7的整数倍或数位有7的数,则应敲一下桌子,比如:当数到37(个位数为7),91(7的13倍)均应敲一下桌子,若从1开始数到100,则应敲桌子30下.【分析】从1开始数到100,找到7的整数倍或数位有7的数即可.【解答】解:因为从1开始数到100,7的整数倍或数位有7的数是:7,14,17,21,27,28,35,37,42,47,49,59,57,63,67,70,71…,78,79,84,87,91,97,98.共30个.所以应敲桌子30下.故答案为:30.16.如图,在正方形ABCD中,已知AB=2,点E,G分别是边AD,CD的中点,点F是边BC上的动点,连接EF,将正方形ABCD沿EF折叠,A,B的对应点分别为A',B',则线段GB'的最小值与最大值的和是2﹣.【分析】如图,连接EG,EB′.求出EG,EB′的长,可以判定点B′在EG的延长线上时,GB′的值最小,最小值=﹣,遗忘EB′是定值,E是定点,推出当B′在以E为圆心,为半径的圆上运动,因为点F 在线段BC上,推出当点F与B重合时,GB′的长最大,最大值=,由此即可解决问题.【解答】解:如图,连接EG,EB′.∵四边形ABCD是正方形,∴∠A=∠D=90°,AD=DC=AB=2,∵AE=DE=1,DG=GC=1,由翻折的性质可知,∠A′=∠A=90°,A′E=AE=1,A′B′=AB=2,∴EB′===,∴当点B′在EG的延长线上时,GB′的值最小,最小值=﹣,∵EB′是定值,E是定点,∴当B′在以E为圆心,为半径的圆上运动,∵点F在线段BC上,∴当点F与B重合时,GB′的长最大,最大值=,∴线段GB'的最小值与最大值的和是2﹣,故答案为2﹣.三.解答题17.计算:(1)()×;(2)(π+1)0﹣+|﹣|.【考点】6E:零指数幂;79:二次根式的混合运算.【专题】514:二次根式;66:运算能力.【分析】(1)根据二次根式的乘法法则运算;(2)根据零指数幂的意义、绝对值的意义和二次根式的性质计算.【解答】解:(1)原式=﹣=2﹣1=1;(2)原式=1﹣3+=1﹣2.18.已知x=2﹣,y=2+,求:x2+xy+y2的值.【考点】76:分母有理化.【专题】11:计算题.【分析】将x2+xy+y2变形为x2+2xy+y2﹣xy,得到原式=(x+y)2﹣xy,再把x=2﹣,y=2+代入计算即可求解.【解答】解:∵x=2﹣,y=2+,∴x2+xy+y2=x2+2xy+y2﹣xy=(x+y)2﹣xy=(2﹣+2+)2﹣(2﹣)(2+)=16﹣4+3=15.19.如图,将▱ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F.(1)求证:△ABF≌△ECF;(2)若∠AFC=2∠D,连接AC、BE,求证:四边形ABEC是矩形.【考点】KD:全等三角形的判定与性质;L7:平行四边形的判定与性质;LC:矩形的判定.【专题】14:证明题.【分析】(1)先由已知平行四边形ABCD得出AB∥DC,AB=DC,进而判断出∠ABF=∠ECF,从而证得△ABF ≌△ECF;(2)由(1)得的结论先证得四边形ABEC是平行四边形,通过角的关系得出F A=FE=FB=FC,AE=BC,得证.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC,∴∠ABF=∠ECF,∵EC=DC,∴AB=EC,在△ABF和△ECF中,∵∠ABF=∠ECF,∠AFB=∠EFC,AB=EC,∴△ABF≌△ECF(AAS).(2)∵AB=EC,AB∥EC,∴四边形ABEC是平行四边形,∴F A=FE,FB=FC,∵四边形ABCD是平行四边形,∴∠ABC=∠D,又∵∠AFC=2∠D,∴∠AFC=2∠ABC,∵∠AFC=∠ABC+∠BAF,∴∠ABC=∠BAF,∴F A=FB,∴F A=FE=FB=FC,∴AE=BC,∴平行四边形ABEC是矩形.20.如图是一个三级台阶,每级台阶都是长、宽和高分别等于90cm,25cm和15cm的长方体,A和B是这个台阶的两个相对的端点.在A点处有一只蚂蚁,想到B点去吃可口的食物,请你算一算,这只蚂蚁从A点出发,沿着台阶面爬到B点,最短路程是多少?【考点】KV:平面展开﹣最短路径问题.【专题】554:等腰三角形与直角三角形;66:运算能力.【分析】展开后得到直角三角形ACB,根据题意求出AC、BC,根据勾股定理求出AB即可.【解答】解:展开后由题意得:∠C=90°,AC=3×25+3×15=120,BC=90,由勾股定理得:AB===150cm,答:最短路程是150cm.21.已知一次函数y=kx+b的图象如图所示.(1)求k,b的值;(2)请在图中作出函数y=2x+6的图象;(3)利用图象解答下列问题:当y=kx+b的函数值大于y=2x+6的函数值时,求x的取值范围.【考点】F3:一次函数的图象;F5:一次函数的性质;FA:待定系数法求一次函数解析式;FD:一次函数与一元一次不等式.【专题】533:一次函数及其应用;64:几何直观;66:运算能力.【分析】(1)先写出交点点的坐标,然后利用待定系数法求一次函数解析式;(2)利用描点法画直线y=2x+6;(3)利用所画图象,写出直线y=kx+b在直线y=2x+6上方所对应的自变量的值即可.【解答】解:(1)由图得:一次函数y=kx+b的图象经过点(3,0),点B(0,3),∴,解得;(2)如图,(3)当y=kx+b的函数值大于y=2x+6的函数值时,x的取值范围是x<﹣1.22.学校组织了一次交通安全知识测试,为了分析七、八年级学生本次测试成绩情况,随机从七、八年级各抽取部分学生的成绩,把数据整理成频数分布统计表如表(各组数据包括左端点不包括右端点):等级D C B A分数范围60~7070~8080~9090~100八年级2675七年级11081(1)如果七年级共有学生600人,则估计此次测试中七年级成绩在C级以上(包括C 级)的人数为570人;(2)请从两个不同的角度分析七年级和八年级中哪个年级的成绩更好.【考点】V5:用样本估计总体;V7:频数(率)分布表;W2:加权平均数;W7:方差.【专题】542:统计的应用;66:运算能力.【分析】(1)用总人数乘以七年级成绩在C级以上(包括C级)的人数所占的百分比即可;(2)先求出七、八年级的平均数,再从平均数和中位数两方面进行分析,即可得出八年级的成绩较好.【解答】解:(1)根据题意得:600×=570(人),答:估计此次测试中七年级成绩在C级以上(包括C级)的人数为570人;故答案为:570;(2)八年级的平均数是:(65×2+75×6+85×7+95×5)=82.5(分),七年级的平均数是:(65×1+75×10+85×8+95×1)=79.5(分),①从平均数来看,八年级的成绩比七年级的成绩高,成绩更好一些;②从中位数和B级以上(包括B级)的人数的角度比较八年级的成绩较好.23.某手工艺人用A,B两种规格的绒布片拼制成甲、乙两款玩具进行销售,拼制每款玩具所需不同规格绒布片用量如表所示.该艺人制作甲款玩具x个,乙款玩具y个,共用去A种绒布3000片.玩具款式A种绒布(片)B种绒布(片)甲款玩具3020乙款玩具1530(1)求y关于x的函数表达式;(2)已知每个甲款玩具的利润为a元(8≤a≤14),每个乙款玩具的利润为6元,假设两款玩具均能全部卖出;①当a=8时,若要获得总利润不少于850元,则至少要用去B绒布多少片?②该艺人现有B种绒布数量在4800~5200片,求他加工这批玩具所获利润的取值范围.【考点】C9:一元一次不等式的应用;FH:一次函数的应用.【专题】524:一元一次不等式(组)及应用;533:一次函数及其应用;68:模型思想;69:应用意识.【分析】(1)由题意通过的数量关系,可得出关系式;(2)①求出B原料的用量与乙玩具的个数y的函数关系式,根据函数的增减性可得答案;②建立不等式组,确定x的取值范围,再根据a的取值范围,再根据函数的增减性求出相应的值即可.【解答】解:(1)由题意得,30x+15y=3000,即:y=﹣2x+200;(2)①由题意得:8x+6y≥850,由(1)得,2x=200﹣y,代入得,y≥25,设B原料的用量为w,则w=20x+30y,即w=20y+2000,∵k=20>0,∴w随着y的增大而增大,∴当y取最小值25时,w的最小值为25×20+2000=2500,因此若获得总利润不少于850元时,则至少要用去B原料2500片;②由题意得,,解得,20≤x≤30,设总利润为W元,则M=ax+6y=ax+6×(200﹣2x)=(a﹣12)x+1200,当12≤x≤14时,则a=14,x=30时,M最大=1260元,当8≤x≤12时,则a=8,x=20时,M最大=1080元,所以利润的取值范围为1080≤M≤1260.24.如图,四边形ABCD是菱形,点M在CD边上,点N在菱形ABCD外部,且满足MN∥AD,CM=MN,连接AN,CN,取AN的中点E,连接BE,AC.(1)探究BE与AC的关系;(2)若∠ABC=120°,探究线段BE、AD、CM所满足的等量关系;(3)若∠ABC=60°,M在DC的延长线上时,其余条件不变,CM=1,AD=3,请求出BE的长度.【考点】LO:四边形综合题.【专题】554:等腰三角形与直角三角形;556:矩形菱形正方形;67:推理能力.【分析】(1)连接CE,由菱形的性质可得AB=BC,∠ACD=∠BCD,∠ADC+∠BCD=180°,由平行线的性质和外角的性质可证∠MCN+∠ACD=90°=∠ACN,由直角三角形的性质可得AE=CE,由线段垂直平分线的判定可得BE垂直平分AC;(2)设BE与AC交于点O,由直角三角形的性质可得BO=BC=AD,由三角形中位线定理可得EO=CN=CM,可得结论;(3)先证BE垂直平分AC,由等边三角形的性质可求BO的长,由三角形中位线定理可求OE的长,即可求解.【解答】解:(1)BE垂直平分AC,理由如下:如图1,连接CE,∵四边形ABCD是菱形,∴AB=BC,∠ACD=∠BCD,∠ADC+∠BCD=180°,∵AD∥MN,∴∠ADC=∠DMN,∵CM=MN,∴∠MCN=∠MNC,∴∠DMN=∠MCN+∠MNC=2∠MCN=∠ADC,∵∠ADC+∠BCD=180°,∴∠ADC+∠BCD=90°,∴∠MCN+∠ACD=90°=∠ACN,∵点E是AN的中点,∠ACN=90°,∴AE=CE,∵AE=CE,AB=BC,∴BE垂直平分AC;(2)BE=AD+CM;理由如下:如图2,设BE与AC交于点O,∵四边形ABCD是菱形,∠ABC=120°,∴AD=BC=AB,∵AB=BC,BE垂直平分AC,∴∠ABO=∠CBO=60°,∠BOC=90°,AO=CO,∴∠BCA=30°,∴BO=BC=AD,∵AO=OC,点E是AN的中点,∴EO=CN,∵CM=CN,∠MCN=∠ADC=60°,∴CM=CN,∴BE=BO+OE=AD+CM;(3)如图3,延长BE交AC于点O,连接CE,过点M作MH⊥CN于H,∵四边形ABCD是菱形,∴AB=BC=AD=3,AB∥CD,∠ABC=∠D=60°,∴△ABC是等边三角形,∠ABC=∠BCM=60°,∴∠ACB=60°,AC=BC=3,∵MN∥AD,∴∠D+∠NMC=180°,∴∠NMC=120°,∵MN=MC,∴∠MCN=∠MNC=30°,∴∠BCN=30°,∴∠ACN=∠ACB+∠BCN=90°,∵点E是AN中点,∴AE=EC,∵AB=BC,AE=EC,∴BE垂直平分AC,∴AO=CO,BO⊥AC,∵△ABC是等边三角形,BO⊥AC,∴∠OBC=30°,OC=AC=,∴BO=CO=,∵CM=MN=1,MH⊥CN,∴NH=CH,∵∠MCN=30°,∴HM=CM=,CH=HM=,∴CN=2CH=,∵AO=CO,点E是AN中点,∴EO=CN=,∴BE=BO﹣EO=.。
八年级数学第二学期期末试卷及答案解析一字一句,淡淡的墨香,深深的底蕴,一段一落,轻轻的几句,高高的内涵,一行一页,浅浅的道理,大大的智慧,下面是为您推举八年级数学第二学期期末试卷及答案解析。
有关八年级数学下期末试卷一、选择题〔本大题共6小题,共18.0分〕1.以下函数中,一次函数是〔〕A. B. C. D.2.以下推断中,错误的选项是〔〕A. 方程是一元二次方程B. 方程是二元二次方程C. 方程是分式方程D. 方程是无理方程3.已知一元二次方程x2-2x-m=0有两个实数根,那么m的取值范围是〔〕A. B. C. D.4.以下事件中,必定事件是〔〕A. "奉贤人都爱吃鼎丰腐乳'B. "2021年上海中考,小明数学考试成果是总分150分'C. "10只鸟关在3个笼子里,至少有一只笼子关的鸟超过3只'D. "在一副扑克牌中任意抽10张牌,其中有5张A'5.以下命题中,真命题是〔〕A. 平行四边形的对角线相等B. 矩形的对角线平分对角C. 菱形的对角线相互平分D. 梯形的对角线相互垂直二、填空题〔本大题共12小题,共24.0分〕6.一次函数y=2x-1的图象在轴上的截距为______7.方程x4-8=0的根是______8.方程-x=1的根是______9.一次函数y=kx+3的图象不经过第3象限,那么k的取值范围是______10.用换元法解方程-=1时,假如设=y,那么原方程化成以"y'为元的方程是______11.化简:〔〕-〔〕=______.12.某商品经过两次连续涨价,每件售价由原来的100元涨到了179元,设平均每次涨价的百分比为x,那么可列方程:______13.假如n边形的每一个内角都相等,并且是它外角的3倍,那么n=______14.既是轴对称图形,又是中心对称图形的四边形是______.15.在四边形ABCD中,AB=AD,对角线AC平分BAD,AC=8,S四边形ABCD=16,那么对角线BD=______.16.在矩形ABCD中,BAD的角平分线交于BC点E,且将BC分成1:3的两部分,若AB=2,那么BC=______17.如图,在平行四边形ABCD中,AC与BD相交于点OAOB=60,BD=4,将△ABC沿直线AC翻折后,点B落在点E处,那么S△AED=______三、解答题〔本大题共8小题,共64.0分〕18.解方程:-=219.解方程组:20.布袋中放有x只白球、y只黄球、2只红球,它们除颜色外其他都相同,假如从布袋中随机摸出一个球,恰好是红球的概率是.〔1〕试写出y与x的函数关系式;〔2〕当x=6时,求随机地取出一只黄球的概率P.21.如图,矩形ABCD中,对角线AC与BD相交于点O.〔1〕写出与相反的向量______;〔2〕填空:++=______;〔3〕求作:+〔保存作图痕迹,不要求写作法〕.22.中国的高铁技术已经然走在了世界前列,2021年的"复兴号'高铁列车较"和谐号'速度增加每小时70公里.上海火车站到北京站铁路距离约为1400公里,假如选择"复兴号'高铁,全程可以少用1小时,求上海火车站到北京火车站的"复兴号'运行时间.23.已知:如图,在△ABC中,ACB=90,点D是斜边AB 的中点,DE∥BC,且CE=CD.〔1〕求证:B=DEC;〔2〕求证:四边形ADCE是菱形.24.如图,一次函数y=2x+4的图象与x,y轴分别相交于点A,B,以AB为边作正方形ABCD〔点D落在第四象限〕.〔1〕求点A,B,D的坐标;〔2〕联结OC,设正方形的边CD与x相交于点E,点M 在x轴上,假如△ADE与△COM全等,求点M的坐标.25.已知,梯形ABCD中,AD∥BC,ABC=90,AB=3,BC=10,AD=5,M是BC边上的任意一点,联结DM,联结AM.〔1〕若AM平分BMD,求BM的长;〔2〕过点A作AEDM,交DM所在直线于点E.①设BM=x,AE=y求y关于x的函数关系式;②联结BE,当△ABE是以AE为腰的等腰三角形时,请直接写出BM的长.答案和解析1.【答案】A【解析】解:A、y=x属于一次函数,故此选项正确;B、y=kx〔k0〕,故此选项错误;C、y=+1,不符合一次函数的定义,故此选项错误;D、y=x2-2,不符合一次函数的定义,故此选项错误;应选:A.利用一般地,形如y=kx+b〔k0,k、b是常数〕的函数,叫做一次函数,进而推断即可.此题主要考查了一次函数的定义,正确把握一次函数的定义是解题关键.2.【答案】D【解析】解:A、方程x〔x-1〕=0是一元二次方程,不符合题意;B、方程xy+5x=0是二元二次方程,不符合题意;C、方程-=2是分式方程,不符合题意;D、方程x2-x=0是一元二次方程,符合题意,应选:D.利用各自方程的定义推断即可.此题考查了无理方程,分式的定义,一元二次方程的定义,以及分式方程的定义,娴熟把握各自的定义是解此题的关键.3.【答案】B【解析】解:∵一元二次方程x2-2x-m=0有两个实数根,△=4+4m0,解得:m-1.应选:B.由方程有两个实数根,得到根的判别式的值大于等于0,列出关于m的不等式,求出不等式的解集即可得到m的范围.考查了根的判别式,一元二次方程ax2+bx+c=0〔a0〕的根与△=b2-4ac有如下关系:①当△0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△0时,方程无实数根.上面的结论反过来也成立.4.【答案】C【解析】解:A、"奉贤人都爱吃鼎丰腐乳',是随机事件,故此选项错误;B、"2021年上海中考,小明数学考试成果是总分150分',是随机事件,故此选项错误;C、"10只鸟关在3个笼子里,至少有一只笼子关的鸟超过3只'是必定事件,故此选项正确;D、"在一副扑克牌中任意抽10张牌,其中有5张A',是不行能事件.应选:C.直接利用随机事件以及必定事件、不行能事件的定义分别分析得出答案.此题主要考查了随机事件以及必定事件、不行能事件的定义,正确区分各事件是解题关键.5.【答案】C【解析】解:A. 平行四边形的对角线平分,错误;B. 菱形的对角线平分对角,错误;C. 菱形的对角线相互平分,正确;D. 等腰梯形的对角线相互垂直,错误;应选:C.依据菱形、平行四边形、矩形、等腰梯形的性质分别推断得出即可.此题主要考查了菱形、平行四边形、矩形、等腰梯形的性质,娴熟把握相关定理是解题关键.6.【答案】-1【解析】解:一次函数y=2x-1的图象在y轴上的截距是-1,故答案为:-1,依据一次函数的图象与系数的关系即可得出结论.此题考查的是一次函数的性质,熟知一次函数的性质是解答此题的关键.7.【答案】2【解析】解:x4-8=0,x4=8,x4=16,开方得:x2=4,开方得:x=2,故答案为2.移项,系数化成1,再开方即可.此题考查了解高次方程,能把高次方程转化成低次方程是解此题的关键.8.【答案】x=3【解析】解:-x=1,=1+x,2x+10=〔1+x〕2,x2=9,解得:x=3,检验:把x=3代入方程-x=1得:左边=右边,所以x=3是原方程的解,把x=3代入方程-x=1得:左边右边,所以x=-3不是原方程的解,所以原方程的解为x=3,故答案为:x=3,移项后两边平方,即可得出整式方程,求出方程的解,再进行检验即可.此题考查了解无理方程,能把无理方程转化成有理方程是解此题的关键.9.【答案】k0【解析】解:∵一次函数y=kx+3的图象不经过第3象限,一次函数y=kx+3的图象即经过第一、二、四象限,k0.故答案为:k0,先推断出一次函数图象经过第一、二、四象限,则说明x的系数不大于0,由此即可确定题目k的取值范围.此题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答此题留意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k0时,直线必经过一、三象限;k0时,直线必经过二、四象限;b0时,直线与y轴正半轴相交;b=0时,直线过原点;b0时,直线与y轴负半轴相交.10.【答案】3y2-y-1=0【解析】解:-=1,设=y,原方程化为:3y-=1,即3y2-y-1=0,故答案为:3y2-y-1=0.设=y,原方程化为3y-=1,求出即可.此题考查了用换元法解分式方程,能够正确换元是解此题的关键.11.【答案】【解析】解:〔〕-〔〕=--+=〔+〕-〔+〕=-=.故答案为:.由去括号的法则可得:〔〕-〔〕=--+,然后由加法的交换律与结合律可得:〔+〕-〔+〕,继而求得答案.此题考查了平面向量的学问.此题难度不大,留意把握三角形法则的应用.12.【答案】100〔1+x〕2=179【解析】解:设平均每次涨价的百分比为x,那么可列方程:100〔1+x〕2=179.故答案为:100〔1+x〕2=179.设平均每次涨价的百分比为x,依据原价为100元,表示出第一次涨价后的价钱为100〔1+x〕元,然后再依据价钱为100〔1+x〕元,表示出第二次涨价的价钱为100〔1+x〕2元,依据两次涨价后的价钱为179元,列出关于x的方程此题考查了由实际问题抽象出一元二次方程,属于平均增长率问题,一般状况下,假设基数为a,平均增长率为x,增长的次数为n〔一般状况下为2〕,增长后的量为b,则有表达式a〔1+x〕n=b,类似的还有平均降低率问题,留意区分"增'与"减'.13.【答案】8【解析】解:∵每个内角都相等,并且是它外角的3倍,设外角为x,可得:x+3x=180,解得:x=45,边数=36045=8.故答案为:8.依据正多边形的内角与外角是邻补角求出每一个外角的度数,再依据多边形的边数等于360除以每一个外角的度数列式计算即可得到边数.此题考查了多边形的内角与外角,娴熟把握多边形的外角和、多边形的每一个外角的度数、多边形的边数三者之间的关系是解题的关键.14.【答案】矩形〔答案不唯一〕【解析】解:矩形〔答案不唯一〕.依据轴对称图形与中心对称图形的概念,写一个则可.把握中心对称图形与轴对称图形的概念.轴对称图形的关键是查找对称轴,图形两部分折叠后可重合;中心对称图形是要查找对称中心,旋转180度后两部分重合.15.【答案】4【解析】解:∵对角线AC平分BAD,BAO=DAO,在△BAO与△DAO中,,△BAO≌△DAO〔SAS〕,BOA=DOA,ACBD,∵AC=8,S四边形ABCD=16,BD=1628=4.故答案为:4.依据角平分线的定义可得BAO=DAO,依据SAS可证△BAO ≌△DAO,再依据全等三角形的性质可得BOA=DOA,可得ACBD,再依据对角线相互垂直的四边形面积公式计算即可求解.考查了多边形的对角线,角平分线,全等三角形的判定与性质,四边形面积,关键是依据SAS证明△BAO≌△DAO.16.【答案】8或【解析】解:①如图1中,∵四边形ABCD是矩形,AE平分BAD,BAE=AEB=45,AB=BE=2,当EC=3BE时,EC=6,BC=8.②如图2中,当BE=3EC时,EC=,BC=BE+EC=.故答案为8或分两种情形画出图形分别求解即可解决问题;此题考查矩形的性质、等腰直角三角形的判定和性质等学问,解题的关键是学会用分类商量的思想思索问题,属于中考常考题型.17.【答案】【解析】解:如图连接EO.∵AOB=EOA=60,EOD=60,∵OB=OE=OD,△EOD是等边三角形,EDO=AOB=60,DE∥AC,S△ADE=S△EOD=22=.故答案为如图连接EO.首先证明△EOD是等边三角形,推出EDO=AOB=60,推出DE∥AC,推出S△ADE=S△EOD即可解决问题;此题考查了折叠的性质,平行四边形的性质以及勾股定理的应用等学问.此题难度适中,解题的关键是精确作出帮助线,利用数形结合思想求解.18.【答案】解:方程两边都乘以〔x+2〕〔x-2〕得:〔x-1〕〔x+2〕-4=2〔x+2〕〔x-2〕,即x2-x-2=0,解得:x=-1或2,检验:当x=-1时,〔x+2〕〔x-2〕0,所以x=-1是原方程的解,当x=2时,〔x+2〕〔x-2〕=0,所以x=2不是原方程的解,所以原方程组的解为:x=-1【解析】先去分母,把分式方程转化成整式方程,求出整数方程的解,再进行检验即可.此题考查了解分式方程,能把分式方程转化成整式方程是解此题的关键.19.【答案】解:由①得:x=4+y③,把③代入②得:〔4+y〕2-2y2=〔4+y〕y,解得:y1=4,y2=-2,代入③得:当y1=4时,x1=8,当y2=-2时,x2=2,所以原方程组的解为:,.【解析】由①得出x=4+y③,把③代入②求出y,把y的值代入③求出x即可.此题考查了解高次方程组,能把高次方程组转化成一元二次方程是解此题的关键.20.【答案】解:〔1〕因为布袋中放有x只白球、y只黄球、2只红球,且红球的概率是.所以可得:y=14-x〔2〕把x=6,代入y=14-6=8,所以随机地取出一只黄球的概率P==【解析】〔1〕让红球的个数除以球的总个数即为从布袋中随机摸出一个球是红球的概率,进而得出函数解析式.〔2〕让黄球的个数除以球的总个数即为从布袋中随机摸出一个球是黄球的概率.此题考查了概率公式的应用.用到的学问点为:概率=所求状况数与总状况数之比.21.【答案】,【解析】解:〔1〕与相反的向量有,,故答案为有,.〔2〕∵+=,+=,++=故答案为.〔3〕如图,作平行四边形OBEC,连接AE,即为所求;〔1〕依据相反的向量的定义即可解决问题;〔2〕利用三角形加法法则计算即可;〔3〕如图,作平行四边形OBEC,连接AE,即为所求;此题考查平面向量、作图-冗杂作图、矩形的性质等学问,解题的关键是娴熟把握向量的加法法则,属于中考常考题型.22.【答案】解:设复兴号用时x小时,则和谐号用时〔x+1〕小时,依据题意得:=70+,解得:x=4或x=-5〔舍去〕答:上海火车站到北京火车站的"复兴号'运行时间为4小时.【解析】复兴号用时x小时,则和谐号用时〔x+1〕小时,然后根据"复兴号'高铁列车较"和谐号'速度增加每小时70公里列方程求解即可.此题考查了分式方程的应用,关键是分析题意,找到合适的数量关系列出方程,解分式方程时要留意检验.23.【答案】〔1〕证明:在△ABC中,∵ACB=90,点D是斜边AB的中点,CD=DB,B=DCB,∵DE∥BC,DCB=CDE,∵CD=CE,CDE=CED,B=CED.〔2〕证明:∵DE∥BC,ADE=B,∵B=DEC,ADE=DEC,AD∥EC,∵EC=CD=AD,四边形ADCE是平行四边形,∵CD=CE,四边形ADCE是菱形.【解析】〔1〕利用等腰三角形的性质、直角三角形斜边中线定理证明即可;〔2〕首先证明AD=EC,AD∥EC,可得四边形ADCE是平行四边形,再依据CD=CE可得四边形是菱形;此题考查菱形的判定和性质、平行四边形的性质、等腰三角形的判定和性质等学问,解题的关键是敏捷运用所学学问解决问题,属于中考常考题型.24.【答案】解:〔1〕∵一次函数y=2x+4的图象与x,y轴分别相交于点A,B,A〔-2,0〕,B〔0,4〕,OA=2,OB=4,如图1,过点D作DFx轴于F,DAF+ADF=90,∵四边形ABCD是正方形,AD=AB,BAD=90,DAF+BAO=90,ADF=BAO,在△ADF和△BAO中,,△ADF≌△BAO〔AAS〕,DF=OA=2,AF=OB=4,OF=AF-OA=2,∵点D落在第四象限,D〔2,-2〕;〔2〕如图2,过点C作CGy轴于G,连接OC,作CMOC交x轴于M,同〔1〕求点D的方法得,C〔4,2〕,OC==2,∵A〔-2,0〕,B〔0,4〕,AB=2,∵四边形ABCD是正方形,AD=AB=2=OC,∵△ADE与△COM全等,且点M在x轴上,△ADE≌△OCM,OM=AE,∵OM=OE+EM,AE=OE+OA,EM=OA=2,∵C〔4,2〕,D〔2,-2〕,直线CD的解析式为y=2x-6,令y=0,2x-6=0,x=3,E〔3,0〕,OM=5,M〔5,0〕.【解析】〔1〕先利用坐标轴上点的特点求出点A,B的坐标,再构造全等三角形即可求出点D坐标;〔2〕先求出点C坐标,进而求出OC,推断出AD=OC,再用待定系数法求出直线CD解析式,即可求出点E坐标,即可得出结论.此题是一次函数综合题,主要考查了待定系数法,正方形的性质,全等三角形的判定和性质,构造全等三角形求出点D坐标是解此题的关键.25.【答案】解:〔1〕如图1中,作DHBC于H.则四边形ABHD是矩形,AD=BH=5,AB=DH=3.当MA平分DMB时,易证AMB=AMD=DAM,可得DA=DM=5,在Rt△DMH中,DM=AD=5,DH=3,MH===4,BM=BH-MH=1,当AM平分BMD时,同法可证:DA=DM,HM=4,BM=BH+HM=9.综上所述,满足条件的BM的值为1或9.〔2〕①如图2中,作MHAD于H.在Rt△DMH中,DM==,∵S△ADM=ADMH=DMAE,53=yy=.②如图3中,当AB=AE时,y=3,此时53=3,解得x=1或9.如图4中,当EA=EB时,DE=EM,∵AEDM,DA=AM=5,在Rt△ABM中,BM==4.综上所述,满足条件的BM的值为1或9或4.【解析】〔1〕如图1中,作DHBC于H.则四边形ABHD是矩形,AD=BH=5,AB=DH=3.分两种情形求解即可解决问题;〔2〕①如图2中,作MHAD于H.利用面积法构建函数关系式即可;②分两种情形:如图3中,当AB=AE时,y=3,此时53=3,解方程即可;如图4中,当EA=EB时,DE=EM,利用勾股定理求解即可;此题考查四边形综合题、等腰三角形的判定和性质、勾股定理、三角形的面积等学问,解题的关键是学会添加常用帮助线,构造直角三角形解决问题,学会用分类商量的思想思索问题,属于中考压轴题.。
八年级数学下学期期末测试卷题号一二三总分得分注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. 木工师傅想利用木条制作一个直角三角形,那么下列各组数据不符合直角三角形的三边长的是( )A. 3,4,5B. 6,8,10C. 5,12,13D. 7,15,172. 要使二次根式√ 2x−4在实数范围内有意义,则x的取值范围是( )A. x>2B. x≥2C. x<2D. x=23. 下列各式计算正确的是( )A. √ 2+√ 3=√ 5B. 2+√ 2=2√ 2C. 3√ 2−√ 2=2√ 2D. √ 12−√ 10=√ 6−√ 524. 数形结合是解决数学问题常用的思想方法.如图,直线y=x+5和直线y=ax+b相交于点P,根据图象可知,方程x+5=ax+b的解是( )A. x=20B. x=5C. x=25D. x=155. 甲、乙、丙、丁四位同学3次数学成绩的平均分都是120分,方差分别是S2甲=8.6,S2乙=2.6,S2丙=5.0,S2丁=7.2,则这四位同学3次数学成绩最稳定的是()A. 甲B. 乙C. 丙D. 丁6. 下列不能确定四边形ABCD为平行四边形的是( )A. ∠A=∠C,∠B=∠DB. ∠A=∠B=∠C=90∘C. ∠A+∠B=180∘,∠B+∠C=180∘D. ∠A+∠B=180∘,∠C+∠D=180∘7. 棱形ABCD中,对角线AC=5,BD=12,则棱形的高等于()A. 1513B. 3013C. 6013D. 308. 如图,矩形ABCD中,AC、BD交于点O,M、N分别为BC、OC的中点,若∠ACB=30°,AB=8,则MN的长为()A. 2B. 4C. 8D. 169. 如图,在矩形ABCD中,AB=6,AD=4,DM=2,动点P从点A出发,沿路径A→B→C→M 运动,则△AMP的面积y与点P经过的路径长x之间的函数关系用图像表示大致是()A. B.C. D.10. 如图,在正方形ABCD中,E是BC边上的一点,BE=4,EC=8,将正方形边AB沿AE 折叠到AF,延长EF交DC于G,连接CF,现在有如下4个结论:①∠EAG=45°;②FG=FC;③FC//AG;④S△GFC=14其中正确结论的个数是()A. 1B. 2C. 3D. 4二、填空题(本大题共6小题,共18.0分)11. 在数轴上表示实数a的点如图所示,化简√ (a−5)2+|a−2|的结果为.12. 计算:(√ 3+√ 2)2−√ 24=______.13. 如图,在△ABC中,∠ACB=90°,以它的三边为边分别向外作正方形,面积分别为S1,S2,S3,已知S1=5,S2=12,则S3=________.14. 将直线y=2x+1的图象向下平移3个单位长度后所得直线的解析式是.15. 观察下列等式:①3−2√ 2=(√ 2−1)2,②5−2√ 6=(√ 3−√ 2)2,③7−2√ 12=(√ 4−√ 3)2,…请你根据以上规律,写出第6个等式______.16. 春耕期间,市农资公司连续8天调进一批化肥,并在开始调进化肥的第七天开始销售.若进货期间每天调进化肥的吨数与销售期间每天销售化肥的吨数都保持不变,这个公司的化肥存量s(单位:吨)与时间t(单位:天)之间的函数关系如图所示,则该公司这次化肥销售活动(从开始进货到销售完毕)所用的时间是______ 天.三、解答题(本大题共8小题,共52.0分。
八年级(下)期末数学综合复习试卷(六)一、选择题(本大题共8小题,每小题3分,共24分.) 1. 若a >b ,则下列式子正确的是A 、a -4>b -3B 、12a <12b C 、3+2a >3+2b D 、—3a >—3b 2. 如果把分式yx x+2中的x 和y 都扩大3倍,那么分式的值 A 、扩大3倍 B 、缩小3倍 C 、扩大6倍 D 、不变3.在平面直角坐标系中,若点P (x -2,x )在第二象限,则x 的取值范围是A 、0<x <2B 、x <2C 、x >0D 、x >24. 已知反比例函数xky =的图象经过点P (一l ,2),则这个函数的图象位于 A 、第二、三象限 B 、第一、三象限 C 、第三、四象限 D 、第二、四象限 5、给出下面四个命题,其中真命题的个数为(1) 全等三角形是相似三角形 (2) 顶角相等的两个等腰三角形相似 (3) 所有的等边三角形都相似 (4) 所有的直角三角形都相似 A 、1个 B 、2个 C 、3个 D 、4个6、在一个不透明的盒子里有形状、大小完全相同的黄球2个、红球3个、白球4个,从盒子里任意摸出1个球,摸到红球的概率是 A 、92 B 、94 C 、32 D 、31 7.如果不等式组⎩⎨⎧≥<mx x 5有解,那么m 的取值范围是A 、 5>mB 、5<mC 、5≥mD 、 5≤m 8.如图已知关于x 的函数y=k(x-1)和y=-kx(k≠0),它们在同一坐标系内的图象大致是二、填空题(本大题共10小题,每题3分,共30分)Oy xAO yxCOxByO xD9.当x = 时,分式2-x x没有意义. 10.约分:ba ab2205=____________. 11.在比例尺为1∶5 000 000的地图上,量得甲、乙两地的距离是15cm ,则两地的实际距离 km .12.写出命题“直角三角形的两个锐角互余”的逆命题:___ ____ . 13. 若反比例函数x m y 12-=的图象在每一个象限中,y 随着x 的增大而减小,则m 的取值范围是___________. 14.若关于x 的分式方程323-=--x m x x 无解,则m 的值为__________. 15.已知点(x 1,-1),(x 2,2),(x 3,4),在函数y=kx(k <0)的图象上,则x 1,x 2,x 3从小到大排列为 (用“<”号连接).16.如图,△ABC 中,∠B =90°,AB =6,BC =8,将△ABC 沿DE 折叠,使点C 落在AB •边上的C ′处,并且C ′D ∥BC ,则CD 的长是 .(第16题) (第17题) (第18题) 17.如图,已知双曲线)0k (xky >=经过直角三角形OAB 斜边OB 的中点D ,与直角边AB 相交于点C .若△OBC 的面积为3,则k =__________.18.将三角形纸片(△ABC )按如图所示的方式折叠,使点B 落在边AC 上,记为点B ′,折痕为EF .已知AB =AC =3,BC =4,若以点B ′,F ,C 为顶点的三角形与△ABC 相似,那么BF 的长度是 . 三、解答题(本大题共8题,共96分.)19.(本题满分8分)解不等式,并把它的解集在数轴上表示出来:614131--≤++x x x先化简22424412x x xx x x x -+÷--++-,再给x 取一个你喜欢的数代入求值.21.(本题满分8分)解分式方程:22124x x x +=--22.(本题满分8分)解不等式组253(2)123x x x x +≤+⎧⎪-⎨<⎪⎩,并写出它的整数解.BFADCE为改善生态环境,防止水土流失,某村计划在荒坡上种960棵树,由于青年志愿者的支持,每天比原计划多种31,结果提前4天完成任务.原计划每天种植多少棵树?24.(本题满分10分)如图,在△ABC 和△DEF 中,点B 、E 、C 、F 在同一条直线上,下面有四个条件:①AB =DE ;②AC =DF ;③BE =CF ;④∠ABC =∠DEF 请你从中选三个作为题设,余下的一个作为结论(1)写出一个正确的命题,并加以证明;(2)请你再写出一个这样的正确命题(不必证明).GFE DCBA已知一纸箱中放有大小均匀的x 只白球和y 只黄球,从箱中随机地取出一只球是白球的概率是23. ⑴ 试求出y 与x 的函数关系式;⑵ 当x =2时,试用树状图或列表法求出:从箱中摸出两球,恰好是一只白球和一只黄球的概率.26.(本题满分10分)如图,有一路灯杆AB (底部B 不能直接到达),在灯光下,小华在点D 处测得自己的影长DF =3m ,沿BD 方向到达点F 处再测得自己的影长FG =4m .如果小华的身高为1.5m ,求路灯杆AB 的高度.27.(本题满分12分)如图,一次函数y =b kx +的图象与反比例函数y =mx的图象相交于A 、B 两点.(1)利用图中条件,求反比例函数与一次函数的关系式;(2)根据图象写出使该一次函数的值大于该反比例函数的值的x 的取值范围; (3)求出△AOB 的面积.28.(本题满分12分)如图,在锐角ABC △中,9BC =,AH BC ⊥于点H ,且6AH =,点D 为AB 边上的任意一点,过点D 作DE //BC ,交AC 于点E .设A D E △的高AF 为(06)x x <<,以DE为折线将ADE △翻折,所得的A DE '△与梯形DBCE 重叠部分的面积记为y (点A 关于DE 的对称点A '落在AH 所在的直线上).(1)当x =1时,y =____________(2)求出当03x <≤时,y 与x 的函数关系式; (3)求出36x <<时,y 与x 的函数关系式。
A EF DA 'BCHABHC参考答案及评分标准一、选择题(本大题共8小题,每小题3分,共24分)题号 1 2 3 4 5 6 7 8 答案CDADCDBB二、填空题(本大题共10小题,每题3分,共30分)9.2 10.a4111.750 12.两个锐角互余的三角形是直角三角形 13.21>m 14.3 15.x 2<x 3<x 1 16. 940 17.2 18.2或712三、解答题(本大题共8题,共96分) 19.解:去分母,得6x +2(x +1) ≤6-(x -14)……………………… 2分 去括号,得6x +2x +2≤6-x +14………………………3分 移项,合并同类项,得9x ≤18 ………………………5分 两边都除以9,得x ≤2………………………6分解集在数轴上表示如下:………………………8分20.解:原式=2)2()1()2()2)(2(2--++÷--+x xx x x x x ………………………3分 =221---+x xx x ………………………4分 =21-x ………………………5分取值正确1分,代入求值正确2分21. 解:方程两边都乘以(x +2)(x —2),得:x (x +2)+2=x 2—4………………………3分 解这个方程,得:x =-3………………………6分检验:当x =-3时,(x +2)(x —2)≠0∴x =-3是原方程的根………………………8分 22.解:解不等式①得:x ≥—1………………………2分 解不等式②得:x <3………………………4分∴不等式组的解集为—1≤x <3………………………6分 ∴不等式组的整数解为—1、0、1、2. ………………………8分 23.解:设原计划每天种树x 棵………………………1分 则4)311(960960=+-xx……………………… 5分 60=x 解得: ……………………… 8分经检验:x =60 是原方程的根……………………… 9分 答:原计划每天种树60棵 ………………………10分24.解:(1)如图,在△ABC 和△DEF 中,点B 、E 、C 、F 在同一条直线上,如果 AB =DE ,AC =DF ,BE =CF 。
那么∠ABC =∠DEF ………………………3分 证明如下:∵BE =CF ∴BE +EC =CF +EC即BC =EF ………………………5分 在△ABC 和△DEF 中⎪⎩⎪⎨⎧===EF BC DF AC DE AB ∴△ABC ≌△DEF ………………………7分 ∴∠ABC =∠DEF ………………………8分(2)如图,在△ABC 和△DEF 中,点B 、E 、C 、F 在同一条直线上,如果 AB =DE ,∠ABC =∠DEF ,BE =CF 。
那么AC =DF ………………………12分 25.解:(1)由题意得,32=+y x x ………………………2分 整理,得y =x 21………………………4分 (2)树状图或表格(略)………………………6分∴P (摸出一白一黄)=32………………………10分 26.解:由AB ∥CD ,得△ABF ∽△CDF ………………………1分 所以335.1,BDAB DF BF CD AB +==即 ①………………………3分 由AB ∥EF ,得△ABG ∽△EFG ………………………4分所以475.1,BDAB FG BG EF AB +==即 ②………………………6分 由①、②得4733BDBD +=+………………………7分 BD =9………………………8分 代入①,得3935.1+=AB ∴ AB =6(m )………………………9分 答:路灯杆AB 的高度为6m 。
………………………10分 27. (1)∵点A (-2,1)在反比例函数y =mx的图象上 ∴2-=m ,xy 2-=………………………2分 又∵点B (1,n )也在函数xy 2-=的图象上∴n =-2………………………3分 设直线AB 的解析式为b kx y +=则⎩⎨⎧-=+=+-212b k b k 解得⎩⎨⎧-=-=11b k∴1--=x y ………………………5分 (2)由图象知该一次函数大于该反比例函数的值 则102<<-<x x 或………………………8分 (3)2311212121=⨯⨯+⨯⨯=∆AOB S ………………………12分 28.(1)43………………………2分 (2)由DE ∥BC ,得⊿ADE ∽⊿ABC ∴2)6(xS S ABC ADE =∆∆………………………4分 即23627x y =∴y =243x ………………………7分 (3).2718492-+-=x x y ………………………12分。