第一章有理数的有关概念复习
- 格式:doc
- 大小:107.00 KB
- 文档页数:4
第一章有理数知识点、考点、难点总结归纳有理数是我们学习数学的基础,掌握有理数的知识是进行后续学习的关键。
本章将对有理数的知识点、考点和难点进行总结归纳,帮助我们更好地理解和掌握有理数。
一、有理数的定义有理数是可以表示为两个整数的比值,包括正整数、负整数和零。
有理数的表示形式为分数或整数。
二、有理数的基本运算1. 加法和减法:有理数的加法和减法运算都可以通过分数的相加相减来完成,要注意同分母的分数之间的加减法运算规则,并进行合并和化简。
2. 乘法和除法:有理数的乘法和除法运算也可以通过分数的乘法和除法来完成,要注意分数的乘法规则和除法规则,并进行化简。
三、有理数的大小比较比较两个有理数的大小,可以首先将它们转化为相同分母的分数形式,然后按照分数的大小关系进行比较。
四、有理数的相反数与绝对值1. 相反数:一个有理数的相反数是它的数值相反而符号不变。
2. 绝对值:一个有理数的绝对值是它去掉符号后的数值,即该数的非负值。
五、有理数的混合运算混合运算是指同时进行加减乘除等多种运算的情况。
在有理数的混合运算中,需要根据运算法则和优先级进行计算,并注意括号的运用。
六、有理数的分数表示和小数表示有理数可以用分数形式表示,也可以用小数形式表示。
分数形式适用于精确计算,而小数形式便于运算和比较大小。
七、有理数的化简有理数的化简是指将其写成最简形式,即分子与分母没有公约数的分数表示。
通过寻找最大公约数,可以将有理数化简为最简形式。
八、有理数的乘方运算乘方运算是指一个数自乘若干次的运算。
在有理数的乘方运算中,可以根据乘方运算法则简化计算过程,并注意负次幂的运算规律。
九、有理数与实际问题的应用有理数在实际问题中有广泛的应用,如温度计的读数、海拔高度的表示、财务账目的计算等。
通过将实际问题转化为有理数运算,可以得出准确的答案。
总结:有理数是我们日常生活和学习中经常遇到的数,掌握有理数的知识对于数学学习至关重要。
本章总结了有理数的定义,基本运算,大小比较,相反数与绝对值,混合运算,分数与小数表示,化简,乘方运算以及应用等知识点、考点和难点。
人教版七年级数学上册第一章《有理数》知识点归纳一、有理数的有关概念1.正数与负数我们把以前学过的数大于零叫做正数。
有时在正数前面也加上“+”(正)号。
如+0.5、+3、+1/2……“+”号可以省略。
我们把在以前学过的数(0除外)前面加上负号“-”的数叫做负数。
如-3、-0.5、-2/3……0既不是正数也不是负数,0是正负数的分界。
正数与负数可以用来表示具有相反意义的量。
相反意义的量包含两个要素:一是它们的意义要相反;二是它们都具有数量。
与一个量成相反意义的量不止一个。
2.有理数正整数、0统称自然数;正整数、0、负整数统称整数;正分数和负分数统称分数。
整数和分数统称有理数整数可以看做分母为1的分数。
正整数、0、负整数、正分数、负分数都可以写成分数的形式。
可以这样说:有理数都能写成分数的形式;能写成分数(分子分母互质)形式的数是有理数.有理数的分类(两种)正整数整数零有理数负整数分数正分数负分数正整数正有理数正分数有理数零负有理数负整数负分数3. 数轴规定了原点、正方向、单位长度的直线叫做数轴。
数轴的三要素:原点、正方向、单位长度任何有理数都可以用数轴上的点表示,有理数与数轴上的点是一一对应的。
数轴上的点表示的数从左到右依次增大;原点左边的数是负数,原点右边的数是正数.4.相反数一般地,设a是一个正数,数轴上与原点的距离是a的点有两个,他们分别在原点的左右,表示-a和a,我们说这两点关于原点对称.只有符号不同的两个数叫做互为相反数.(绝对值相等,符号不同的两个数叫做互为相反数)正数的相反数是负数,负数的相反数是正数,0的相反数是0.在一个数前面添上“-”号,表示这个数的相反数.5.绝对值在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值。
对任意有理数a ,总有0a ≥。
正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。
(互为相反数的两个数的绝对值相等。
)6.比较大小(1)数轴上两个点表示的数,右边的总比左边的大。
第一章有理数1.1正数和负数1.正负数正数:大于0的数叫做正数.负数:小于0的数叫做负数.0:非正非负【注】①符号:一个数前面的“+”“-”号叫做它的符号.②正数前面的“+”号可以省略,负数前面的“-”号不可以省略.2.相反意义的量用正数和负数表示具有相反意义的量:如果正数表示某种意义,那么负数表示它的相反意义,反之亦然.【注】“相反意义的量”包括两个方面的含义:一是相反意义;二是要有量.3.“O”的特征(1)0既不是正数,也不是负数,是正数与负数的分界;(2)0是自然数;(3)0的意义:①有时表示没有,如文具盒中有0支铅笔,表示没有铅笔;②有时是一个数,如0度是一个确定的温度;③有时也作为基准,如零上3度.1.2有理数知识点一有理数1、有理数的定义:整数和分数统称为有理数(小数可以化为分数,所以看为为分数)2、有理数的分类:1):按定义⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎭⎬⎫⎪⎩⎪⎨⎧⎭⎬⎫数有限小数或无限循环小负分数正分数分数负整数自然数正整数整数有理数0 2):按正负分⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数正分数正整数正有理数有理数04、四非正数和零统称为非负数;负数和零统称为非正数;正整数和零统称为非负整数(自然数);负整数和零统称为非正整数;【技巧】读的时候,在非正、非负后面加一个“的”知识点二 数轴1、数轴的定义:用一条直线上的点表示数,这条直线叫做数轴。
2、数轴三要素原点、正方向、单位长度称为数轴的三要素,三者缺一不可.【注】单位长度:指所取度量单位的名称,是一条人为规定的代表"1"的线段,这条线段可长可短,按实际情况来规定,同一数轴上的单位长度一旦确定,不能再改变.3、数轴画法首先:画一条水平的直线;其次:在直线上选取一点为原点;再次:确定向右为正方向,用箭头表示出来;最后:根据实际情况,选取适当的长度作为单位长度.4、与有理数的关系(1)有理数和无理数都可以用数轴上的点表示出来.(2)正有理数表示的点位于原点的右边,负有理数表示的点位于原点的左边5、利用数轴比较大小数轴可以用来比较大小,左<右﹔负数<0<正数.知识点三相反数1、定义只有符号不同的两个数叫做互为相反数.【注】①一般地,a和a-互为相反数,a表示任意一个数,可以是正数、负数,也可以是0.②0的相反数是0③“只有符号不同”应与“只要符号不同”区分开﹒④相反数必须成对出现,不能单独存在.2、几何意义一对相反数表示的点在数轴上应分别位于原点两侧;到原点的距离相等;这两点是关于原点对称的.3、求法求任意一个数的相反数,只要在这个数的前面添上“—”号即可.4、相反数的性质(1)若a与b互为相反数,则0=a,则a与b互为相反数.+b=+ba;反之,若0(2)任何一个数都有相反数,而且只有一个.正数的相反数是负数;负数的相反数是正数; 0的相反数仍是0.五、多重符号化简一个正数前面不管有多少个“+”号,都可以全部去掉;一个正数前面有偶数个“―”号,也可以把“―”号全部去掉;一个正数前面有奇数个"―"号,则化简后只保留一个"―"号,即“奇负偶正”(其中“奇偶”是指正数前面的“―"号的个数的奇偶数,“负正"是指化简的最后结果的符号).知识点四 绝对值1、绝对值的定义:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记做a (a 可以是正数、负数和0)2、绝对值性质:()()()⎪⎩⎪⎨⎧<-=>=0000a a a a a a3、绝对值具有非负性(1)若有几个非负数的和为0,则这几个非负数均为0。
第一章有理数(一)有理数的有关概念1.1 正数与负数一、知识点回顾:1、像3、2、0.5这样的数(即小学学过的大于0的数)叫做,有时在前面也加上,如+3、+2。
2、像-3、-2、-0.5这样的数(即在小学学过的大于0数的前面加上负号“-”的数)叫做。
3、一个数前面的“+”、“-”号叫做它的符号。
4、0既不是正数,也。
5、生活中,常常用正数和负数表示具有相反意义的量。
如果上升10米记作+10米,那么下降5米记作。
注:相反意义的量中的单位不要忘记写了。
(如果相反意义的量没有单位就不要写,如果有单位一定要记住写上)二、知识点练习:(一)判断题:1、在小学学过的数前面添上“-”号,就是负数。
()2、一个物体可以左右移动,设向左移动为正,那么向右移动3米记作3米。
()3、不是正数的数是负数。
()4、0不是负数。
()(二)选择题:5、下列结论中错误的是()A、零是整数B、零不是正数C、零是偶数D、零不是自然数6、下列说法中正确的是()A、正数都带“+”号B、小学数学中学过的数都可以看作正数C、不带“+”号的数都是负数D、小学数学中学过的数中除零以外,都可以看作是正数7、下列不是具有相反意义的量是()A、前进5米和后退3米B、节约3吨和消费10吨C、身高增加2厘米和体重减少2千克D、超过5克和不足2克8、在下面四组数:①-3,2.3,14;②34,0,122;③113,0.3,7;④12,15,2中,三个数都不是负数的一组是()A、①②B、②④C、③④D、②③④(三)填空题:9、如果顺时针旋转30°记作-30°,那么逆时针旋转45°记作。
10、某人向东走5米,又回头向西走5米,此人实际距原地米。
11、如果中午以后的2小时记作+2小时,那么+2小时前3小时应记作。
12、观察下面依次排列的一列数,你能发现它们排列的规律是什么吗?后面空格内的三个数是什么,试把它写出来。
(1)-1 ,2,-3,4,-5,6,,,,…,第n个数是。
第一章有理数 1.1 有理数的有关概念【知识点回顾】 1. 正数和负数:大于0的数叫做正数,小于0的数叫做负数,负数就是在正数前面加上符号“-”。
0既不是正数,也不是负数。
2. 有理数的分类:不同的分类标准可以将有理数进行不同的分类:①先将有理数按“整”和“分”的属性分,再按每类数的“正”、“负”分,即得如下分类表:②先将有理数按“正”和“负”的属性分,再按每类数的“整”、“分”分,即得如下分类表:3. 数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴。
原点、正方向和单位长度是数轴的三要素。
数轴上的点的意义:一般地,设a 是一个正数,则数轴上表示a 的点在原点的___右___边,与原点的距离是___a___个单位长度;表示-a 的点在原点的__左___边,与原点的距离是___a __个单位长度。
4.相反数:像2和-2,5和-5这样只有符号不同的两个数叫相反数.两个互为相反数的数,在数轴上的对应点(0除外),是在原点两旁,•并且距离原点相等的两个点.即:互为相反数的两个数在数轴上的对应点关于原点对称.我们把a 的相反数记为-a ,并且规定0的相反数就是0.5. 绝对值:我们把在数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作|a |。
绝对值的一般规律:一个正数的绝对值是它本身;0的绝对值是0;一个负数的绝对值是它的相反数。
即:①若a >0,则|a |=a ;②若a <0,则|a |=–a ;③若a =0,则|a |=0;或写成:。
绝对值的非负性:由绝对值的定义可知:不论有理数a 取何值,它的绝对值总是正数或0(通常也称非负数),绝对值具有非负性,即|a |≥0。
{负分数正分数分数负整数正整数整数有理数0⎩⎨⎧⎩⎨⎧{{负分数负整数负有理数正分数正整数正有理数有理数0⎩⎨⎧)0()0()0(0<=>⎪⎩⎪⎨⎧-=a a a a a a【例题分析】【例1】数学测验班平均分80分,小华85分,高出平均分5分记作+5,小松78分,记作。
第一章:有理数复习【一】知识要点 【1】有理数的分类 1.2.按正负分【例题1】(1)把下列各数进行分类 ① 0 ②-5 ③ 1 ④ 1.5 ⑤2 ⑥ 722- ⑦ -(-3)⑧ 312--⑨ -12018 ⑩ (-2)3整数集合( ) 分数集 合( )非负整数集合 ( ) 非负数集合( ) (2)下列说法正确的有( )个①0是最小的数 ②绝对值最小的数是0 ③任何数的绝对值都是正数 ④最大的负整数是-1 ⑤倒数等于它本身的有1,-1,0有理数正有理数负有理数温馨提示: 1.化简结果中含有π或无限不循环的小数都不是有理数 2.正数和零统称非负数,负数和零统称非正数 正整数正分数 负整数 负分数有理数【2】相关概念1.数轴:规定了原点、正方向、单位长度的一条直线2.相反数:3.绝对值①几何定义:一个数a 的绝对值就是数轴上表示这个数a 的点离开原点的距离,绝对值越大离原点越远②代数定义:⎩⎨⎧≤-≥=)0()0(a a a a a (注意0)4.倒数:若两个数的积是1,那么这两个数互为倒数5.科学计数法6.近似数和有效数字7.数的大小比较方法:数轴上从左到右依次递增,数轴上的点与实数..是一一对应 ①代数定义:只有符号不同......的两个数叫做相反数 ②几何定义:数轴上在原点的两旁,到原点距离相等的两个点代表的数互为相反数③求一个数或式子的相反数,就在它的前面加上‘-’④a 的相反数是-a ,a-b 的相反数是-(a-b )=b-a,a+b 的相反数是-(a+b)=-a-b (注意括号),相反数等于它本身的只有0 ⑤性质:若a,b 互为相反数,则a+b=0,或a=-b 1、非负数的绝对值等于它本身,非正数的绝对值是它的相反数 2、绝对值符号去掉规律:非负数各项不变号,非正数各项都变号 3、一个数的绝对值(或者平方)等于正数.............,那么这个数有两个..①a,b 互为倒数 ab=1②倒数等于它本身只有±1,切记0没有倒数形式:ax10n (a 是整数位数只有一位的数,n 是整数), 当a ≥10时,n=原数整数位数-1 , 当a <1时,n=-(原数第一个非0数字前所有0的个数) ①保留近似数的方法有:四舍五入法、进一法、去尾法 ②近似数可以用计数单位或科学计数法表示 ③有效数字是从左边第一个不是零的数字起以后的所有数字都是这个数的有效数字 ④通过测量得到的数都是近似数 ①差法 ②数轴法 ③两个负的绝对值法 ④平方法 ⑤商法8.非负数性质【例题2】正负数应用(1)如果提高10分表示+10分,那么下降8分表示____,不升不降用___表示. (2)巴黎与北京的时间差为-7时(正数表示同一时刻比北京时间早的时数),如果北京时间是7月2日14:00,那么巴黎时间是()A. 7月2日21时B. 7月2日7时C. 7月1日7时D. 7月2日5时 (3)某项科学研究,以45分钟为1个时间单位,并记每天上午10时为0,10时以前记为负,10时以后记为正,例如9:15记为-1,10:45记为1等等,依此类推,上午7:45应记为【例题3】数轴、相反数、绝对值、倒数、非负数应用(1)已知 a ,b 互为相反数,c ,d 互为倒数,m-1的绝对值是2,则m dccd b a -+-+222=(2)在数轴上到表示-1的点的距离为7个单位长度的点有_____个,它们表示27(4)绝对值不大于2的整数有________,它们的和是 ,积是 ((6)已知|x|=4,|y|=2且y <0,则x+y 的值为(7) ①π-14.3=②20171-2018131-4121-311-21++++。
第一章《有理数》复习总结有理数是整数和分数的统称,包括正数、负数和零。
有理数可以表示为p/q的形式,其中p和q都是整数,且q不等于0。
p称为分子,q称为分母。
1.有理数的大小比较:(1)对于同号的有理数,绝对值越大,数值越大;(2)对于异号的有理数,正数大于负数,绝对值越小,数值越大。
2.有理数的加减乘除:(1)加法:拆分有理数,按照整数部分和小数部分相加;(2)减法:将减数变为相反数,再进行加法运算;(3)乘法:分别计算分子和分母的乘积,然后化简;(4)除法:将除数变为倒数,再进行乘法运算。
3.有理数的约分和化简:(1)约分:将分子和分母同时除以最大公因数,使得分数不可再约分;(2)化简:将带有分数线的有理数化为最简形式。
4.有理数的绝对值:(1)正数的绝对值是其本身;(2)负数的绝对值是其相反数;(3)零的绝对值是零。
5.有理数的相反数:(1)正数的相反数是负数;(2)负数的相反数是正数;(3)零的相反数是零。
6.计算混合数的值:(1)将整数部分和小数部分分开,分别计算;(2)将结果相加或相减,得到最终的结果。
7.有理数的乘方:(1)有理数的整数次方,将底数连乘或连除相应次数;(2)底数是分数,将底数化为整数的形式进行计算。
8.有理数的乘法逆元:(1)有理数的乘法逆元是其倒数;(2)除零外,任意非零有理数的乘法逆元存在。
9.有理数的混合运算:(1)先进行括号内的运算,再进行乘除法运算,最后进行加减法运算;(2)若有多个加法或减法运算,按照从左到右的顺序进行。
10.有理数在坐标轴上的表示:(1)正数表示点在原点的右侧;(2)负数表示点在原点的左侧;(3)零表示点在原点。
有理数在数学中有着广泛的应用,比如在数轴上定位、计算中的加减乘除、分数和小数的运算等。
学好有理数不仅需要掌握各种运算规则和性质,还需要大量的练习和实践。
通过不断的练习和思考,可以提高解决实际问题的能力,培养思维和逻辑思维能力。
总之,有理数作为数学的一个重要概念,是我们平日生活中接触最多的数的形式。
第一章有理数的有关概念复习
【学习内容】复习第一章有理数有关概念
【学习目标】复习整理有理数有关概念;培养学生综合运用知识解决问题的能力;渗透数形结合的思想。
【学习重点】数轴、相反数、绝对值等概念的理解与应用。
【学习难点】数轴、相反数、绝对值等概念的理解与应用。
【学习过程】
【基础知识回顾】
一、正负数
_____________统称整数,试举例说明 _____________统称分数,试举例说明
____________统称有理数。
有理数的分类
[基础练习]1、把下列各数填在相应额大括号内: 1,-0.1,-789,25,0,-20,-3.14,-590,76 正整数集{ …}; 正有理数集{ …}; 自然数集{ …}; 负分数集{ …} 2、 某种食用油的价格随着市场经济的变化涨落,规定上涨记为正,则-5.8元的意义是 ;如果这种油的原价是76元,那么现在的卖价是 。
二、数轴:规定了 、 、 的直线,叫数轴 [基础练习] 1、如图所示的图形为四位同学画的数轴,其中正确的是( )
2、在数轴上画出表示下列各数的点,并按从大到小的顺序排列,用“>”号连接起来。
4,-|-2|, -4.5, 1, 0
3、下列语句中正确的是( )
A数轴上的点只能表示整数 B数轴上的点只能表示分数
有理数
有理数
C数轴上的点只能表示有理数 D所有有理数都可以用数轴上的点表示出来
三、相反数:只有 不同的两个数叫做互为相反数。
0的相反数是
一般地:若a 为任一有理数,则a 的相反数为
相反数的相关性质:
1、相反数的几何意义:
表示互为相反数的两个点(除0外)分别在原点O 的两边,并且到原点的距离相等。
2、互为相反数的两个数,和 .若a 和b 是互为相反数,则a+b =
[基础练习] -5的相反数是 ;-(-8)的相反数是 ;
0的相反数是 ; a 的相反数是 ;
四、绝对值:一般地,数轴上表示数a 的点与原点的 叫做数a 的绝对值,记作∣a ∣. 一个正数的绝对值是 一个负数的绝对值是的 ;0的绝对值是 . 任一个有理数a 的绝值用式子表示就是:
(1)当a 是正数(即a >0)时,∣a ∣= ;
(2)当a 是负数(即a <0)时,∣a ∣= ;
(3)当a =0时,∣a ∣= .
[基础练习] 1、—2的绝对值表示它离开原点的距离是 个单位,记作 .
2、 |-8|= 。
-|-5|= 。
绝对值等于4的数是______。
五、倒数
1、________的两个数互为倒数。
2、_____没有倒数。
[基础练习] 1、21的倒数是______,3
22-的倒数是______,0.4的倒数是______, 2、已知a 的倒数是-0.7,则a 的值为______
六、有理数的大小比较
___数都大于0,___数都小于0。
数轴上两个点表示的数,_________总比______大。
两个负数,___________反而小。
[基础练习]比较下列各对数的大小
1、)2()1(+---和
2、7
3218--
和 3、31)3.0(---和
七、乘方
求几个相同因数的积的运算,叫做 。
即:a n =aa …a(有n 个a) [基础练习] 1、 43= ;2
21⎪⎭⎫ ⎝⎛-2= ; 25-= ;52 = ;
2、下列各式正确的是( )
A.225(5)-=-
B.1996(1)1996-=-
C.2003(1)(1)0---=
D.99(1)10--=
八、科学记数法、近似数及有效数字
1、把一个大于10的数记成________的形式(其中a 是______________),叫做科学记数法.
2、对一个近似数,从__________________起,到___________止,所有的数字都称为这个近似数的有效数字。
[基础练习]1、用科学记数数表示:1305000000= ;5104.2⨯的原数是 .
2、 近似数3.5万精确到 位,有 个有效数字.
3、5.47×105精确到 位,有 个有效数字
(本组题目由学生讨论完成,结合具体实例理解有理数的有关概念,用时约20分钟)
【巩固练习】
1、-13
的倒数是 ,相反数是 。
2、与原点的距离为三个单位的点有_ _个,他们分别表示的有理数是 _和_ _。
3、绝对值小于10的所有整数的和为 ,积为 。
4、相反数是它本身的数是 ;倒数是它本身的数是 绝对值是它本身的数是 ;平方等于是它本身的数是 ;立方等于是它本身的数是 .
5、如果a =-13,那么-a =______;如果-a =-5.4,那么a =______;
6、用四舍五入法把3.1415926精确到千分位是 ,用科学记数法表示
302400,应记为 ,近似数 3.0× 精确到 位。
7、有10袋大米,以每袋50千克为标准,超过的千克数记作正数,不足的千克数记作负数,称重记录如下:7.0,6.0,2.0,7.0,1.1,3.0,2.0,0,3.0,5.0++--+--++
第 袋大米最符合标准。
这10袋大米的总重量是 千克
8、某检修小组从A 地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶纪录如下。
(单位:km )4,7,9,8,6,5,2-+-++--
1) 在第几次纪录时距A 地最远。
2) 求收工时距A 地多远?在A 地的什么方向?
3) 若每千米耗油0.3升,问共耗油多少升?
【提升能力】(依据学生实际情况,可选择性安排)
1、已知a 、b 、–c 表示的数如图b a -c O 所示,则a 、b 、–c 由小到大的顺序
是 。
2、某数有四舍五入得到3.240,那么原来的数一定介于 和 之间.
3、如果3>a ,则______3=-a ,______3=-a .
4、如果a a 22-=-,则a 的取值范围是( )
A .a >O
B .a ≥O
C .a ≤O
D .a <O . 5、某自行车厂一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入。
下表是某周的生产情况(超产为正、减产为负):
(1)根据记录可知前三天共生产 辆;
(2)产量最多的一天比产量最少的一天多生产 辆;
(3)该厂实行计件工资制,每辆车 60 元,超额完成任务每辆奖 15 元,少生产一辆扣 15
元,那么该厂工人这一周的工资总额是多少?。