七年级数学上册 与直角有关的折叠、旋转习题 (新版)鲁教版
- 格式:doc
- 大小:82.35 KB
- 文档页数:4
章节测试题1.【答题】已知下列几组数:①6,8,10;②7,24,25;③9,12,15;④n2-1,2n,n2+1(n是大于1的整数).其中是勾股数的有()A. 1组B. 2组C. 3组D. 4组【答案】D【分析】【解答】2.【答题】有五根小木棒,其长度分别为7,15,20,25,24.现将它们摆成两个直角三角形,其中正确的是()A. B. C. D.【答案】C【分析】【解答】3.【答题】在△ABC中,∠A,∠B,∠C的对边分别为a,b,c,则下列说法中错误的是()A. 如果∠C-∠B=∠A,那么△ABC是直角三角形,且∠C=90°B. 如果c2=a2-b2,那么△ABC是直角三角形,且∠C=90°C. 如果(c+a)(c-a)=b2,那么△ABC是直角三角形,且∠C=90°D. 如果∠A:∠B:∠C=3:2:5,那么△ABC是直角三角形,且∠C=90°【答案】B【分析】【解答】4.【题文】例1 如图,已知等腰三角形ABC的底边BC=20cm,D是腰AB上一点,且CD=16cm,BD=12cm.(1)求证:CD⊥AB;(2)求该三角形的腰的长度.【答案】见解答.【分析】本题考查了勾股定理的逆定理,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.(1)依据勾股定理的逆定理可得到∠BDC=90°,从而得到CD⊥AB.(2)设腰长为x,则AD=x-12.由(1)可知AD2+CD2=AC2,解方程(x-12)2+162=x2,即可得到腰长.【解答】(1)∵BC=20cm,CD=16cm,BD=12cm,∴BD2+CD2=BC2.根据勾股定理的逆定理可知∠BDC=90°,即CD⊥AB.(2)设腰长为x,则AD=x-12.由(1)可知AD2+CD2=AC2,即(x-12)2+162=x2,解得.∴腰长为cm.5.【题文】例2 如图,△ABC中,D是BC上的一点,已知AB=10,BD=6,AD=8,AC=17,求△ABC的面积.【答案】84.【分析】此题主要考查勾股定理和勾股定理的逆定理,关键是利用勾股定理的逆定理求证△ABD是直角三角形,根据AB=10,BD=6,AD=8,利用勾股定理的逆定理求证△ABD是直角三角形,再利用勾股定理求出CD的长,然后利用三角形面积公式即可得出答案.【解答】∵BD2+AD2=62+82=102=AB2,∴△ABD是直角三角形,∴AD⊥BC.在Rt△ACD中,CD2=AC2-AD2=172-82=152,∴CD=15,∴.因此△ABC的面积为84.6.【答题】若△ABC的三边长分别为5,12,13,则△ABC的面积是()A. 30B. 40C. 50D. 60【答案】A【分析】【解答】7.【答题】某住宅小区有一块草坪,形状如图所示.已知AB=3m,BC=4m,CD=12m,DA=13m,且AB⊥BC,则这块草坪的面积是()A. 24m2B. 36m2C. 48m2D. 72m2【答案】B【分析】【解答】8.【答题】下列四组数中,不是勾股数的是()A. a=15,b=8,c=17B. a=9,b=12,c=15C. a=7,b=24,c=25D. a=3,b=5,c=7【答案】D【分析】【解答】9.【答题】如图,已知∠ADC=90°,AD=8m,CD=6m,BC=24m,AB=26m,则图中阴影部分的面积为______m2.【答案】96【分析】【解答】10.【答题】已知△ABC中∠A,∠B,∠C的对边分别是a,b和c.下面给出了五组条件:①∠A:∠B:∠C=1:2:3;②a:b:c=3:4:5;③2∠A=∠B+∠C;④a2-b2=c2;⑤a=6,b=8,c=13.其中能独立判定△ABC是直角三角形的是______.(请写出所有正确的序号)【答案】①②④【分析】【解答】11.【题文】如图,在△ABC中,AB=9,AC=12,BC=15,求BC边上的高AD.【答案】【分析】【解答】∵AB2+AC2=225=BC2,∴△ABC是直角三角形.∴AB×AC=BC×AD,∴AD=7.2.12.【题文】如图,在△ABC中,AB=17cm,AC=8cm,BC=15cm.将AC沿AE折叠,使得点C与AB上的点D重合.(1)证明:△ABC是直角三角形;(2)求△AEB的面积.【答案】【分析】【解答】(1)∵AC2+BC2=82+152=289,AB2=289.∴AC2+BC2=AB2.∴△ABC是直角三角形.(2)由翻折的性质可知EC=DE,AC=AD=8cm,∠ADE=∠C=∠BDE=90°.设EC=DE=x cm,在Rt△BDE中,∵DE2+BD2=BE2,∴x2+92=(15-x)2,解得.∴,∴.13.【题文】如图,在△ABC中,AB=8,AC=6,DE是BC的垂直平分线,交BC于点D,交AB于点E,AF⊥BC于点F.(1)若∠BAC=90°,求AE的长;(2)若DF=1.4,求证:△ABC为直角三角形.【答案】【分析】【解答】(1)如图,连接CE.设AE=x,∵AB=8.∴BE=8-x.∵DE是BC的垂直平分线,∴CE=BE=8-x.∵∠BAC=90°,AC=6.∴x2+62=(8-x)2,∴,即.(2)证明:设BD=y,则CD=y.∵DF=1.4,∴BF=y+1.4,CF=y-1.4.∵AF⊥BC,∴AB2-BF2=AC2-CF2=AF2.∴82-(y+1.4)2=62-(y-1.4)2,∴y=5,∴BC=10.∵62+82=102.∴△ABC为直角三角形.14.【题文】如图,在△ABC中,D是BC的中点,点M,N分别在AB,AC上,且∠MDN=90°,延长MD到点E,使MD=DE,连接CE,EN,已知BM2+CN2=DM2+DN2.(1)求证:MN=EN;(2)求证:△ABC为直角三角形.【答案】【分析】【解答】(1)∵MD=DE,∠MDN=90°,∴ND垂直平分ME,∴MN=NE(2)∵D是BC的中点,∴BD=CD.在△BDM和△CDE中,∴△BDM≌△CDE,∴BM=CE,∠B=∠DCE.∵BM2+CN2=DM2+DN2,DM2+DN2=MN2=NE2,∴CE2+CN2=EN2,∴∠NCE=90°.∴∠B+∠ACB=∠ACB+∠BCE=90°.∴∠A=90°,∴△ABC为直角三角形.15.【答题】如果三角形的三边长a,b,c满足______,那么这个三角形是直角三角形.其中,边长为______的边所对的角是直角.【答案】【解答】16.【答题】满足a2+b2=c2的三个正整数,称为______数.请在下面的横线上任意写出四组勾股数:______.【答案】【分析】【解答】17.【答题】下列条件中,不能判断一个三角形为直角三角形的是()A. 三个角的比是1:2:3B. 三条边满足关系a2=c2-b2C. 三条边的比是2:3:4D. 三个角满足关系∠B+∠C=∠A【答案】C【分析】【解答】18.【答题】三角形的两边长为5和4,要使它成为直角三角形,则第三边长的平方为______.【答案】9或41【分析】19.【答题】小白兔每跳一次为1m,先沿直线跳12次后左拐,再沿直线向前跳5次后左拐,最后沿直线向前跳13次正好回到原来的地方,则小白兔第一次左拐的角度是______.【答案】90°【分析】【解答】20.【题文】如图,正方形网格中有△ABC,若小方格边长为1,请你根据所学的知识判断△ABC是什么形状,并说明理由.【答案】【分析】【解答】如图,在Rt△ABF中,AB2=33+22=13.在Rt△AEC中,AC2=82+12=65.在Rt△BDC中,BC2=62+4=52,所以AB2+BC2=AC2,所以△ABC是直角三角形.。
鲁教版七年级数学上典型练习题1.一个三角形的两边长分别为3cm和8cm,则此三角形第三边长可能是()A. 3cm B. 5cm C. 7cm D. 11cm2.在三角形ABC中,∠BAC=90°,AD⊥BC,垂足为点D,则下列结论:①点C到AB的垂线段是线段AB;②点A到BC的距离是线段AD的长度;③AD<CD;④AD<AB,其中一定正确的有个3.如图图形中,不是轴对称图形的是()A. B. C. D.4.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为5.在3.14159,4,1.1010010001…,,,,,中,无理数有个6.数2的平方根是,的平方根是7.下列说法:①±3都是27的立方根;②的算术平方根是±;③-=2;④的平方根是±4;⑤-9是81的算术平方根,其中正确的有个8.已知坐标平面内点A(m,-n)在第二象限,那么点B(n,m)在第象限9.已知点A在第二象限,到x轴的距离是5,到y轴的距离是6,点A的坐标为10.在平面直角坐标系中,将函数y=3x的图象向上平移6个单位长度,则平移后的图象与x轴的交点坐标为11.甲、乙两名运动员同时从A地出发前往B地,在笔直的公路上进行骑自行车训练.如图所示,反映了甲、乙两名运动员在公路上进行训练时的行驶路程S(千米)与行驶时间t(小时)之间的关系,下列四种说法:①甲的速度为40千米/小时;②乙的速度始终为50千米/小时;③行驶1小时时,乙在甲前10千米处;④甲、乙两名运动员相距5千米时,t=0.5或t=2.其中正确的个数有个12.如图,小明的父亲在院子的门板上钉了一个加固板,从数学角度看,这样做的原因是13.如图为6个边长相等的正方形的组合图形,则∠1-∠2+∠3=______.14.如图,已知方格纸中是4个相同的小正方形,则∠1+∠2的度数为______.15.小明从镜子里看到镜子对面电子钟的像如图所示,则实际时间是______.16.如图,将等腰直角三角形ABC(∠B=90°)沿EF折叠,使点A落在BC边的中点A1处,BC=8,那么线段AE的长度为______.17.已知三角形两边长为2和6,要使这个三角形为直角三角形,则第三边的长为______.18.若+(y-1)2=0,则(x+y)2020=______.19.已知一个正数x的两个平方根是a+1和a-3,则x=______.20.算术平方根是它本身的数是______________.21.已知x、y满足+|y+2|=0,则x2-4y的平方根为______.22.已知平面内有一点A的横坐标为-6,且到原点的距离等于10,则A点的坐标为______.23.点P(a2-9,a-1)在y轴的负半轴上,则a的值是______.24.已知点P1(a-1,5)和P2(2,b-1)关于x轴对称,则(a+b)2019的值为______.25.若关于x的函数y=(m-1)x|m|-5是一次函数,则m的值为____26.直线y=2x-3向上平移4个单位,所得直线的函数表达式为___27.点A(m,m+5)在函数y=-2x+1的图象上,则m=______.28.正方形A1B1 C1A2,A2B2 C2A3,A3 B3 C3 A4,…,按如图所示的方式放置,点A1 A2 A3,…和点B1 B2 B3,…分别在直线y=x+1和x轴上.则点C2020的纵坐标是______.29.如果直线y=-2x+k与两坐标轴所围成的三角形面积是4,则k 的值为______.30.如图,将一个边长分别为8,16的矩形纸片ABCD折叠,使点C与点A重合,折痕为EF.求AF的长.31.有一个直角三角形纸片ABC,∠C=90°,两直角边AC=6cm,BC=8cm.(1)如图1,若将△ABC沿着直线DE折叠,使顶点B与点A重合,求CE的长;(2)如图2,若将△ABC沿直线AF折叠,使AC落在斜边AB上,且与AG重合,求△ACF的面积.32.将矩形纸片AOCB折叠,使点C与点A重合,点B落在点B′处,折痕为EF.以点O为坐标原点,分别以矩形的边OC、OA为x轴、y轴建立如图所示的直角坐标系,若顶点B的坐标为(9,3),请求出:(1)求出点E的坐标.(2)EF所在直线的函数关系式.(3)折痕EF的长.33.已知△ABC中BC=12,AC=5,AB=13,将△ABC沿AD折叠,折痕为AD,点C落在AB边上的点E处,求BD 的长。
七上数学每日一练:翻折变换(折叠问题)练习题及答案_2020年单选题版答案答案答案答案2020年七上数学:图形的变换_轴对称变换_翻折变换(折叠问题)练习题~~第1题~~(2020扬州.七上期末) 将一张正方形纸片ABCD 按如图所示的方式折叠,AE 、AF 为折痕,点B 、D 折叠后的对应点分别为B′、D′,若∠B′A D′=16°,则∠EAF 的度数为( ).A . 40°B . 45°C . 56°D . 37°考点: 正方形的性质;翻折变换(折叠问题);~~第2题~~(2020建邺.七上期末) 下列图形经过折叠不能围成棱柱的是( ) A . B . C . D .考点: 翻折变换(折叠问题);~~第3题~~(2020扬州.七上期末) 一张长方形纸片的长为m ,宽为n (m >3n )如图1,先在其两端分别折出两个正方形(ABEF 、C DGH )后展开(如图2),再分别将长方形ABHG 、CDFE 对折,折痕分别为MN 、PQ (如图3),则长方形MNQP 的面积为( )A . nB . n (m ﹣n )C . n (m ﹣2n )D .考点: 翻折变换(折叠问题);~~第4题~~(2019天台.七上期末) 把一张长方形纸片按如图所示折叠2次,若∠1=50°,则∠2的度数为( )A .B .C .D .考点: 平行线的性质;翻折变换(折叠问题);~~第5题~~(2019黄岩.七上期末) 一张长为a ,宽为b 的长方形纸片(a >3b ),分成两个正方形和一个长方形三部分(如图①).现将左边两部分图形对折,使EF 与GH 重合,折痕为AB (如图②),再将右边两部分图形对折,使MN 与PQ 重合,折痕为C D (如图③),则图④中长方形ABCD 的周长为( )2答案答案答案答案A . 4b B . 2(a ﹣b ) C . 2a D . a+b考点: 列式表示数量关系;矩形的性质;正方形的性质;翻折变换(折叠问题);~~第6题~~(2019长春.七上期末) 如图,将矩形ABCD 纸片沿对角线BD 折叠,使点C 落在C′处,BC′交AD 于E ,∠DBC =22.5°,则在不添加任何辅助线的情况下,图中45°的角(虚线也视为角的边)有( )A . 6个B . 5个C . 4个D . 3个考点: 矩形的性质;翻折变换(折叠问题);~~第7题~~(2019大庆.七上期末) 如图,将一个等腰直角三角形按图示方式依次翻折,则下列说法正确的个数有( )①DF 平分∠BDE ;②△BFD 是等腰三角形;;③△CED 的周长等于BC 的长.A . 0个;B . 1个;C . 2个;D . 3个.考点: 等腰直角三角形;翻折变换(折叠问题);~~第8题~~(2019牡丹江.七上期末) 如图所示,将长方形ABCD 的一角沿AE 折叠,若∠BAD′=40°,那么∠EAD′的度数为( )A . 20B . 25°C . 40°D . 50°考点: 翻折变换(折叠问题);~~第9题~~(2019如皋.七上期末) 如图,将长方形纸片进行折叠,ED ,EF 为折痕,A 与A'、B 与B'、C 与C'重合,若∠AED=25°,则∠BEF 的度数为( )A . 75°B . 65°C . 55°D . 50°答案答案考点: 翻折变换(折叠问题);~~第10题~~(2019句容.七上期末) 一张长方形纸片的长为m ,宽为n (m >3n )如图1,先在其两端分别折出两个正方形(ABEF 、C DGH )后展开(如图2),再分别将长方形ABHG 、CDFE 对折,折痕分别为MN 、PQ (如图3),则长方形MNQP 的面积为( )A . nB . n (m ﹣n )C . n (m ﹣2n )D .考点: 列式表示数量关系;翻折变换(折叠问题);2020年七上数学:图形的变换_轴对称变换_翻折变换(折叠问题)练习题答案1.答案:D2.答案:B3.答案:A4.答案:B5.答案:A6.答案:B7.答案:C8.答案:B9.答案:B10.答案:A 2。
七年级直角三角形(难度系数0.62)一、单选题(共20题;共40分)1.有一个三角形两边长为3和4,要使三角形为直角三角形,则第三边长为()A. 5B.C. 5或D. 不确定【答案】C【考点】勾股定理2.图中字母所代表的正方形的面积为144的选项为()A. B. C. D.【答案】 D【考点】勾股定理的应用3.如图所示,在△ABC中,D为AB的中点,BE⊥AC,垂足为点E,若DE=4,AE=6,则BE的长度是()A. 10B. 2C. 8D. 2【答案】 D【考点】直角三角形斜边上的中线,勾股定理4.如图所示,A是斜边长为m的等腰直角三角形,B,C,D都是正方形。
则A,B,C,D的面积的和等于( )A. 94m2 B. 52m2 C. 114m2 D. 3m2【答案】A【考点】勾股定理,等腰直角三角形5.将一根长24cm的筷子置于底面直径为5cm,高为12cm的圆柱水杯中,设筷子露在杯子外面的长度为h,则h的取值范围是()A. 12cm≤h≤19cmB. 12cm≤h≤13cmC. 11cm≤h≤12cmD. 5cm≤h≤12cm【答案】C【考点】勾股定理6.如图,AC=BC,AE=CD,AE⊥CE于点E,BD⊥CD于点D,AE=7,BD=2,则DE的长是()A. 7B. 5C. 3D. 2【答案】B【考点】直角三角形全等的判定7.如图,小正方形边长为1,连接小正方形的三个顶点得△ABC,则AC边上的高是().A. 310√5 B. 32√2 C. 45√5 D. 35√5【答案】 D【考点】勾股定理8.以a.b.c为边的三角形是直角三角的为()A. a=2,b=3,c=4B. a=1,b= ,c=2C. a=4,b=5,c=6D. a=2,b=2,c=【答案】B【考点】勾股定理的逆定理9.下列各组数据中的三个数作为三角形的边长,其中不能构成直角三角形的是()A. 3,4,5B. √3,√4,√5C. 6,8,10D. 9,12,15 【答案】B【考点】勾股定理的逆定理10.下列各组长度的线段能构成直角三角形的一组是( )A. 30,40,50B. 7,12,13C. 5,9,12D. 3,4,6【答案】A【考点】勾股定理的逆定理11.如图,以直角三角形a,b,c为边,向外作等边三角形、半圆、等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3图形个数有( )A. 1B. 2C. 3D. 4【答案】 D【考点】勾股定理,勾股定理的应用12.如图,△ABC中,∠ACB=90°,∠A=25°,点D为斜边AB上的中点,DE⊥CD交AC于点E,则∠AED的度数为()A. 105°B. 110°C. 115°D. 125°【答案】C【考点】直角三角形斜边上的中线13.如图,一根长5米的竹竿AB斜靠在一竖直的墙AO上,这时AO为4米,如果竹竿的顶端A沿墙下滑1米,竹竿底端B外移的距离BD()A. 等于1米B. 大于1米C. 小于1米D. 以上都不对【答案】A【考点】勾股定理的应用14.如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为S 1、S 2、S 3;如图2,分别以直角三角形三个顶点为圆心,三边长为半径向外作圆心角相等的扇形,面积分别为S 4、S 5、S 6。
3 轴对称与坐标变化1.图形的坐标变化与图形平移之间的关系在平面直角坐标系中,当纵坐标不变,横坐标都加上或减去一个正数a 时,图形会向右或向左平移a个单位长度;当横坐标不变,纵坐标都加上或减去一个正数a时,图形会向上或向下平移a个单位长度.【例1】如图①所示的箭头是将坐标为(0,0),(1,2),(1,1),(4,1),(4,-1),(1,-1),(1,-2),(0,0)的点用线段依次连接而成的,若纵坐标保持不变,横坐标分别加1,再将所得的点用线段依次连接起来,所得的图案与原来的图案相比有什么变化?若是横坐标保持不变,纵坐标分别减2呢?分析:当横坐标不变,纵坐标加上或减去一个正数a时,原图形就相应地向上或向下平移a个单位长度;当纵坐标不变时,横坐标加上或减去一个正数a 时,则原图形会向右或向左平移a个单位长度.解:若纵坐标保持不变,横坐标分别加1,则所得各点的坐标依次是(1,0),(2,2),(2,1),(5,1),(5,-1),(2,-1),(2,-2),(1,0),将各点用线段依次连接起来,所得图案如图②所示,所得图案与原图案相比,箭头的形状、大小不变,整个箭头向右平移了1个单位长度.若横坐标保持不变,纵坐标分别减2,则所得各点的坐标依次是(0,-2),(1,0),(1,-1),(4,-1),(4,-3),(1,-3),(1,-4),(0,-2),将各点用线段依次连接起来所得图案如图③所示,所得图案与原图案相比,箭头的形状、大小不变,整个箭头向下平移了2个单位长度.点评:解答本题的关键是求出图形变化后的点的坐标,再根据坐标用线段依次将点连接起来即可得到新图案.2.图形的坐标变化与图形的伸长和压缩之间的关系在平面直角坐标系中,当图形的纵坐标不变,横坐标扩大或缩小一定倍数时,图形就相应地被横向拉长或压缩该倍数,而纵向不变;当图形的横坐标不变,纵坐标扩大或缩小一定倍数时,图形就相应地被纵向拉长或压缩该倍数,而横向不变.【例2】如图所示的小船是将坐标为(1,0),(3,0),(4,1),(2,1),(2,3),(1,2),(1,1),(0,1),(1,0)的点用线段依次连接而成的,现将各点的坐标作如下变化:纵坐标保持不变,横坐标分别变成原来的 1.5倍,再将所得的点用线段依次连接起来,所得的图案与原来的图案相比有什么变化?解:纵坐标保持不变,横坐标分别变为原来的 1.5倍,所得各个点的坐标依次是:(1.5,0),(4.5,0),(6,1),(3,1),(3,3),(1.5,2),(1.5,1),(0,1),(1.5,0),将各点用线段依次连接起来,所得图案如图所示,与原图相比,整条船被横向拉长为原来的1.5倍.析规律坐标与图形变化的对应关系当横坐标不变,纵坐标扩大或缩小为原来的a倍时,图形就要被纵向拉长或压缩为原来的a倍;当纵坐标不变,横坐标扩大或缩小为原来的b倍时,原图形就要被横向拉长或压缩为原来的b倍.3.图形的坐标变化与图形的轴对称之间的关系在平面直角坐标系中,当图形上各点的横坐标不变,纵坐标乘-1时,所得的新图形与原图形关于x轴对称;当图形上各点的纵坐标不变,横坐标乘-1时,所得的新图形与原图形关于y轴对称;当图形上各点的横、纵坐标都乘-1时,那么所得到的新图形与原图形关于原点对称.谈重点对称点的坐标变化规律对应点的坐标对称情况可以简单记为:关于横轴对称,“横不变,纵相反”;关于纵轴对称,“纵不变,横相反”;关于原点对称,“全相反”.【例3】按要求回答问题:(1)在平面直角坐标系中描出点(1,2),(1,4),(1,6),(3,6),(1,4),(3,2),(1,2),并将各点用线段依次连接起来.(2)将上述各点作如下变化:①纵坐标不变,横坐标分别变成原来的2倍,再将所得的点用线段按第一问中的顺序连接起来,所得的图形与原来的图形相比有什么变化?②横坐标保持不变,纵坐标分别加3呢?③横、纵坐标分别乘-1呢?分析:解决本题的关键是分别在两坐标轴上找到对应点,过这两点分别平行于两坐标轴的直线的交点即为所求的点.如要描点(1,6)的位置,先在x轴上找到点1,在y轴上找到点6,过这两点分别平行于两坐标轴的直线的交点即为所求的点;理解平移、旋转、伸缩等图形的特征.解:(1)如图所示.(2)①按题中的变化要求各点的坐标依次是:(2,2),(2,4),(2,6),(6,6),(2,4),(6,2),(2,2).所得的图案如图所示,与原图案相比,图形被横向拉伸为原来的2倍.②各点的坐标依次是:(1,5),(1,7),(1,9),(3,9),(1,7),(3,5),(1,5).所得的图案如图所示,与原来的图案相比,图形向上平移了3个单位长度.③各点的坐标依次是:(-1,-2),(-1,-4),(-1,-6),(-3,-6),(-1,-4),(-3,-2),(-1,-2).所得的图案如图所示,与原图案相比,图形绕O点旋转了180°,即两个图形关于O点成中心对称.4.图形的变换与点的坐标的关系将图形放在平面直角坐标系中,我们可以求得各顶点的坐标,反过来,知道了一些点的坐标,我们还可以将各点顺次连接起来得到一些有趣的图形.通过点的坐标的变化与图形的变换,可以得到图形变换的规律.图形是由点组成的,点的坐标发生了变化,图形也会发生相应的变化;图形移动时,点的坐标也发生变化.其变化规律为:(1)纵坐标不变,横坐标按比例增大时,图形被横向拉长;纵坐标不变,横坐标按比例减小时,图形被横向“压缩”.(2)图形向右平移时,纵坐标不变,横坐标增大;图形向左平移时,纵坐标不变,横坐标减小;图形向上平移时,横坐标不变,纵坐标增大;图形向下平移时,横坐标不变,纵坐标减小.(3)横坐标加上一个数,纵坐标不变时,图形左、右平移(加负数,左移,加正数,右移);纵坐标加上一个数,横坐标不变时,图形上、下平移(加正数,上移,加负数,下移).(4)横坐标不变,纵坐标乘-1时,所得图形与原图形关于x轴对称;纵坐标不变,横坐标乘-1时,所得图形与原图形关于y轴对称.图1【例4】如图1,在平面直角坐标系内,一个封闭的图形ABCDE上各顶点的坐标分别为A(-2,0),B(1,2),C(2,1),D(3,2),E(2,0).(1)将各顶点的横坐标都加上3,纵坐标不变,并把得到的顶点依次连接,则所得的图形和原图形相比,位置有怎样的变化?(2)如果将各顶点的纵坐标都加上3,横坐标不变,顺次连接各顶点,所得图形与原图形的位置有什么变化?(3)将各顶点的横坐标都加上4,纵坐标都加上5,顺次连接各顶点,所得的图形与原图形的位置有怎样的变化?图2解:(1)A ,B ,C ,D ,E 点的横坐标都加上3,所得顶点的坐标分别是A 1(1,0),B 1(4,2),C 1(5,1),D 1(6,2),E 1(5,0),依次连接各点得图形A 1B 1C 1D 1E 1,图形A 1B 1C 1D 1E 1相当于图形ABCDE 向右平移了3个单位长度后得到的(如图2).(2)A ,B ,C ,D ,E 点的纵坐标都加上3,所得顶点的坐标分别是A 2(-2,3),B 2(1,5),C 2(2,4),D 2(3,5),E 2(2,3),顺次连接各点得到图形A 2B 2C 2D 2E 2,图形A 2B 2C 2D 2E 2相当于图形ABCDE 向上平移3个单位长度后得到的(如图2).(3)各顶点的坐标横坐标都加上4,纵坐标都加上5,所得顶点的坐标分别是A 3(2,5),B 3(5,7),C 3(6,6),D 3(7,7),E 3(6,5).依次连接各顶点,所得图形A 3B 3C 3D 3E 3相当于先把图形ABCDE 向右平移4个单位长度,再向上平移5个单位长度后得到的(如图2).5.从变化的“鱼”中探索坐标变化与图形变化的关系通过变化的“鱼”,在坐标系内,将图形的坐标变化与图形的平移、轴对称、伸长、压缩巧妙地融合在一起,既体现了图形的现实性、趣味性,又体现了数学的深刻性以及数形结合的思想方法.平移:原图形的坐标中,横坐标保持不变,纵坐标分别增加(减少)a (a >0),则所得图案被向上(向下)平移a 个单位长度,形状、大小未发生改变;反之,纵坐标不变,横坐标分别增加(减少)a (a >0),则所得图案被向右(向左)平移a 个单位长度.轴对称:原图形的坐标中,横(纵)坐标保持不变,纵(横)坐标分别乘-1,则所得的图案与原图案关于横轴(纵轴)对称.伸长:新图案的坐标变为原图案坐标的a倍,则将原图案伸长a倍,便可得新图案.压缩:新图案的坐标变为原图案坐标的1a(a>1),则将原图案压缩1a,便可得新图案.【例5】下面的方格纸中画出了一个“小猪”的图案,已知每个小正方形的边长为1.(1)“小猪”所占的面积为多少?(2)在上面的方格纸中作出“小猪”关于直线DE对称的图案(只画图,不写作法);(3)以G为原点,GE所在直线为x轴,GB所在直线为y轴,小正方形的边长为单位长度建立平面直角坐标系,可得点A的坐标是(__________,__________).分析:(1)只要数一数正方形的个数就能解决;(2)先利用网格的条件找到每个点的对称点,再连接起来即可;(3)按要求画出直角坐标系立即可得答案,这样的问题可充分考查学生的动手能力,又让学生在操作中体验着成功.解:(1)观察图形:“小猪”所占面积包括29个小正方形和7个小三角形面积和,每个小三角形面积是小正方形面积的一半,所以“小猪”所占面积为32.5.(2)“小猪”关于直线DE对称的图案如图所示.(3)点A的坐标是(-4,1).。
D 45° FE 直角三角形性质应用(习题)1. 如图,在直线 l 上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别是 1,2,3,正放置的四个正方形的面积依次是 S 1,S 2,S 3,S 4,则 S 1+S 2+S 3+S 4= .l2. 如图,在△ABC 中,∠C =45°,点 D 在 AB 上,点 E 在 BC 上.若 AD =DB =DE ,AE =1,则 AC 的长为 .ACDP B E C B A第 2 题图 第 3 题图3. 如图,在△ABC 中,∠ACB =90°,AB =6,BC =3,BD 平分∠ABC ,交 AC 于点 D ,P 是 BD 的中点,则 CP 的长为 .4. 如图,△ABC 是等边三角形,D 为 BC 边上一点,DE ⊥AB 于点 E ,DF ⊥AC 于点 F .若 DE +DF =3,则△ABC 的周长为 .AAB DC FEB M 第 4 题图 第 5 题图5. 如图,在△ABC 中,CF ⊥AB 于点 F ,BE ⊥AC 于点 E ,M 为 BC 的中点.若 EF =7,BC =10,则△EFM 的周长为 .S 3 S4S 2 S 1 1 2 336. 如图,直线 l 1∥l 2∥l 3,且 l 1 与 l 3 之间的距离为 ,l 2 与 l 3 之间的距离为 1.若点 A ,B ,C 分别在直线 l 1,l 2,l 3 上,且 AC ⊥BC ,AC =BC ,AC 与直线 l 2 交于点 D ,则 BD 的长为 .12l 37. 如图,在 Rt △ABC 中,∠C =90°,AD ∥BC ,BD 交 AC 于点 E ,CBE 1 ABE ,F 是 DE 的中点.若 BC =1,AF =4,则 AC 2的长为 .A DFEB C8. 如图,在四边形 ABCD 中,∠ABC =90°,AB =3,BC =4,CD =5,AD = 5A ,则 BD 的长为 .EDDA OB C C B第 8 题图 第 9 题图9. 如图,Rt △ABC 中,∠ACB =90°,以斜边 AB 为边向外作正方形 ABDE ,且正方形对角线交于点 O ,连接 OC .若 AC =2, BC =4,则 OC = .22 C OFO 10. 如图,在正方形 ABCD 中,对角线 AC ,BD 相交于点 O ,点E 是边 AB 上一点,连接 DE ,过点 A 作 AF ⊥DE 于点 F ,连 接 OF ,若 DF =3,OF= ,则 AF = .A DBE AB C 第 10 题图 第 11 题图11. 如图,在 Rt △ABC 中,∠ACB =90°,AC =2,AB = ,以点B 为直角顶点,在△ABC 的同侧作等腰直角三角形 ABD ,点O 是 AD 中点,连接 OC ,则 OC 的长为 .5思考小结本讲我们梳理了直角有关的性质,直角与其他特征组合搭配,往往会出现一些固定的结构和用法,为我们解题提供思路.例如: 直角与边长的平方搭配,我们往往想到勾股定理.请根据特征补全下列图形.①直角+中点(直角三角形斜边中线等于斜边的一半)A D B②直角+特殊角(由特殊角构造直角三角形)A B③弦图结构【参考答案】1. 42.3.4. 6 35. 176. 7. 8. 9. 3 10. 1 11. 2 22 34 3 3 15 652。
七年级直角三角形(难度系数0.6)一、单选题(共15题;共30分)1.如图,将一个等腰直角三角形按图示方式依次翻折,则下列说法正确的个数有()①DF平分∠BDE;②△BFD是等腰三角形;;③△CED的周长等于BC的长.A. 0个;B. 1个;C. 2个;D. 3个.【答案】C【考点】翻折变换(折叠问题),等腰直角三角形2.下列命题中,正确个数是()①若三条线段的比为1:1:√2,则它们组成一个等腰直角三角形;②两条对角线相等的平行四边形是矩形;③对角线互相垂直的四边形是菱形;④有两个角相等的梯形是等腰梯形;⑤一条直线与矩形的一组对边相交,必分矩形为两个直角梯形。
A. 2个B. 3个C. 4个D. 5个【答案】A【考点】菱形的判定,矩形的判定,等腰直角三角形3.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB于点E,若BC=7,则AE的长为()A. 4B. 5C. 6D. 7【答案】D【考点】直角三角形全等的判定,角平分线的性质4.如图3,AD是△ABC的高,AD=BD,DE=DC,∠BAC=75°,则∠ABE的度数是()A. 10°B. 15°C. 30°D. 45°【答案】B【考点】垂线,全等三角形的判定与性质,等腰直角三角形5.如图,在等腰直角△ABC中,∠B=90°,将△ABC绕顶点A逆时针方向旋转60°后得到△AB’C’则∠BAC’ 等于()A. 60°B. 105°C. 120°D. 135°【答案】B【考点】旋转的性质,等腰直角三角形6.如图,桌面上竖直放置一等腰直角三角板ABC,若测得斜边AB在桌面上的投影DE为8cm,且点B距离桌面的高度为3cm,则点A距离桌面的高度为()A. 6.5cmB. 5cmC. 9.5cmD. 11cm【答案】B【考点】全等三角形的判定与性质,等腰直角三角形7.如图,已知AB=AD,∠BAD=∠CAE,则增加以下哪个条件仍不能判断△BAC≅△DAE的是()A. AC=AEB. BC=DEC. ∠B=∠DD. ∠C=∠E【答案】B【考点】直角三角形全等的判定8.如图:有一块含有45°的直角三角板的两个顶点放在直尺的对边上,如果∠1=20°,那么∠2的度数是()A. 30°B. 25°C. 20°D. 15°【答案】B【考点】平行线的性质,等腰直角三角形9.下列各组数中,以它们为边长的线段不能构成直角三角形的是()A. 3,4,5B. 7,24,25C. 1,√2,√3D. 2,3,4【答案】 D【考点】勾股定理的逆定理10.△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过点C作CF⊥AE,垂足为点F,过点B作BD⊥BC 交CF的延长线于点D,BD=2cm,则△ABE的面积为()A. 2cm2B. 4cm2C. 6cm2D. 8cm2【答案】B【考点】全等三角形的判定与性质,等腰直角三角形11.下列说法:①两边和其中一边的对角对应相等的两个三角形全等.②角的对称轴是角平分线③两边对应相等的两直角三角形全等④成轴对称的两图形一定全等⑤到线段两端距离相等的点在线段的垂直平分线上,正确的有()个.A. 2B. 3C. 4D. 5【答案】A【考点】直角三角形全等的判定,线段垂直平分线的性质,轴对称的性质,轴对称图形12.如图,设正方体ABCD-A1B1C1D1的棱长为1,黑、白两个甲壳虫同时从点A出发,以相同的速度分别沿棱向前爬行,黑甲壳虫爬行的路线是AA1→A1D1→……,白甲壳虫爬行的路线是AB→BB1→……,并且都遵循如下规则:所爬行的第n+2与第n条棱所在的直线必须是既不平行也不相交(其中n是正整数).那么当黑、白两个甲壳虫各爬行完第2015条棱分别停止在所到的正方体顶点处时,它们之间的距离是().A. 0B. 1C. √2D. √3【答案】C【考点】勾股定理,探索数与式的规律,有理数的除法13.如图,在5×5的方格中,有一个正方形ABCD,假设每一个小方格的边长为1个单位长度,则正方形的边长为()A. √12B. √13C. √14D. √15【答案】B【考点】勾股定理14.下列几组数能作为直角三角形的三边长的是()A. 2,2,√8B. √3,2,√5C. 9,12,18D. 12,15,20【答案】A【考点】勾股定理的逆定理15.如图为正方形网格,则∠1+∠2+∠3=()A. 105°B. 120°C. 115°D. 135°【答案】 D【考点】全等三角形的判定与性质,等腰直角三角形二、填空题(共16题;共20分)16.RtΔABC中,∠C=900,AC=3,BC=2,将此三角形绕点A旋转,当点B落在直线BC 上的点D处时,点C落在点E处,此时点E到直线BC的距离为________.【答案】2413【考点】三角形的面积,勾股定理,相似三角形的判定与性质,旋转的性质17.如图,△ABC中,∠BAC=90°,点G是△ABC的重心,如果AG=4,那么BC的长为 ________【答案】12【考点】三角形的角平分线、中线和高,直角三角形斜边上的中线18.如图,每个小正方形的边长为1,在△ABC中,点D为AB的中点,则线段CD的长为__.【答案】√262【考点】直角三角形斜边上的中线,勾股定理的逆定理19.小强想知道学校旗杆的高度,他发现旗杆上的绳子垂到地面上还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,则旗杆的高度是________米.【答案】12【考点】勾股定理的应用20.如图所示的方格中,∠1+∠2+∠3=________度.【答案】135°.【考点】全等三角形的判定与性质,等腰直角三角形21.如图,将一副三角板和一张对边平行的纸条按下列方式摆放:含30°角的直角三角板的斜边与含45°角的直角三角板一直角边重合,含45°角的直角三角板的斜边与纸条一边重合,含30°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________.【答案】135°【考点】平行线的性质,等腰直角三角形22.如图∠C=∠D=900,要使△ABC≌△BAD需要添加的一个条件是________.【答案】∠CAB=∠DBA(答案不唯一)【考点】直角三角形全等的判定23.Rt△ABC中,∠C是直角,O是角平分线的交点,AC=3,BC=4,AB=5,O到三边的距离r=________.【答案】1【考点】角平分线的性质,勾股定理的逆定理24.如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC=________度.【答案】45【考点】全等三角形的性质,直角三角形全等的判定25.如图,在等边△ABC中,AD平分∠BAC交BC与点D,点E为AC边的中点,BC=8;在AD上有一动点Q,则QC+QE的最小值为________.【答案】4 √3【考点】等边三角形的性质,勾股定理,轴对称的应用-最短距离问题26.已知⊙O的直径CD为4,AC⌢的度数为80°,点B是AC⌢的中点,点P在直径CD上移动,则BP+AP 的最小值为________.【答案】2 √3【考点】勾股定理,垂径定理,轴对称-最短路线问题27.如图,四边形BCDE是正方形,数轴上点A表示的实数是________.【答案】1﹣√2【考点】实数在数轴上的表示,勾股定理28.如图,数轴上点A所对应的数是________.【答案】﹣√5【考点】实数在数轴上的表示,勾股定理29.如图,△ABC和△DBC是两个具有公共边的全等三角形,AB=AC=6cm,BC=4cm,将△DBC沿射线BC平移一定的距离得到△D1B1C1,连接AC1,BD1.如果四边形ABD1C1是矩形,那么平移的距离为________.【答案】14cm【考点】全等三角形的性质,勾股定理,矩形的性质,平移的性质30.已知一个直角三角形的两条直角边的差为2,两条直角边的平方和为8,则这个直角三角形的面积是________【答案】1【考点】勾股定理31.如图,在矩形ABCD中,AB=3,BC=5,以B为圆心BC为半径画弧交AD于点E,如果点F是弧EC的中点,联结FB,那么tan∠FBC的值为________【答案】13【考点】勾股定理三、解答题(共8题;共40分)32.如图所示,有两个长度相等的滑梯(即BC=EF)左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,求∠ABC+∠DFE的度数。
《展开与折叠》习题
1、如果有一个正方体,它的展开图可能是下面四个展开图中的( ).
2、如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图有( )种.
3、如图是正方体的展开图,则原正方体相对两个面上的数字和最小的是( ).
A.4
B.6
C.7
D.8
4、如图是一个正方体纸盒的展开图,请在图中的6个正方形中分别填入1、2、3、-1、-2、-3时,展开图沿虚线折叠成正方体后相对面上的两个数互为相反数.
1
4
2
5
3
6
5、如图是每个面上都标有一个汉字的正方体的平面展开图,在此正方体上与“水”字相对的面上的汉字是( ).
A.“秀”B.“丽”C.“江”D.“城”
第5题图。
2.8 平面图形的旋转【模拟试题】(答题时间:40分钟)一、选择题1. (基础题)如图,图中的阴影旋转一个角度后,能互相重合,这个角度可以是()A. 30°B. 45°C. 120°D. 90°)后,才能与自身重(基础题)国旗上的五角星是旋转对称图形,它需要旋转( 2. 合。
°° D. 72B. 45 A. 36°° C. 60C'A'B?,°后到达ABC绕直角顶点顺时针方向旋转90 3. (基础题)如图,把直角三角形'ADAB'?A'D,则延长AB交)的度数是(于°D. 90B. 60° C. 75° A. 30°' ADB' B C A)(基础题)下列图形中,既是轴对称图形,又是旋转对称图形的是( 4.平行四边形 B. A. 等腰三角形D. 三角形 C. 等边三角形EOF,??120??EOF进行是等边三角形的旋转中心,(能力题)如图,OO绕点 5. ABC?)与OE、OF的边构成的图形面积(旋转,在旋转过程中,11ABC??ABC32面积的面积的B. 等于 A. 等于1ABC?4不确定 C. 等于面积的 D.1 AEOCACAB AB的中BC 6.(基础题)如图,等上一点经过旋转后15BA)置,,那么旋转角是D. 3 C. 6 °A. 1 B. 4二、填空题,在这个旋转过程中,旋DOE旋转到四边形 7.(基础题)如图,四边OAC绕BOAO A________,旋转角________D的关系_______中心__________。
关系ABECCABA绕 8.(基础题如图可以看作度而得到的方向旋转_________________________AFEC BCDEABC??A?,C旋转后得到的对应角是,则___________(基础题) 9. 如图,绕点?B?。
3
B 1
A'
30°
B 1
学 习 资 料 专 题
与直角有关的折叠、旋转(习题)
例题示范
例 1:将长方形纸片 ABCD 按如图所示方式折叠,AE ,EF 为折痕,∠BAE =30°,BE =1,折叠后点 C 落在 AD 边上的 C 1 处,并且点 B 落在 EC 1 上的 B 1 处,则 BC 的长为( ) A . B .2
C .3
D .2 A
C 1
D F
A C 1
D F
B
E
C B
E
C
思路分析:
①在 Rt △ABE 中,由∠BAE =30°,BE =1 得 AB =
,AE =2;
②由折叠得∠AEB =∠AEB 1,结合背景图形是长方形得∠EAC 1=
∠AEB 1,所以△AEC 1 是等腰三角形;
③由∠EAC 1=60°得△AEC 1 是等边三角形,所以 EC 1=AE =2; ④由折叠得 EC =EC 1=2,所以 BC =BE +EC =3.
巩固练习
1.
如图,在长方形 ABCD 中,E 是 AD 的中点,将△ABE 沿 BE
折叠后得到△GBE ,延长 BG ,交 CD 边于点 F .若 DF =2FC , 则
BC
的值为 .
AB
A
E
D
A P
B
F Q G
B
C
O
D
C
第 1 题图
第 2 题图
2.
已知一个长方形纸片 OABC ,OA =6,点 P 为 AB 边上一点,
AP =2,将△OAP 沿 OP 折叠,点 A 落在点 A ′处,延长 PA ′交边 OC 于点 D ,经过点 P 再次折叠纸片,点 B 恰好与点 D 重合,则 AB 的长为 .
3
3 3
C
3 3
9 3 O
3.
如图,在正方形纸片 ABCD 中,E ,F 分别是 AD ,BC 的中点, 沿过点 B 的
直线折叠,使点 C 落在 EF 上,落点为 N ,折痕交 CD 边于点 M ,BM 与 EF 交于点 P ,再展开.有下列结论:
①CM =DM ;②∠ABN =30°;③ AB 2 3CM 2 ;④△PMN 是等边三角形.其中正确结论的序号是 .
A
E D
B'
M
B F
C
A
A'
B
第 3 题图
第 4 题图
4.
如图,在 Rt △ABC 中,∠ACB =90°,∠ABC =30°,AC =1,将
△ABC 绕点 C 逆时针旋转至△A ′B ′C ,使得点 A ′恰好落在 AB 上,连接 BB ′,则 BB ′的长为 . 5.
如图,在 Rt △ABC 中,∠C =90°,∠B =70°,点 D 在 BC 边上, 且BD :DC =2: .
将线段BD 绕点D 逆时针旋转m (0<m <180) 度后,若点 B 的对应点恰好落在△ABC 的边上,则 m 的值为 .
A
O'
B
C
C
D
B
第 5 题图
第 6 题图
6.
如图,O 是等边三角形 ABC 内一点,OA =3,OB =4,OC =5,将线段 BO 以点 B
为旋转中心逆时针旋转 60°得到线段 BO ′,连接
AO′.有下列结论:①点 O 与点 O ′的距离为 4;②∠AOB =150°;
③ S 四边形
AOBO
= 6 3 ;④S △AOC +S △
AOB
= 6 .其中正确结
4
论的序号是
.
N
P
7.如图,△ABC 和△CDE 都是等腰直角三角形,∠ACB=
∠ECD=90°,D 为AB 边上一点.若AD=5,BD=12,求DE
的长. A
D
E
C B
8.如图,在四边形ABCD 中,∠BAD=∠BCD=90°,AB=AD.若四边形ABCD 的
面积为 24,求AC 的长.
A
D
【参考答案】 1.
2 3
6 2. 12 3. ②③④ 4.
5. 40 或 150
6. ①②④
7. 13
8. 4
3
3。