3波的能量
- 格式:pptx
- 大小:419.05 KB
- 文档页数:19
3.波的反射、折射和衍射学习目标:1.[物理观念]知道什么是波的反射、折射和衍射现象,知道发生明显衍射现象的条件. 2.[科学思维]知道波发生反射现象时,反射角等于入射角.掌握入射角与折射角关系. 3.[科学思维]了解波的衍射在生活中的应用,感受物理与生活之间的联系.☆阅读本节教材,回答第66页“问题”并梳理必要知识点.教材第66页问题提示:注意过.波的反射遵从反射定律.一、波的反射1.反射现象波遇到介质界面会返回来继续传播的现象.2.反射角与入射角(1)入射角:入射波的波线与法线的夹角,如图中的α.(2)反射角:反射波的波线与法线的夹角,如图中的β.3.反射定律反射波线、法线、入射波线在同一平面内,且反射角等于入射角.注意:反射波与入射波的波长、频率、波速都相等,但由于反射面吸收一部分能量,反射波传播的能量将减少.二、波的折射1.波在传播过程中,从一种介质进入另一种介质时,波传播的方向发生偏折的现象叫作波的折射.2.一切波都会发生折射现象.三、波的衍射1.定义波可以绕过障碍物继续传播,这种现象叫作波的衍射.2.发生明显衍射现象的条件:只有缝、孔的宽度或障碍物的尺寸跟波长相差不多或者比波长更小时,才能观察到明显的衍射现象.3.一切波都能发生衍射,衍射是波特有的现象.1.思考判断(正确的打“√”,错误的打“×”)(1)入射波的波线与界面的夹角叫入射角.(×)(2)入射波的波长和反射波的波长相等.(√)(3)孔的尺寸比波长大得多时就不会发生衍射现象.(×)(4)衍射是波的特有现象.(√)2.(多选)下列说法正确的是()A.波发生反射时波的频率不变,波速变小,波长变短B.波发生反射时频率、波长、波速均不变C.波发生折射时的频率不变,但波长、波速发生变化D.波发生折射时波的频率、波长、波速均发生变化BC[波发生反射时因介质未变,故频率、波长、波速均不变;波发生折射时因波源不变而介质变,故频率不变,波长和波速均发生变化.B、C两项正确.] 3.(多选)一列波在传播过程中通过一个障碍物,发生了一定程度的衍射,以下哪种情况可以使衍射现象更明显()A.增大障碍物的尺寸B.减小波的频率C.缩小障碍物的尺寸D.增大波的频率BC[波在介质中传播时波速是由介质决定的,与波的频率无关,所以改变波的频率不会改变波速,但由v=λf可知,当波速一定时,减小频率则波长增大.而发生明显衍射的条件是障碍物或孔、缝的尺寸比波长小或相差不多,要使衍射现象变得明显,可以通过缩小障碍物的尺寸,同时增大波长即减小波的频率来实现,BC选项正确.]波的反射和折射(a)(b)如图(a)在水槽中,点波源所发出的圆形水波遇直线界面反射后的波形仍为同心圆形.图(b)为圆形波反射的示意图.请举例说明生活中波的反射现象.提示:①回声是声波的反射现象,原因是:对着山崖或高墙说话,声波传到山崖或高墙时,会被反射回来继续传播.②夏日的雷声轰鸣不绝,原因是:声波在云层界面多次反射.③在空房间里讲话声音更响亮,原因是:声波在房间里遇到墙壁、地面或天花板发生反射时,由于距离近,原声与回声几乎同时到达人耳.人耳只能区分相差0.1 s以上的声音,所以人在房间里讲话感觉声音比在空旷处大.如果房间里有幔帐、地毯、衣物等,它们会吸收声波,从而使声音减弱.相应发生变化,比较如下:波的反射波的折射传播方向改变,θ反=θ入改变,θ折≠θ入频率f 不变不变波速v不变改变波长λ不变改变相等,即波源的振动频率相同.(2)波速(v)由介质决定:故反射波与入射波在同一介质中传播,波速不变,折射波与入射波在不同介质中传播,波速变化.(3)据v=λf知,波长λ与波速和频率有关.反射波与入射波,频率同、波速同,故波长相同,折射波与入射波在不同介质中传播,频率同,波速不同,故波长不同.【例1】甲、乙两人站在一堵墙前面,两人相距2a,距墙均为3a.当甲开了一枪后,乙在t时间后听到第一声枪响,则乙在什么时候能听到第二声枪响() A.听不到B.甲开枪后3t时间C.甲开枪后2t时间D.甲开枪后3+72t时间思路点拨:根据反射定律画出声波传播的示意图,再用速度公式求时间.C[乙听到的第一声枪响必然是甲开枪的声音直接传到乙的耳中,故t=2av.甲、乙二人及墙的位置如图所示,乙听到的第二声枪响必然是经墙反射传来的枪声,由反射定律可知,波线如图中AC和CB,由几何关系可得AC=CB=2a,故第二声枪响传到乙耳中的时间为t′=AC+CBv=4av=2t.]波的反射应用技巧——回声测距利用回声测距是波的反射的一个重要应用,它的特点是声源正对障碍物,声源发出的声波与回声在同一条直线上传播.(1)若是一般情况下的反射,反射波和入射波是遵从反射定律的,可用反射定律作图后再求解.(2)利用回声测距时,要特别注意声源是否运动,若声源运动,声源发出的原声至障碍物再返回至声源的这段时间与声源的运动时间相同.(3)解决波的反射问题,关键是根据物理情景规范作出几何图形,然后利用几何知识结合物理规律进行解题.[跟进训练]1.某物体发出的声音在空气中的波长为1 m,波速为340 m/s,在海水中的波长为4.5 m.(1)该波的频率为________Hz,在海水中的波速为________ m/s.(2)若物体在海面上发出的声音经过0.5 s听到回声,则海水深为多少?(3)若物体以5 m/s的速度由海面向海底运动,则经过多长时间听到回声?[解析](1)由f=vλ得f=3401Hz=340 Hz,因波的频率不变,则在海水中的波速为v海=λ′f=4.5×340 m/s=1 530 m/s.(2)入射声波和反射声波用时相同,则海水深为h=v海t2=1 530×0.52m=382.5 m.(3)物体与声音运动的过程示意图如图所示,设听到回声的时间为t′,则v物t′+v海t′=2h代入数据解得t′=0.498 s.[答案](1)340 1 530(2)382.5 m(3)0.498 s波的衍射声波能绕过障碍物到达后面,衍射声波有什么特点?水波能到达挡板的后面,衍射水波有什么特点?提示:衍射波与原波具有相同的频率,传播过程中波形没变.(1)水波遇到障碍物的情况当障碍物较小时发现波绕过障碍物继续前进,如同障碍物不存在一样.如图甲所示,衍射现象明显.甲乙(2)水波遇到小孔的情况当孔较小时发现孔后的整个区域里传播着以孔为中心的圆形波.如图乙所示,衍射现象明显.(3)产生明显衍射的条件产生明显衍射现象,必须具备一定的条件:障碍物或孔的尺寸比波长小,或者跟波长相差不多.名师点睛:障碍物或孔的尺寸大小并不是决定衍射能否发生的条件,仅是衍射现象是否明显的条件,一般情况下,波长较大的波容易发生明显衍射现象.2.波的衍射现象分析波传到小孔(或障碍物)时,小孔(或障碍物)仿佛是一个新的波源,由它发出与原来同频率的波(称为子波),在孔后传播,于是就出现了偏离直线传播的衍射现象.波的直线传播是衍射不明显时的近似情形.【例2】(多选)如图所示是观察水面波衍射的实验装置,AC和BD是两块挡板,AB是一个孔,O是波源,图中已画出波源所在区域波的传播情况,每两条相邻波纹(图中曲线)之间距离表示一个波长,则对于波经过孔之后的传播情况,下列描述正确的是()A.此时能明显观察到波的衍射现象B.挡板前后波纹间距离相等C.如果将孔AB扩大,有可能观察不到明显的衍射现象D.如果孔的大小不变,使波源频率增大,能更明显地观察到衍射现象ABC[从题图中可以看出,孔的大小与波长相差不多,故能够发生明显的衍射现象,选项A正确;由于在同一均匀介质中,波的传播速度没有变化,又因为波的频率是一定的,又根据λ=vf可得波长λ没有变化,选项B正确;当将孔扩大后,孔的宽度和波长有可能不满足发生明显衍射的条件,选项C正确;如果孔的大小不变,使波源频率增大,则波长减小,孔的宽度将比波长大,孔的宽度和波长有可能不满足发生明显衍射现象的条件,选项D错误.]衍射现象的两点提醒(1)障碍物的尺寸的大小不是发生衍射的条件,而是发生明显衍射的条件,波长越大越易发生明显衍射现象.(2)当孔的尺寸远小于波长时,尽管衍射十分突出,但衍射波的能量很弱,也很难观察到波的衍射.[跟进训练]2.(多选)如图所示,S为在水面上振动的波源,M、N为水面上的两块挡板,其中N板可以移动,两板中间有一狭缝,此时测得A处水没有振动.为使A处水也能发生振动,可采用的方法是()A.使波源的频率增大B.使波源的频率减小C.移动N使狭缝的距离增大D.移动N使狭缝的距离减小BD[要使A处水发生振动,应使波的衍射现象更明显,而波能发生明显衍射的条件是狭缝的宽度跟波长相差不多或者比波长更小.因此可将狭缝变小,或将波长变大,而减小波源的频率可以使波长变大,故B、D正确.]1.物理观念:波的反射现象、折射现象及波的衍射.2.科学思维:分析波的明显衍射现象发生的条件.3.科学探究:探究水波的衍射现象.1.下列现象或事实属于衍射现象的是()A.风从窗户吹进来B.雪堆积在背风的屋后C.水波前进方向上遇到凸出在水面上的小石块,小石块对波的传播没有影响D.晚上看到水中月亮的倒影C[波可以绕过障碍物继续传播的现象称为波的衍射.C与衍射现象相符.]2.如图所示是利用发波水槽观察到的水波衍射图像,从图像可知()A.B侧波是衍射波B.A侧波速与B侧波速相等C.减小挡板间距离,衍射波的波长将减小D.增大挡板间距离,衍射现象将更明显B[小孔相当于衍射波的波源,A侧波是衍射波,A错误;在同一种介质中,波速相等,故B正确;根据波速、波长和频率的关系式v=λf,由于波速和频率不变,故波长不变,故C错误;在波长无法改变的情况下减小挡板间距会使衍射现象更明显,故D 错误.]3.图中1、2、3分别代表入射波、反射波、折射波的波线,则()A.2与1的波长、频率相等,波速不等B.2与1的波速、频率相等,波长不等C.3与1的波速、频率、波长均相等D.3与1的频率相等,波速、波长均不等D[波发生反射时,在同一种介质中运动,因此波长、波速和频率不变,故选项A、B错误;波发生折射时,频率不变,波速变,波长变,故选项C错误,选项D正确.] 4.(多选)关于波的反射,下列说法正确的是()A.波在反射前后,仍在同种介质中传播B.波发生反射时,波的频率不变,波速变小,波长变短C.波发生反射时,波的频率、波长、波速均不变D.波发生反射时,反射角始终等于入射角ACD[波的反射是波在介质界面上反射回同一种介质中继续传播的现象;由于传播介质不变,所以波速、频率、波长均不变.由反射定律知,反射角等于入射角.故A、C、D正确.]5.[思维拓展]情境:“B超”可用于探测人体内脏的病变状况.如图是超声波从肝脏表面入射,经折射与反射,最后从肝脏表面射出的示意图.超声波在进入肝脏发生折射时遵循的规律与光的折射规律类似,可表述为sin θ1sin θ2=v1v2(式中θ1是入射角,θ2是折射角,v1、v2分别是超声波在肝外和肝内的传播速度),超声波在肿瘤表面发生反射时遵循的规律与光的反射规律相同.已知v2=0.9v1,入射点与出射点之间的距离是d,入射角是i,肿瘤的反射面恰好与肝脏表面平行.问题:肿瘤离肝表面的深度h为多少?=v1v2,[解析]超声波沿如图所示的路线传播,根据sin isin θ又因为v2=0.9v1,所以sin θ=0.9sin i.又因为在直角三角形中,sin θ=d2⎝⎛⎭⎪⎫d22+h2,所以h=d100-81sin2i18sin i.[答案]d100-81sin2i18sin i。
电磁波频率与能量的转换研究电磁波频率与能量的转换是电磁学领域的重要研究方向之一。
本文旨在探讨电磁波频率与能量之间的关系,以及相关的应用和未来的发展。
1. 电磁波频率概述电磁波是一种由电场和磁场交替产生的波动现象。
根据波长和频率的关系,电磁波可以分为不同的频率范围,包括无线电波、微波、红外线、可见光、紫外线、X射线和γ射线,从低频到高频依次排列。
2. 电磁波频率与能量之间的转换关系电磁波的频率与能量之间存在着密切的关系。
根据普朗克能量量子化假设,能量的分布与波长成反比,即能量∝1/λ,其中λ为电磁波的波长。
由此可推知,频率与能量成正比,即能量∝ν,其中ν为电磁波的频率。
具体而言,根据经典电动力学理论和电磁辐射的能量密度公式,能量密度与振幅平方成正比,即能量密度∝E²,其中E为电磁波的电场振幅。
而电场振幅与频率之间的关系为E∝√ν(经典视角)。
因此,将两个关系结合起来,能量密度∝ν²。
3. 应用与实例电磁波频率与能量的转换关系在许多领域都有着广泛的应用。
其中,一个典型的应用是医学影像学领域的X射线和γ射线。
X射线和γ射线的高频率使其具有较高的能量,可以穿透物质并在背后形成影像,能够用于检测骨骼和内部器官等。
另一个应用是通信技术领域的无线电波与微波。
无线电波的频率范围广泛,适用于长距离通信,如广播和卫星通信。
而微波的频率更高,因此其能量也更大,适用于短距离传输,如无线网络和雷达。
4. 未来的发展随着科学技术的不断进步,电磁波频率与能量的转换研究也在不断发展。
一方面,对于高频率的电磁波,如紫外线、X射线和γ射线,人们正在研究如何更好地利用其高能量特性,并开发出更安全、更高效的相关应用。
另一方面,对于低频率的电磁波,如无线电波和微波,随着移动通信和物联网的快速发展,人们对其传输能力和效率的要求也越来越高。
因此,研究人员正在探索新的调制技术和信号处理算法,以提高低频电磁波的利用效率。
此外,随着纳米技术和量子技术的不断发展,电磁波频率与能量的转换研究可能在更微观的尺度上展开,例如考虑光子的量子特性和场激发等,以进一步拓展电磁波在信息传输、能源转换等领域的应用。
波的基本概念与性质波是一种传播能量的物理现象,其基本概念和性质在自然界和科学研究中具有重要的地位。
本文将深入探讨波的基本概念和性质,包括波的定义、分类、特性以及波的应用。
1. 波的定义波是一种能量传递的过程,它通过震动或振动在介质中传播。
波可以是机械波,如水波、声波,也可以是电磁波,如光波、无线电波。
无论是什么类型的波,其传播过程都涉及能量的传递而非物质的传递。
2. 波的分类根据波在介质中传播的方式和方向,波可以分为横波和纵波两种类型。
横波是指振动方向垂直于波的传播方向的波,如水波;纵波是指振动方向与波的传播方向相同的波,如声波。
3. 波的特性波具有许多特性,包括振幅、周期、频率、波长和速度等。
- 振幅是波在空间中传播时的最大偏离量,反映了波的能量大小。
- 周期是指波在传播过程中重复的时间间隔,是波动现象的一个基本特性。
- 频率是波单位时间内振动或波动的次数,通常用赫兹(Hz)表示。
- 波长是波动现象中连续波峰或波谷之间的距离,可以用来描述波的空间特征。
- 速度是波传播的速率,通常用米每秒(m/s)表示。
4. 波的应用波的概念和性质在科学研究和日常生活中具有广泛的应用。
- 声波是最常见的机械波,它在通信、音乐、医学诊断等领域发挥着重要作用。
- 光波是一种电磁波,它在光学和光电子学中被广泛应用,如照明、摄影、激光技术等。
- 电磁波还包括无线电波、微波、X射线和γ射线等,它们在通信、广播、无线电电视、医疗诊断等领域起到关键作用。
总结:波是一种能量传递的物理现象,通过振动或震动在介质中传播。
波根据传播方式和方向可以分为横波和纵波。
波拥有振幅、周期、频率、波长和速度等特性。
而在科学研究和日常生活中,波的概念与性质得到广泛应用,包括声波、光波和电磁波等在通信、医疗、照明等领域发挥着重要作用。
初中物理知识——波的基础知识及应用在初中物理中,波是一个基础的概念,涉及到声音、光、电磁等方面的知识。
本文将重点介绍波的基础知识和应用。
一、波的基础知识1.波的定义波是一种能量传递方式,它在媒介中传递能量而不传递物质。
波的传播可以是沿着直线传播,也可以是沿着曲线传播。
2.波的分类波分为机械波和电磁波两类。
机械波是通过媒介传播的波,如声波、水波等。
电磁波是通过电磁场传播的波,如光波、无线电波等。
3.波的特征波有三个基本特征:波长、频率和波速。
波长指的是波的一个完整周期所对应的长度。
频率指的是每秒钟波的周期数。
波速指的是波向前传播的速率。
波速等于波长乘以频率。
二、波的应用1.声波的应用声波是一种机械波,它的频率决定了声音的音调,而声音的强度则取决于声波的振幅。
声波的应用非常广泛,如:(1)语音通信:手机、对讲机等,均利用声波传输声音信息。
(2)音响设备:音箱、收音机等,利用声波传播音乐和声音。
(3)医学影像:超声波可以用于医学影像诊断,如超声心动图、超声波检查等。
2.光波的应用光波是一种电磁波,它的波长决定了光的颜色,而光强则取决于光波的振幅。
光波的应用也非常广泛,如:(1)光通信:光纤通信采用了光波的传输,使得数据传输速度更快、容量更大。
(2)光学仪器:显微镜、望远镜、摄像机等均利用光波进行影像传输。
(3)光影艺术:梦幻般的光影效果可以用在演出、电影、电视等方面,成为视觉艺术的重要组成部分。
3.电磁波的应用电磁波分为很多种波,如无线电波、微波、X射线等,它们都有着不同的波长和频率,从而有不同的应用。
(1)无线电通信:无线电波广泛应用于通信领域,如无线电广播、移动通信等。
(2)微波炉:微波的能量可以加热水分分子,广泛应用于微波炉等设备。
(3)医学诊断:X射线可以用于医学诊断,如X射线摄影、CT、MRI等。
总结波是一个非常重要的概念,涉及到声音、光、电磁等方面的知识。
通过学习波的基础知识和应用,我们可以更好地理解和运用这些知识,更好地探索和利用波所带来的振奋和美妙。
波的基本概念和波动的传播方式一、波的基本概念1.波的定义:波是振动在介质中传播的现象。
2.波的类型:根据介质的性质,波可分为机械波和电磁波。
3.波的要素:波的基本要素包括波长、频率、振幅、周期和速度。
–波长(λ):波的一个完整振动周期所对应的介质长度。
–频率(f):单位时间内波的完整振动周期数,单位为赫兹(Hz)。
–振幅(A):波的最大位移,反映了波的能量大小。
–周期(T):波的一个完整振动所需的时间,与频率互为倒数。
–速度(v):波在介质中传播的速度,与波长和频率有关。
4.波的表示:波可以用数学函数(如正弦、余弦函数)来表示,称为波动方程。
二、波动的传播方式1.机械波的传播:–纵波:振动方向与波传播方向在同一直线上,如声波。
–横波:振动方向与波传播方向垂直,如光波。
2.电磁波的传播:–电磁波是由电场和磁场交替变化而产生的,可在真空中传播。
–电磁波的传播速度为光速,与介质无关。
3.波动的传播条件:–介质的存在:机械波需要介质传播,而电磁波可以在真空中传播。
–波源:波动的产生需要波源,即振动的起始点。
4.波动的干涉和衍射:–干涉:两个或多个波相遇时,波的振动方向相加或相消的现象。
–衍射:波遇到障碍物或通过狭缝时,波的传播方向发生弯曲的现象。
5.波动的传播规律:–惠更斯原理:波动过程中,每个波前上的点都可以作为新的波源,形成新的波前。
–反射和折射:波从一种介质传播到另一种介质时,会发生反射和折射现象。
以上是关于波的基本概念和波动传播方式的知识点介绍,希望对您有所帮助。
习题及方法:1.习题:一个波长为 10 cm 的横波在介质中传播,波速为 500 m/s,求该波的频率和周期。
方法:根据波速公式v = λf 和周期公式 T = 1/f,可以得到频率f = v/λ = 500m/s / 0.1 m = 5000 Hz,周期 T = 1/f = 1 / 5000 Hz = 2 × 10^-4 s。