参数三次埃尔米特插值实例分析
- 格式:pdf
- 大小:306.01 KB
- 文档页数:7
《计算方法》课程设计报告学生姓名:张学阳学号:1009300132陈洋1009300109刘睿1009300122 学院:理学院班级: 数学101题目: 分段线性及三次埃尔米特插值通用程序指导教师:宋云飞职称:讲师朱秀丽讲师尚宝欣讲师2012年12月30日目录目录 (I)一、摘要 (1)二、算法设计 (1)2.1分段线性插值 (1)2.2分段三次埃尔米特插值 (1)2.3功能框图 (1)三、例题计算 (1)四、误差及结果分析 (9)4.1例题误差分析 (1)4.2结点个数对插值结果的影响 (1)五、总结及心得体会 (12)参考文献 (13)源程序 (14)一、摘要分段线性插值与分段定义的线性插值,在相邻插值节点的区间上对应的是同一个线性函数。
由于它们的表现形式不一样从而产生为两种不同的计算方法,相应的误差表现形式也不一样.拉格朗日插值余项利用f(x)的二阶导数,要f(x)的二阶导数存在,对于二阶导数不存在的情况不能估算出它的误差,所以适用范围比较小.现在我们可以利用一阶导数就估算出误差,给计算带来许多的方便。
为了避免高次插值可能出现的大幅度波动现象,在实际应用中通常采用分段低次插值来提高近似程度,比如可用分段线性插值或分段三次埃尔米特插值来逼近已知函数,但它们的总体光滑性较差。
为了克服这一缺点,一种全局化的分段插值方法——三次样条插值成为比较理想的工具。
在代数插值过程中,人们为了获得较好的近似效果,通常情况下是增加插值节点数.由于二次插值比线性插值近似效果好,因此容易错误地认为插值多项式次数越高越好.事实上,随着插值节点的增多,插值多项式不一定收敛到被插值函数.。
通过分段低次插值或样条插值可以得到较好的近似逼近函数,分段低次插值具有公式简单、运算量小、稳定性好、收敛性有保证等优点.随着子区间长度h取得足够小,分段低次插值总能满足所要求的精度.因此分段低次插值应用十分广泛.。
分段线性插值是分段低次插值中常见的方法之一,在本文中对函数在(-5,5)上进行分段线性插值,取不同节点个数n,得到不同分段线性插值函数.并用MATLAB编写分段线性插值函数,最后比较用不同节点数所得插值函数与真实函数的误差,从而得出节点数与插值效果的关系。
数值分析实验六(分段三次Hermite插值)《数值分析》实验报告实验编号:实验六课题名称:分段三次Hermite插值一、算法介绍给定的函数为f(x)=1/(25*x*x+1),将给定区间分成10分,得到11个节点:x[0],x[1],...,x[10],构造插值函数的基函数。
当x在(x[0],x[1])区间上时,H[0] = (x-x[0])*[((x-x[1])/(x[0]-x[1]))^2]。
其余的区间为H[0]=0。
h[0]= [1+2*(x-x[0])/(x[1]-x[0])]*[((x-x[1])/(x[0]-x[1]))^2]。
当x在[x[i-1],x[i]] (i=1,2,3, (9)区间上时,H[i]=(x-x[i])*[((x-x[i-1])/(x[i]-x[i-1]))^2],h[i]=[1+2*(x-x[i])/(x[i-1]-x[i])]*[((x-x[i-1])/(x[i]-x[i-1]))^2)。
当x在(x[i],x[i+1]](i=1,2,3,…,10)区间上其余的区间为H[i]=(x-x[i])[((x-x[i+1])/(x[i]-x[i+1]))^2],h[i]=[1+2*(x-x[i])/(x[i+1]-x[i])]*[((x-x[i+1 ])/(x[i]-x[i+1]))^2]。
其余区间上均为H[i]=0,h[i]=0(i=1,2,…,10)。
当x在(x[9],x[10])区间上时,H[10] = (x-x[9])(((x-x[10])/(x[9]-x[10]))^2).其余的区间为H[10]=0.h[10]= (1+2*((x-x[9])/(x[10]-x[9])))(((x-x[10])/(x[9]-x[10]))^2).其余区间h[10]=0。
构造函数H(x) =∑(y[i]*h[i]+y'[i]*H[i],(i=0,1,…,10)。
二、程序代码// testV iew.cpp : implementation of the CT estV iew class//#include "stdafx.h"#include "test.h"#include "testDoc.h"#include "testView.h"#ifdef _DEBUG#define new DEBUG_NEW#undef THIS_FILEstatic char THIS_FILE[] = __FILE__;#endif/////////////////////////////////////////////////////////////////// //////////// CTestV iewIMPLEMENT_DYNCREA TE(CTestView, CView)BEGIN_MESSAGE_MAP(CTestView, CView)//{{AFX_MSG_MAP(CTestView)// NOTE - the ClassWizard will add and remove mapping macros here.// DO NOT EDIT what you see in these blocks of generated code!//}}AFX_MSG_MAP// Standard printing commandsON_COMMAND(ID_FILE_PRINT, CView::OnFilePrint)ON_COMMAND(ID_FILE_PRINT_DIRECT, CV iew::OnFilePrint) ON_COMMAND(ID_FILE_PRINT_PREVIEW,CView::OnFilePrintPreview)END_MESSAGE_MAP()/////////////////////////////////////////////////////////////////// //////////// CTestV iew construction/destructionCTestView::CTestV iew(){// TODO: add construction code here}CTestView::~CT estView(){}BOOL CTestView::PreCreateWindow(CREA TESTRUCT& cs){// TODO: Modify the Window class or styles here by modifying // the CREA TESTRUCT csreturn CV iew::PreCreateWindow(cs);}/////////////////////////////////////////////////////////////////// //////////// CTestV iew drawingvoid CTestView::OnDraw(CDC* pDC){CTestDoc* pDoc = GetDocument();ASSERT_V ALID(pDoc);// TODO: add draw code for native data hereint i,j,k;double x,y,p_x,p_y,l,xx[100],f[100],F[100],sum,p_sum;CPen MyPen,*OldPen;pDC->SetViewportOrg(400,400); //定义坐标原点for(i=-500;i<500;i++){pDC->SetPixel(0,i,RGB(0,0,0));pDC->SetPixel(i,0,RGB(0,0,0)); //画出坐标}pDC->TextOut(-210,5,"-1");pDC->TextOut(196,5,"1");//原函数MyPen.CreatePen(PS_SOLID,1,RGB(255,0,0));//定义画笔颜色OldPen=pDC->SelectObject(&MyPen);x=-1.0,y=1/(1+25*x*x);p_x=x*200;p_y=-y*200;pDC->MoveTo(p_x,p_y);for (x=-1.0;x<=1.0;x+=0.0001){y=1/(1+25*x*x);p_x=x*200;p_y=-y*200;pDC->LineT o(p_x,p_y);}pDC->SelectObject(OldPen);MyPen.DeleteObject();//分段三次Hermite插值MyPen.CreatePen(PS_SOLID,1,RGB(0,0,0)); OldPen=pDC->SelectObject(&MyPen); x=-1.0,y=1.0/(1+25*x*x);p_x=x*200;p_y=-y*200;pDC->MoveTo(p_x,p_y);x=-1.0;for(i=0;i<=10;i++){f[i]=1/(1+25*x*x);xx[i]=x;F[i]=-50*x/(1+25*x*x)/(1+25*x*x); //导数x+=0.2;}x=-1.0;for(j=0;j<=1000;j++){sum=0;for(i=0;i<=10;i++){if(x==xx[i]){sum=f[i];p_x=x*200,p_y=-sum*200;pDC->LineT o(p_x,p_y);break;}if(xxx[i]){y=(1+2*(x-xx[i])/(xx[i+1]-xx[i]))*(x-xx[i+1])*(x-xx[i+1])/(xx[i]-xx[i+1])/(xx[i]-xx[i+1]);sum+=f[i]*y;y=(1+2*(x-xx[i+1])/(xx[i]-xx[i+1]))*(x-xx[i])*(x-xx[i])/(xx[i+1]-xx[i])/(xx[i+1]-xx[i]);sum+=f[i+1]*y;y=(x-xx[i])*(x-xx[i+1])*(x-xx[i+1])/(xx[i]-xx[i+1])/(xx[i]-xx[i+1]);sum+=F[i]*y;y=(x-xx[i+1])*(x-xx[i])*(x-xx[i])/(xx[i+1]-xx[i])/(xx[i+1]-xx[i]);sum+=F[i+1]*y;p_x=x*200;p_y=-sum*200;pDC->LineT o(p_x,p_y);break;}}x+=0.002;}pDC->SelectObject(OldPen);MyPen.DeleteObject();/////////////////////////////////////////////////////////////////// //////////// CTestV iew printingBOOL CTestView::OnPreparePrinting(CPrintInfo* pInfo){// default preparationreturn DoPreparePrinting(pInfo);}void CTestView::OnBeginPrinting(CDC* /*pDC*/, CPrintInfo* /*pInfo*/){// TODO: add extra initialization before printing}void CTestView::OnEndPrinting(CDC* /*pDC*/, CPrintInfo* /*pInfo*/){// TODO: add cleanup after printing}/////////////////////////////////////////////////////////////////// //////////// CTestV iew diagnostics#ifdef _DEBUGvoid CTestView::AssertV alid() const{CView::AssertV alid();}void CTestView::Dump(CDumpContext& dc) const{CView::Dump(dc);CTestDoc* CT estV iew::GetDocument() // non-debug version is inline{ASSERT(m_pDocument->IsKindOf(RUNTIME_CLASS(CT estD oc)));return (CT estDoc*)m_pDocument;}#endif //_DEBUG/////////////////////////////////////////////////////////////////// //////////// CTestV iew message handlers三、运算结果截屏红色的曲线为原函数图像,黑色曲线为分段三次Hermite插值曲线四、算法分析上述图像中黑色的曲线为分段分段三次Hermite插值多项式所对应的图像,由图像可看出黑色的分段三次Hermited插值函数图像和拉格朗日、分段线性插值相比与红色被逼近函数的重合度最好,说明分段三次Hermite插值在函数的各节点两边插值函数的导数是相等的,保证了在各节点的平滑性,且不会出现Runge现象。
两点三次埃尔米特插值余项证明《两点三次埃尔米特插值余项证明》1. 概述在数值分析中,插值是一种常用的数值计算方法,用于在已知数据点之间估算未知数据点的值。
而埃尔米特插值则是一种特殊的插值方法,可以通过已知点的函数值以及导数值来构造插值多项式,进而进行函数值的估算。
2. 两点三次埃尔米特插值在插值问题中,特别是在微积分和数值分析中,两点三次埃尔米特插值是一种常见且重要的技术。
它通过两个数据点的函数值和导数值,构造出一个三次多项式,可以更加准确地近似原始函数,并且可以保持更高的导数连续性。
这种方法在实际问题中具有很强的适用性,尤其是在需要对曲线进行平滑插值的情况下。
3. 余项证明在使用插值方法进行数据估算时,余项是一个重要的概念。
它代表了插值多项式与原函数之间的差距,可以用来评估插值的准确性和可靠性。
对于两点三次埃尔米特插值而言,余项的证明是一项关键的工作,它可以帮助我们理解插值多项式的误差情况,进而指导我们对插值结果的使用和解释。
4. 个人观点和理解作为一种高级的数值计算方法,两点三次埃尔米特插值在实际问题中的应用非常广泛,尤其是在科学计算和工程领域。
通过对余项的详细证明和分析,我们可以更加深入地理解插值方法的原理和实际效果,进而更加灵活地应用这一技术解决实际问题。
5. 总结两点三次埃尔米特插值作为一种高级的插值方法,通过对已知点的函数值和导数值进行合理的处理,可以构造出一个更加精确的插值多项式,用于估算未知点的函数值。
在实际应用中,我们需要充分理解余项的证明和分析,以便更好地评估插值结果的准确性和可靠性。
通过以上文章内容的布局和深度处理,可以详细解释和讨论所提及的主题,从而全面了解和深入了解其背后的知识和原理。
6. 余项证明的数学推导在两点三次埃尔米特插值中,我们需要构造出一个三次多项式,以满足已知数据点的函数值和导数值。
设两个已知点为(x0, y0)和(x1, y1),以及它们各自的一阶导数值y'0和y'1。
《计算方法》课程设计报告学生姓名:张学阳学号:1009300132陈洋1009300109刘睿1009300122 学院:理学院班级: 数学101题目: 分段线性及三次埃尔米特插值通用程序指导教师:宋云飞职称:讲师朱秀丽讲师尚宝欣讲师2012年12月30日目录目录 (I)一、摘要 (1)二、算法设计 (1)2.1分段线性插值 (1)2.2分段三次埃尔米特插值 (1)2.3功能框图 (1)三、例题计算 (1)四、误差及结果分析 (9)4.1例题误差分析 (1)4.2结点个数对插值结果的影响 (1)五、总结及心得体会 (12)参考文献 (13)源程序 (14)一、摘要分段线性插值与分段定义的线性插值,在相邻插值节点的区间上对应的是同一个线性函数。
由于它们的表现形式不一样从而产生为两种不同的计算方法,相应的误差表现形式也不一样.拉格朗日插值余项利用f(x)的二阶导数,要f(x)的二阶导数存在,对于二阶导数不存在的情况不能估算出它的误差,所以适用范围比较小.现在我们可以利用一阶导数就估算出误差,给计算带来许多的方便。
为了避免高次插值可能出现的大幅度波动现象,在实际应用中通常采用分段低次插值来提高近似程度,比如可用分段线性插值或分段三次埃尔米特插值来逼近已知函数,但它们的总体光滑性较差。
为了克服这一缺点,一种全局化的分段插值方法——三次样条插值成为比较理想的工具。
在代数插值过程中,人们为了获得较好的近似效果,通常情况下是增加插值节点数.由于二次插值比线性插值近似效果好,因此容易错误地认为插值多项式次数越高越好.事实上,随着插值节点的增多,插值多项式不一定收敛到被插值函数.。
通过分段低次插值或样条插值可以得到较好的近似逼近函数,分段低次插值具有公式简单、运算量小、稳定性好、收敛性有保证等优点.随着子区间长度h取得足够小,分段低次插值总能满足所要求的精度.因此分段低次插值应用十分广泛.。
分段线性插值是分段低次插值中常见的方法之一,在本文中对函数在(-5,5)上进行分段线性插值,取不同节点个数n,得到不同分段线性插值函数.并用MATLAB编写分段线性插值函数,最后比较用不同节点数所得插值函数与真实函数的误差,从而得出节点数与插值效果的关系。
实验六: 分段三次Hermite插值画函数图像学号: 姓名:指导老师:马季骕班级:计算机科学与技术(非师范)1、算法说明:分段三次Hermit插值的做法是在每一个小区间上作三次Hermit插值,因此在每一个插值节点上都需要构造两个插值基函数,然后再作它们的线性组合。
分段三次Hermit插值基函数如下:H(x)=Σ(yihi(x)+y’iHi(x))给定的函数为f(x)=1/(25*x*x+1),将给定区间分成10分,得到11个节点:x[0],x[1],...,x[10],构造插值函数的基函数。
当x在(x[0],x[1])区间上时,H[0] = (x-x[0])*[((x-x[1])/(x[0]-x[1]))^2]。
其余的区间为H[0]=0。
h[0]= [1+2*(x-x[0])/(x[1]-x[0])]*[((x-x[1])/(x[0]-x[1]))^2]。
当x在[x[i-1],x[i]] (i=1,2,3,...,9)区间上时,H[i]=(x-x[i])*[((x-x[i-1])/(x[i]-x[i-1]))^2],h[i]=[1+2*(x-x[i])/(x[i-1]-x[i])]*[((x-x[i-1])/(x[i]-x[i-1]))^2)。
当x在(x[i],x[i+1]](i=1,2,3, (10)区间上其余的区间为H[i]=(x-x[i])[((x-x[i+1])/(x[i]-x[i+1]))^2],h[i]=[1+2*(x-x[i])/(x[i+1]-x[i])]*[((x-x[i+1])/(x[i]-x[i+ 1]))^2]。
其余区间上均为H[i]=0,h[i]=0(i=1,2,…,10)。
当x在(x[9],x[10])区间上时,H[10] = (x-x[9])(((x-x[10])/(x[9]-x[10]))^2).其余的区间为H[10]=0.h[10]= (1+2*((x-x[9])/(x[10]-x[9])))(((x-x[10])/(x[9]-x[10]))^2).其余区间h[10]=0。