缺页中断处理过程
- 格式:ppt
- 大小:9.74 MB
- 文档页数:35
中断的流程引言中断是计算机系统中一种重要的机制,用于处理硬件设备请求、异常情况和优先级较高的任务。
在任何计算机系统中,中断都起到极其关键的作用。
本文将详细探讨中断的流程。
中断的定义和分类中断是指计算机在执行某个任务的过程中,临时停止当前正在运行的程序,转而去执行另一段程序(中断服务程序),处理发生的事件。
中断可以分为硬件中断和软件中断两种类型。
硬件中断硬件中断是由外部设备的请求引起的中断,常见的硬件中断包括定时器中断、外部设备中断(如键盘、鼠标等)和异常中断(如除零错误、缺页错误等)。
软件中断软件中断是由程序员在程序中主动发出的中断请求,通过软件指令触发,实现用户与硬件的交互。
例如,在操作系统中,通过系统调用可以触发软件中断。
中断的流程中断的触发中断的触发是由硬件设备或软件指令生成的,当满足中断触发条件时,中断信号将被发送给中断控制器。
中断控制器收到中断信号后,会进行中断的响应。
它首先会保存当前的程序状态,包括程序指针、寄存器的值等,并将程序控制权转移给中断服务程序。
中断服务程序的执行中断服务程序是一个与中断相关的程序段,用于处理特定的中断事件。
它会根据中断类型进行相应的处理操作,如读取设备数据、更新系统状态等。
初始化中断服务程序中断服务程序在执行之前,需要进行初始化工作。
这包括保存当前状态、设置中断服务程序的入口地址等。
中断服务程序的执行过程中断服务程序一般分为两个阶段:前半部分和后半部分。
前半部分中断服务程序的前半部分主要是进行必要的初始化工作,以及保存当前的程序状态。
此阶段的目标是尽快地使中断事件得到响应,保证硬件设备的正常工作。
后半部分中断服务程序的后半部分是真正的中断处理过程,它会根据中断类型进行具体的处理操作。
处理完毕后,中断服务程序将恢复中断之前的状态,包括恢复寄存器的值、恢复程序的执行等。
中断服务程序的完成与返回中断服务程序的完成意味着中断处理的终结。
在完成之前,中断服务程序需要恢复中断之前的状态,并将程序控制权返回给被中断的程序或操作系统。
一、实验目的1. 理解缺页中断的概念及其在操作系统中的作用。
2. 掌握常见的页面置换算法,如先进先出(FIFO)、最近最少使用(LRU)等。
3. 通过模拟实验,验证不同页面置换算法对缺页中断次数的影响。
4. 深入了解页式虚拟存储管理中地址转换的过程。
二、实验环境1. 操作系统:Windows 102. 编程语言:C/C++3. 实验工具:Visual Studio三、实验内容1. 模拟缺页中断的产生2. 实现不同的页面置换算法3. 分析页面置换算法对缺页中断次数的影响4. 模拟地址转换过程四、实验步骤1. 模拟缺页中断的产生(1)定义一个模拟指令序列,包含多个页面号。
(2)创建一个模拟的页表,用于记录每个页面是否在内存中。
(3)根据指令序列,遍历页表,判断访问的页面是否在内存中。
(4)如果页面不在内存中,则产生缺页中断。
2. 实现不同的页面置换算法(1)先进先出(FIFO)算法:- 定义一个队列,用于存储内存中的页面号。
- 当发生缺页中断时,将新页面号入队,同时判断队列长度是否超过内存块数。
- 如果队列长度超过内存块数,则将队首元素出队,模拟页面置换过程。
(2)最近最少使用(LRU)算法:- 定义一个链表,用于存储内存中的页面号。
- 当发生缺页中断时,将新页面号插入链表尾部。
- 如果链表长度超过内存块数,则从链表头部删除元素,模拟页面置换过程。
3. 分析页面置换算法对缺页中断次数的影响(1)定义一个变量,用于记录缺页中断次数。
(2)遍历模拟指令序列,根据不同的页面置换算法处理缺页中断。
(3)统计不同算法下的缺页中断次数,并进行比较。
4. 模拟地址转换过程(1)根据指令中的逻辑地址,计算页号和偏移量。
(2)根据页号,查找页表,判断页面是否在内存中。
(3)如果页面在内存中,则根据偏移量计算物理地址。
(4)如果页面不在内存中,则产生缺页中断。
五、实验结果与分析1. 模拟缺页中断的产生通过模拟指令序列,成功产生了缺页中断。
中断和中断处理流程转⾃:1. 中断概念中断是指由于接收到来⾃外围硬件(相对于中央处理器和内存)的异步信号或来⾃软件的同步信号,⽽进⾏相应的硬件/软件处理。
发出这样的信号称为进⾏中断请求(interrupt request,IRQ)。
硬件中断导致处理器通过⼀个上下⽂切换(context switch)来保存执⾏状态(以程序计数器和程序状态字等寄存器信息为主);软件中断则通常作为CPU指令集中的⼀个指令,以可编程的⽅式直接指⽰这种上下⽂切换,并将处理导向⼀段中断处理代码。
中断在计算机多任务处理,尤其是实时系统中尤为有⽤。
这样的系统,包括运⾏于其上的操作系统,也被称为“中断驱动的”(interrupt-driven)。
中断是⼀种使CPU中⽌正在执⾏的程序⽽转去处理特殊事件的操作,这些引起中断的事件称为中断源,它们可能是来⾃外设的输⼊输出请求,也可能是计算机的⼀些异常事故或其它内部原因。
中断:在运⾏⼀个程序的过程中,断续地以“插⼊”⽅式执⾏⼀些完成特定处理功能的程序段,这种处理⽅式称为中断。
2. 中断的作⽤并⾏操作硬件故障报警与处理⽀持多道程序并发运⾏,提⾼计算机系统的运⾏效率⽀持实时处理功能3. 术语按中断源进⾏分类:发出中断请求的设备称为中断源。
按中断源的不同,中断可分为1. 内中断:即程序运⾏错误引起的中断2. 外中断:即由外部设备、接⼝卡引起的中断3. 软件中断:由写在程序中的语句引起的中断程序的执⾏,称为软件中断允许/禁⽌(开/关)中断: CPU通过指令限制某些设备发出中断请求,称为屏蔽中断。
从CPU要不要接收中断即能不能限制某些中断发⽣的⾓度,中断可分为1. 可屏蔽中断:可被CPU通过指令限制某些设备发出中断请求的中断,那是不是意味着进中断时disable整个中断,其实disable的都是可屏蔽中断?2. 不可屏蔽中断:不允许屏蔽的中断如电源掉电中断允许触发器:在CPU内部设置⼀个中断允许触发器,只有该触发器置“1”,才允许中断;置“0”,不允许中断。
简述缺页中断处理过程摘要:一、缺页中断的定义与作用二、缺页中断的处理过程1.页表查找2.缺页中断向量表查找3.页框号查找4.页面分配5.页面置换6.更新页表和缺页中断向量表三、缺页中断处理的意义正文:计算机系统中,内存分为系统区与用户区。
系统区主要包括操作系统、系统调用等,用户区则是为用户程序分配的内存空间。
在实际运行过程中,程序往往需要访问内存中尚未分配的页面,这时就会发生缺页中断。
缺页中断处理过程是操作系统中至关重要的一环,它保证了系统能够高效、安全地管理内存资源。
缺页中断的处理过程可以分为以下几个步骤:1.页表查找:当程序需要访问一个内存页面时,首先会在页表中查找该页面的信息。
页表是操作系统用来记录物理内存页框与虚拟内存页面对应关系的数据结构。
如果页表中不存在该页面的信息,说明该页面尚未分配,这时就会产生缺页中断。
2.缺页中断向量表查找:当发生缺页中断后,处理器会查找缺页中断向量表以确定缺页中断的处理函数。
缺页中断向量表中存放着处理缺页中断的函数地址,处理器根据该地址调用相应的处理函数。
3.页框号查找:缺页中断处理函数根据页表中的页面对应关系,在内存中查找对应的物理页框号。
物理页框号是内存中一个连续的内存区域,用于存储程序需要的数据或指令。
4.页面分配:找到物理页框号后,缺页中断处理函数会为程序分配一个页面。
分配方式包括从空闲页面池中取出一个空闲页面、将一个已分配的页面从内存中移除并将其放入空闲页面池等。
5.页面置换:在分配页面后,程序需要将新分配的页面写入内存。
这时,可能会遇到内存中的页面已满,需要进行页面置换。
页面置换算法有多种,如最近最少使用(LRU)算法、时钟算法等,它们的主要目的是将长时间未使用的页面置换出去,为新分配的页面腾出空间。
6.更新页表和缺页中断向量表:页面分配和置换完成后,缺页中断处理函数需要更新页表和缺页中断向量表。
更新完成后,程序可以继续执行。
总之,缺页中断处理过程是操作系统在内存管理方面的重要机制。
页式虚拟存储管理中地址转换和缺页中断的模拟
实验目的:
1.深入了解页式虚拟存储管理技术如何实现地址转换。
2.进一步认识页式虚拟存储管理中如何处理缺页中断。
实验要求:
编写程序模拟实现页式虚拟存储管理中的地址转换过程以及缺
页中断的处理过程。
实验指导:
1.请求分页中硬件地址变换过程。
(1)
自己设计一个主存分配表。
(2)对逻辑地址进行划分为页号和页内地址
(3)越界检查,若越界直接中断退出程序的执行。
(不越界情况下)检索页表分2种情况:其一,若该页在内存,则找到其对应的物理块号;合并块号和块内地址形成物理地址。
进行输出。
(4)其二,若该页不再内存,产生缺页中断,调用缺页中断子
程序执行缺页中断处理过程。
中断返回后重新执行被中断的指令。
2.采用某一种页面置换算法实现分页管理的缺页调度。
(1)当硬件发出缺页中断后转操作系统处理缺页中断。
查看主存分块表看有无可用空闲块。
若有则为进程分配一块。
若无空闲块,当采用一种页面置换算法(例如FIFO形成队列),其头部放在变量K 中淘汰最先进入主存的一页,若该页修改过,好要重新写回磁盘。
然后再把当前要访问的页装入该内存块,并修改页表和存储分块表。
数组P中各个元素为作业已在主存的页号。
假定作业最多可分配m块。
当淘汰一页时,总是淘汰P[K]所指页。
之后调整数组P:
P[K]=要装入的页;
K=(K+1)mod m;
流程图如下:。
缺页中断及页⾯置换算法1. 缺页中断 在请求分页系统中,可以通过查询页表中的状态位来确定所要访问的页⾯是否存在于内存中。
每当所要访问的页⾯不在内存时,会产⽣⼀次缺页中断,此时操作系统会根据页表中的外存地址在外存中找到所缺的⼀页,将其调⼊内存。
缺页本⾝是⼀种中断,与⼀般的中断⼀样,需要经过4个处理步骤: 1. 保护CPU现场 2. 分析中断原因 3. 转⼊缺页中断处理程序进⾏处理 4. 恢复CPU现场,继续执⾏ 但是缺页中断时由于所要访问的页⾯不存在与内存时,有硬件所产⽣的⼀种特殊的中断,因此,与⼀般的中断存在区别: 1. 在指令执⾏期间产⽣和处理缺页中断信号 2. ⼀条指令在执⾏期间,可能产⽣多次缺页中断 3. 缺页中断返回时,执⾏产⽣中断的那⼀条指令,⽽⼀般的中断返回时,执⾏下⼀条指令2. 页⾯置换算法 进程运⾏过程中,如果发⽣缺页中断,⽽此时内存中有没有空闲的物理块是,为了能够把所缺的页⾯装⼊内存,系统必须从内存中选择⼀页调出到磁盘的对换区。
但此时应该把那个页⾯换出,则需要根据⼀定的页⾯置换算法(Page Replacement Algorithm)来确定。
2.1 最佳置换(Optimal, OPT)2.1.1 基本思想 置换以后不再被访问,或者在将来最迟才回被访问的页⾯,缺页中断率最低。
但是该算法需要依据以后各业的使⽤情况,⽽当⼀个进程还未运⾏完成是,很难估计哪⼀个页⾯是以后不再使⽤或在最长时间以后才会⽤到的页⾯。
所以该算法是不能实现的。
但该算法仍然有意义,作为很亮其他算法优劣的⼀个标准。
2.1.2 算例 采⽤固定分配局部置换的策略,嘉定系统为某进程在内存中分配了3个物理块,页⾯访问顺序为2、3、2、1、5、2、4、5、3、2、5、2。
假定系统未采⽤预调页策略,即未事先调⼊任何页⾯。
进程运⾏时,⼀次将2、3、1三个页⾯调⼊内存,发⽣3次缺页中断。
当第⼀次访问页⾯5时,产⽣第4次缺页中断,根据OPT算法,淘汰页⾯1,因为它在以后不会在使⽤了;第5次缺页中断时,淘汰页⾯2,因为它在5、3、2三个页⾯中,是在将来最迟才会被页⾯访问的页⾯。
//页面调度算法(FIFO)#include<stdio.h>#define TRUE 1#define FALSE 0#define MAX 7 // 页的最大数#define IN 4 // 在主存中的页数#define count 13 // 指令数量int P[IN]; // 表示已在主存中的页面int k; // 表示P数组中最先进入内存的页的位置typedef struct{int num; // 页号bool pre; // 标志int random; // 主存块号bool revise; // 修改标志int location; // 在磁盘上的位置}Page_Item;Page_Item Page_Record[MAX];// 指令数据结构typedef struct{char oper; // 操作符int Page_Num; // 页号int Unit_Num; // 单元号}Instruction;Instruction IC[count];// 初始化指令和页表void Init(){k=0; // 指向最先进入内存的页// 初始化页表Page_Record[0].num=0;Page_Record[0].pre=TRUE;Page_Record[0].random=5;Page_Record[0].revise=FALSE;Page_Record[0].location=011;Page_Record[1].num=1;Page_Record[1].pre=TRUE;Page_Record[1].random=8;Page_Record[1].revise=FALSE;Page_Record[1].location=012; Page_Record[2].num=2;Page_Record[2].pre=TRUE; Page_Record[2].random=9; Page_Record[2].revise=FALSE; Page_Record[2].location=013;Page_Record[3].num=3;Page_Record[3].pre=TRUE; Page_Record[3].random=1; Page_Record[3].revise=FALSE; Page_Record[3].location=021;Page_Record[4].num=4;Page_Record[4].pre=FALSE; Page_Record[4].random=0; Page_Record[4].revise=FALSE; Page_Record[4].location=022;Page_Record[5].num=5;Page_Record[5].pre=FALSE; Page_Record[5].random=0; Page_Record[5].revise=FALSE; Page_Record[5].location=023;Page_Record[6].num=6;Page_Record[6].pre=FALSE; Page_Record[6].random=0; Page_Record[6].revise=FALSE; Page_Record[6].location=121;// 初始化指令序列IC[0].oper='+';IC[0].Page_Num=0;IC[0].Unit_Num=70;IC[1].oper='+';IC[1].Page_Num=1;IC[1].Unit_Num=50;IC[2].oper='*';IC[2].Page_Num=2;IC[2].Unit_Num=15;IC[3].oper='w';IC[3].Page_Num=3;IC[3].Unit_Num=21;IC[4].oper='r';IC[4].Page_Num=0;IC[4].Unit_Num=56;IC[5].oper='-';IC[5].Page_Num=6;IC[5].Unit_Num=40;IC[6].oper='>';IC[6].Page_Num=4;IC[6].Unit_Num=53;IC[7].oper='+';IC[7].Page_Num=5;IC[7].Unit_Num=23;IC[8].oper='w';IC[8].Page_Num=1;IC[8].Unit_Num=37;IC[9].oper='r';IC[9].Page_Num=2;IC[9].Unit_Num=78;IC[10].oper='+';IC[10].Page_Num=4;IC[10].Unit_Num=1;IC[11].oper='r';IC[11].Page_Num=6;IC[11].Unit_Num=84;IC[12].oper='#';IC[12].Page_Num=0;IC[12].Unit_Num=0;}// 根据FIFO算法替换页,所需要的参数是被调入页的页结构体void replace(Page_Item page){// 被替换的页已经修改了if(TRUE==Page_Record[P[k]].revise){// 修改被调出页的存在标志Page_Record[P[k]].pre=FALSE;// 修改被调出页的修改标志Page_Record[P[k]].revise=FALSE;printf("调出%d页\n",P[k]);}// 将调入页的存在标志修改为TRUEpage.pre=TRUE;// 将被调出页的主存块号赋给调入页的主存块号page.random=Page_Record[P[k]].random;// 将调入页的页号赋给P[k]P[k]=page.num;printf("调入%d页\n",page.num);// 修改k指针k=(k+1)%IN;}// 指令执行过程void excute(){int i=0; // 指向当前正在执行的指令while('#'!=IC[i].oper){printf("执行%c指令,需%d页\n",IC[i].oper,IC[i].Page_Num);// 若正在执行的指令所需的页不在内存中if(FALSE==Page_Record[IC[i].Page_Num].pre){printf("该页不在内存中,请求调入.........\n");// 调用替换函数,调入所需的页replace(Page_Record[IC[i].Page_Num]);}// 修改指令对该页的操作if('+'==IC[i].oper||'*'==IC[i].oper||'-'==IC[i].oper||'>'==IC[i].oper){printf("%c指令修改了%d页\n",IC[i].oper,IC[i].Page_Num);// 修改该页的修改标志Page_Record[IC[i].Page_Num].revise=TRUE;}i++; // 指向下一条指令}for(i=0;i<IN;i++){if(TRUE==Page_Record[P[i]].revise){printf("%d页写回外存!\n",P[i]);}}}void main(){Init();excute();}。
中断的基本原理和处理流程。
中断是计算机中的一个重要概念,它是指CPU在执行程序的过程中,由于内部或外部的原因,需要暂时停止当前正在执行的程序,转而去执行另一段程序,这段程序执行完后,再返回到原来暂停的程序继续执行。
中断的基本原理和处理流程如下:
一、中断的基本原理
中断是一种由硬件或软件引起的、能改变处理器执行顺序的一种机制。
当中断发生时,处理器会停止当前的执行流,跳转到另一个预定义的地址,即中断服务程序(Interrupt Service Routine, ISR)的入口地址,去执行中断服务程序。
中断服务程序执行完毕后,处理器会恢复原来的执行流,继续执行被中断的程序。
二、中断的处理流程
中断请求:中断源向CPU发出中断请求信号。
中断响应:CPU响应中断请求,保护现场,将断点地址及有关状态信息压入堆栈或存入特定的寄存器中,以便在中断服务程序执行完毕后能正确地返回到原来的程序。
中断处理:CPU跳转到中断服务程序入口地址,执行中断服务程序。
中断服务程序负责处理中断事件,完成后需要清除中断标志位,以便CPU能继续响应其他中断。
中断返回:中断服务程序执行完毕后,CPU恢复现场,从堆栈或特定的寄存器中弹出断点地址及有关状态信息,然后返回到
原来的程序继续执行。
需要注意的是,中断的优先级是一个重要的概念。
在多个中断同时发生时,处理器会根据中断的优先级来决定先处理哪个中断。
高优先级的中断可以打断低优先级的中断,但同级或低优先级的中断不能打断高优先级的中断。
实验四处理缺页中断1.实验目的深入了解页式存储管理如何实现地址转换;进一步认识页式虚拟存储管理中如何处理缺页中断。
2.实验预备知识页式存储管理中的地址转换的方法;页式虚拟存储的缺页中断处理方法。
3.实验内容编写程序完成页式虚拟存储管理中地址转换过程和模拟缺页中断的处理。
实验具体包括:首先对给定的地址进行地址转换工作,若发生缺页则先进行缺页中断处理,然后再进行地址转换;最后编写主函数对所作工作进程测试。
假定主存64KB ,每个主存块1024字节,作业最大支持到64KB ,系统中每个作业分得主存块4块。
4.提示与讲解页式存储管理中地址转换过程很简单,假定主存块的大小为2n 字节,主存大小为2m'字节和逻辑地址m 位,则进行地址转换时,首先从逻辑地址中的高m-n 位中取得页号,然后根据页号查页表,得到块号,并将块号放入物理地址的高m'-n 位,最后从逻辑地址中取得低n 位放入物理地址的低n 位就得到了物理地址,过程如图1所示。
图1 页式存储管理系统地址转换示意图地址转换是由硬件完成的,实验中使用软件程序模拟地址转换过程,模拟地址转换的流程图如图2所示(实验中假定主存64KB ,每个主存块1024字节,即n=10,m'=16,物理地址中块号6位、块内地址10位;作业最大64KB ,即m=16,逻辑地址中页号6位、页内地址10位)。
在页式虚拟存储管理方式中,作业信息作为副本放在磁盘上,作业执行时仅把作业信息的部分页面装入主存储器,作业执行时若访问的页面在主存中,则按上述方式进行地址转换,若访问的页面不在主存中,则产生一个“缺页中断”,逻辑地址由操作系统把当前所需的页面装入主存储器后,再次执行时才可以按上述方法进行地址转换。
页式虚拟存储管理方式中页表除页号和该页对应的主存块号外,至少还要包括存在标志(该页是否在主存),磁盘位置(该页的副本在磁盘上的位置)和修改标志(该页是否修改过)。