《有理数的意义》复习课教案
- 格式:doc
- 大小:35.00 KB
- 文档页数:3
人教-有理数-复习教案第一章:有理数的概念与分类1.1 复习有理数的定义理解有理数的定义:有理数是整数和分数的统称,包括正有理数、负有理数和零。
举例说明有理数的不同类型:整数(正整数、负整数、零)、分数(正分数、负分数)。
1.2 复习有理数的分类明确有理数的分类:正有理数、负有理数和零。
掌握有理数的符号表示:正有理数用“+”表示,负有理数用“-”表示,零用“0”表示。
第二章:有理数的运算2.1 复习加法运算理解有理数加法的定义:两个有理数相加,保留它们的符号,并计算它们的绝对值的和。
掌握有理数加法的规则:同号相加,绝对值相加;异号相加,绝对值大的数减去绝对值小的数。
2.2 复习减法运算理解有理数减法的定义:减去一个有理数相当于加上它的相反数。
掌握有理数减法的规则:同号相减,绝对值相减;异号相减,绝对值大的数减去绝对值小的数。
第三章:有理数的乘法与除法3.1 复习乘法运算理解有理数乘法的定义:两个有理数相乘,保留它们的符号,并计算它们的绝对值的乘积。
掌握有理数乘法的规则:同号相乘,绝对值相乘;异号相乘,绝对值相乘后结果为负。
3.2 复习除法运算理解有理数除法的定义:除以一个有理数相当于乘以它的倒数。
掌握有理数除法的规则:除以一个非零有理数,先乘以它的倒数;如果除数为零,结果为未定义。
第四章:有理数的乘方与开方4.1 复习乘方运算理解有理数乘方的定义:一个有理数的乘方是指将这个有理数连乘若干次。
掌握有理数乘方的规则:正数的任何次幂都是正数;负数的奇数次幂是负数,负数的偶数次幂是正数;零的任何正整数次幂都是零。
4.2 复习开方运算理解有理数开方的定义:一个有理数的开方是指找到一个非负数,使其平方等于这个有理数。
掌握有理数开方的规则:非负数的开方是正数;负数的开方是未定义。
第五章:有理数的应用5.1 复习有理数的解决问题理解有理数在实际问题中的应用:使用有理数表示数量、距离、温度等。
掌握有理数解决问题的步骤:明确问题中的有理数,运用有理数的运算规则进行计算,得出答案。
有理数教案初中一、教学目标:1. 让学生理解有理数的定义,掌握有理数的分类及特点。
2. 培养学生运用有理数解决实际问题的能力。
3. 引导学生掌握有理数的运算方法,提高学生的数学运算能力。
二、教学内容:1. 有理数的定义及分类2. 有理数的运算(加法、减法、乘法、除法)3. 有理数的应用三、教学重点与难点:1. 重点:有理数的定义、分类、运算及应用。
2. 难点:有理数的运算规律及应用。
四、教学方法:1. 采用情境教学法,让学生在实际问题中感受有理数的重要性。
2. 运用互动教学法,引导学生参与课堂讨论,提高学生的思维能力。
3. 采用练习法,巩固所学知识,提高学生的实际应用能力。
五、教学过程:1. 导入:通过生活中的实例,如温度、海拔等,引出有理数的概念。
2. 新课讲解:讲解有理数的定义、分类及特点。
举例说明有理数在实际生活中的应用。
3. 课堂互动:让学生举例说明有理数的运算方法,引导学生发现运算规律。
4. 练习巩固:布置课堂练习题,让学生运用所学知识解决实际问题。
5. 总结:对本节课内容进行总结,强调有理数在实际生活中的重要性。
六、课后作业:1. 复习本节课所学内容,巩固有理数的定义、分类及运算方法。
2. 完成课后练习题,提高运用有理数解决实际问题的能力。
3. 思考:有理数在生活中的应用,举例说明。
七、教学评价:1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 课后作业:检查学生作业完成情况,评估学生对课堂所学知识的掌握程度。
3. 单元测试:定期进行单元测试,了解学生对有理数的整体掌握情况。
通过本节课的学习,让学生掌握有理数的基本概念、分类、运算及应用,培养学生运用有理数解决实际问题的能力,为后续数学学习奠定基础。
《有理数》复习教案一、教学目标1.理解有理数的概念及其特点;2.掌握有理数的加减法运算;3.能够运用有理数的知识解决实际问题;4.培养学生的逻辑思维能力和解决问题的能力。
二、教学重难点1.有理数的加减法运算;2.运用有理数解决实际问题。
三、教学准备课件、教材、黑板、彩色笔、教学设计、教学示例。
四、教学过程1.导入(1)引入新课:今天我们要进行《有理数》的复习,有理数是我们数学中非常重要的一个概念,你们对有理数还有什么印象吗?(2)激发学生学习兴趣:有理数是指可以表示为两个整数比值的数,包括整数、分数和小数。
有理数的特点是什么?2.有理数的基本知识回顾(1)有理数的定义:有理数是指可以表示为两个整数比值的数。
(2)有理数的特点:可以用分数、小数或整数的形式表示。
(3)有理数的实例:-3,0,1/2,3.14,-0.25等。
3.有理数的加法(1)有理数的加法规则:符号相同,绝对值相加,符号不变;符号不同,绝对值相减,结果的符号取绝对值大的数的符号。
(2)示例:计算5/6+(-1/3)=?解:两数分母通分得到5/6+(-2/6)=3/6=1/2(3)教师讲解示例,学生跟随演算,巩固加法运算规则。
4.有理数的减法(1)有理数的减法规则:a-b=a+(-b),即减法可以转化为加法。
(2)示例:计算-3.5-(-1.25)=?解:转化为加法-3.5+1.25=-2.25(3)教师讲解示例,学生跟随演算,巩固减法运算规则。
5.有理数的实际运用(1)例题一:小华向东走了3千米,然后向西走了2.5千米,最后又向东走了1.2千米,小华现在离出发地还有多远?解:3-2.5+1.2=1.7答:小华离出发地距离为1.7千米。
(2)例题二:小明喂鸟食,第一次喂了50克,第二次喂了3/10千克,第三次喂了1/4千克,小明一共喂了多少食物?解:50克+3/10千克+1/4千克=50克+30克+25克=105克答:小明一共喂了105克食物。
《有理数》全章复习教学用时:二课时教学目标1.理解正负数的意义,掌握有理数的概念.2.理解并会用有理数的加、减、乘、除和乘方五种运算法则进行有理数的混合运算.3.学会借助数轴来理解绝对值、有理数比较大小等相关知识.4. 理解科学记数法,近似数的相关概念并能灵活应用;5. 体会数学知识中体现的一些数学思想.课型:复习教学重点1.掌握有理数的概念.2.理解并会用有理数的加、减、乘、除和乘方五种运算法则进行有理数的混合运算.3.学会借助数轴来理解绝对值、有理数比较大小等相关知识.4. 理解科学记数法,近似数教学难点:1.有理数比较大小2.准确地掌握有理数的运算顺序和运算中的符号问题.教具:三角板,圆规,多媒体。
教法:讲练结合教学过程设计【知识网络】有理数的分类:(1)按定义分类:(2)按性质分类:有理数“0”的作用: 作用举例表示数的性质0是自然数、是整数,是有理数表示没有3个苹果用+3表示,没有苹果用0表示表示某种状态 00C 表示冰点。
表示正数与负数的界点 0非正非负,是一个中性数一、【正负数】 [基础练习]1把下列各数填在相应额大括号内:1,-0.1,-789,25,0,-20,-3.14,-590,6/7〃正整数{ …};〃正有理数{ …};〃负有理数{ …}第一章[基础知识]〃负整数{…};〃自然数{…};〃正分数{…}〃负分数{…}2某种食用油的价格随着市场经济的变化涨落,规定上涨记为正,则-5.8元的意义是;如果这种油的原价是76元,那么现在的卖价是。
二、【数轴】规定了、、的直线,叫数轴[基础练习]1如图所示的图形为四位同学画的数轴,其中正确的是()2在数轴上画出表示下列各数的点,并按从大到小的顺序排列,用“>”号连接起来。
4,-|-2|,-4.5,1,03下列语句中正确的是()A数轴上的点只能表示整数B数轴上的点只能表示分数C数轴上的点只能表示有理数D所有有理数都可以用数轴上的点表示出来4、①比-3大的负整数是_______;②已知m是整数且-4<m<3,则m为_______________。
《1.2.1 有理数的概念》教学设计教学内容分析本节课的内容是有理数的概念,是对所学习过的数的范围的一次扩充,并且是以后学习数轴、相反数、绝对值以及有理数运算的基础,因此在初中数学知识体系中,有理数就显得很重要。
学习者分析学生在此之前已经有自然数、整数、分数、小数、正数、负数的概念,引入有理数的概念,只是进一步加深学生对之间各类数的学习,从而对数有了一个更广扩的认识。
教学目标 1.理解有理数的意义;2.掌握有理数的分类。
教学重点理解有理数的概念。
教学难点掌握有理数的分类。
学习活动设计教师活动学生活动环节一:学习目标教师活动1:师出示学习目标:1.理解有理数的意义;2.掌握有理数的分类。
学生活动1:学生齐声读本课的学习目标活动意图说明:明确本节课的学习目标,使教师的教和学生的学有效结合在一起,激发学生的学习动力,提高学生课堂参与的兴趣与积极性。
环节二:新知导入教师活动2:问题1:正数是大于_______的数;负数是正数前加上符号_______的数;0既______正数,也______负数.答案:0,“-”(负),不是,不是问题2:有时,为了明确表达与负数的相反意义,在正数的前面也加上符号_____________号.学生活动2:学生积极回答老师出示的问题答案:“+”(正)问题3:如果一个问题中出现具有相反意义的量,就可以用____________分别表示它们. 答案:正数和负数活动意图说明:通过复习,引导学生巩固上节课所学习的知识,并为有理数的引入做好铺垫. 环节三:新知讲解 教师活动3:思考:在小学阶段和上一节中,我们认识了很多数。
回想一下,到目前为止,我们认识了哪些数? 预设1:正整数:如1,2,3,… 零:0负整数:如-1,-2,-3,…; 指出:正整数、零、负整数统称为整数预设2:正分数:如 12,23,157,0.1,5.32,0.3… 负分数:如-52,-23,-17, -0.5, -150.5,…引导:0.1=110,-0.5=−12, 0.3 = 13 ,事实上,有限小数和无限循环小数都可以化为分数,因此它们也可以看成分数。
人教版七年级数学上册第一章《有理数》总复习教案第一章《有理数》总复习一、内容分析小结与复习分作两个部分。
第一部分概述了正数与负数、有理数、相反数、绝对值等概念,以及有理数的加、减、乘、除、乘方的运算方法与运算律,从而给出全章内容的大致轮廓,第二部分针对这一章新出现的内容、方法等提出了5个问题;通过这5个问题引发学生的思考,主动进行新的知识的建构。
二、课时安排:小节与复习的要求是要把这一章内容系统化,从而进一步巩固和加深理解学习内容。
本章的主要内容可以概括为有理数的概念与有理数的运算两部分。
因此,本章总复习的二课时这样安排(测验课除外):第一课时复习有理数的意义及其有关概念;第二课时复习有理数的运算。
三、教学方法的确定:设计典型例题,检测学生知识,科学地进行小结与归纳。
四、教学安排:第一课时:本节课将复习有理数的意义及其有关概念。
其内容包括正负数、有理数、数轴、有理数大小的比较、相反数与绝对值等。
在教学过程中,应利用数轴来认识、理解有理数的有关概念,借助数轴,把这些概念串在一起形成一个用以描述有理数特征的系统。
另外,在运用有理数概念的同时,还应注意纠正可能出现的错误认识。
一、教学目标;1.理解五个重要概念:有理数、数轴、倒数、绝对值、倒数。
2.使学生提高区分概念的能力,正确运用概念解决问题。
3、能正确比较两个有理数的大小。
二、教学重点:有理数五个概念的理解与应用:有理数、数轴、倒数、绝对值、倒数。
三、教学难点:对绝对值概念的理解与应用。
四、教学过程:(一)知识梳理:1.正数和负数:(给出四个问题,帮助学生理解负数的必要性及其在生产生活中的应用。
)回答下列问题(1)温度为-4℃是什么意思?(2)如果向正北规定为正,那么走-70米是什么意思?(3)21世纪的第一年,日本的服务出口额比上一年增长了-7.3%,这里的“服务出口额比上一年增长了-7.3%”是什么意思?(4)请同学们谈一谈,为什么要引入负数?你还能举出生活中有关负数的例子吗?2.有理数的分类:(通过两个问题让学生掌握有理数的两种分类方法,理解有理数的含义。
教案有理数单元复习一、教学目标:1. 回顾和巩固有理数的概念、性质和运算规则。
2. 提高学生对有理数的理解和运用能力。
3. 培养学生的数学思维和解决问题的能力。
二、教学内容:1. 有理数的定义和分类。
2. 有理数的性质:相反数、绝对值、倒数。
3. 有理数的运算:加法、减法、乘法、除法。
4. 有理数的混合运算。
三、教学方法:1. 采用问题引导法,通过提问激发学生的思考和讨论。
2. 使用实例和练习题,让学生通过实践来理解和掌握有理数的运算规则。
3. 鼓励学生自主学习和合作学习,培养学生的解决问题能力。
四、教学步骤:1. 复习有理数的定义和分类,让学生回忆起有理数的概念。
2. 通过示例和练习题,复习有理数的性质,如相反数、绝对值和倒数。
3. 复习有理数的运算规则,包括加法、减法、乘法和除法。
4. 提供一些混合运算的题目,让学生运用所学的运算规则进行计算。
5. 通过练习题和问题,巩固学生对有理数的理解和运用能力。
五、教学评价:1. 通过课堂提问和练习题的回答,评估学生对有理数的理解和运用能力。
2. 观察学生在练习中的表现,评估他们的数学思维和解决问题的能力。
3. 鼓励学生进行自我评价和同伴评价,促进他们的自主学习和合作学习。
教学资源:1. 有理数的定义和分类的资料。
2. 有理数的性质和运算规则的示例和练习题。
3. 混合运算的题目和解答。
教学时间:1课时(40分钟)六、教学活动:1. 开展小组讨论,让学生分享彼此对有理数的认识和理解。
2. 组织学生进行有理数运算的比赛,提高学生的运算速度和准确性。
3. 引导学生运用有理数解决实际问题,培养学生的应用能力。
七、教学重点与难点:1. 教学重点:有理数的定义、性质和运算规则。
2. 教学难点:有理数的混合运算和实际应用。
八、教学准备:1. 准备有理数的教学PPT,展示相关概念、性质和运算规则。
2. 准备一些有关有理数运算的练习题和实际应用问题。
3. 准备黑板和粉笔,用于板书和讲解。
有理数复习第一课时教学目标1.复习有理数的意义及其有关概念。
其内容包括正负数、有理数、数轴、有理数大小的比较、相反数与绝对值等。
通过复习使学生系统掌握有理数这一章的有关基本概念;2.使学生提高辨别概念能力;3.利用数轴来认识、理解有理数的有关概念.教学重难点理解掌握有理数的有关概念教学过程一、复习提问:1、什么叫数轴?画出一个数轴来。
2、什么是有理数?有理数集包括哪些数?有理数和数轴上的点有什么关系?答:整数和分数统称为有理数。
有理数的分类:整数、分数统称有理数;整数又包括正整数、零、负整数,分数又包括正分数与负分数。
每一个有理数都可以用数轴上唯一确定的点来表示。
但反过来以后可以看到,数轴上任一点并不一定表示有理数。
表示正有理数的点在原点的右边,表示零的点是原点,表示负有理数的点在原点的左边。
3、 观察数轴分别说出A,B,C,D,E,F 各点表示的数是什么?4、 点A 与F,点B 与E 所表示的数分别存在什么关系?(互为相反数)互为相反数的几何意义?(互为相反数就是在原点两侧且到原点等距的两点所表示的数。
)相反数的性质?(只有符号不同的两个数是互为相反数,a 的相反数为-a ;) 各点所表示的数的绝对值是多少?绝对值的几何意义?(在数轴上,表示数a 的点到原点的距离叫做数a 的绝对值)绝对值的代数意义?(=a (a >0),=0(a=0),=-a (a <0)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零。
5、 说出各数的倒数?(一个数除以1所得的商是这个数的倒数,零没有倒数)6、 比较各点表示的数的大小?方法一:零大于一切正数,而小于一切负数;两个负数,绝对值大的反而小。
方法二:在数轴上,右边的点表示的数总比左边的点表示的数大。
其余相关概念:(1)代数和:a a a把有理数的加、减运算统一写成加法形式,成为几个有理数的和,通常称为代数和;省略加号的和的形式。
(2)去括号与添括号:去括号法则:括号前是“+”号时,将括号连同它前边的“+”号去掉,括号内各项都不变;括号前是“-”号时,将括号连同它前边的“-”去掉,括号内各项都要变号。
《有理数的意义》复习课教案
金苗
教学目标:
1、 理解有理数的概念、具有相反意义的量
2、 理解有理数的分类
3、 掌握相反数、绝对值、、
4、 掌握数轴三要素
教学重点:
相反数、绝对值理解与运用
教学难点:
数形结合思想与分类思想的运用
教学过程:
一、创设情景:
设计意图:用猜谜语的形式引入复习课,激发学生的积极性。
二、有理数概念的复习
1 、如果向东走8千米记作+8千米,向西走5千米记作-
5千米,那么下列各数分别表示什么?
(1)+4千米; (2)-3.5 千米; (3)0千米
2、把以下数填在相应的大括号里。
1, ,8.9,-7, ,+10,0; 正整数集合{ …} 负分数集合{ …}
正数集合{ …}
非负有理数集合{ …}
(学生口答)
师:请问你能将有理数进行分类吗?
生回答,师板书。
三、数与形的大碰撞——数轴
1、画出数轴、并用数轴上的点表示下列各数:
-1.5 , -6 ,2 , +6 ,-3 ,3
(学生作图,教师展示)
提问一:你能知道数轴三要素吗?(原点、正方向、单位长度)
提问二:6和-6有什么关系?(互为相反数)
提问三:数轴上还有什么相反数?(3与-3)
提问四:什么是相反数?表示相反数的点在数轴上有什么位置特征?
提问五:什么是绝对值?
提问六:比较这些数的大小,用“<”号连接起来(利用数轴)
提问七:比较有理数大小还可以用什么方法?(利用法则)
2、整理知识
1、规定了————、————和———的———叫做数轴.
2、只有符号不同的两个数称互为———。
【在数轴上,表示互为相反数的两个数的点—————————】
3、一个数a 的绝对值就是数轴上表示数a 的点与原点的
【一个正数的绝对值是 ,一个负数的绝对值是 ,
54-6
5-
零的绝对值是 】
4、在数轴上表示的两个数,右边的数总比左边的数____.
正数都___零,负数都___零,正数___负数.两个负
数,绝对值___的反而小.
小结:数缺形时少直观,形缺数时难入微。
——华罗庚
四、相反数与绝对值
1、
2、完成下列对话 五、能
力训
练 能力大
擂台(第一回合)
(1)任何数的绝对
值都是
( )
A 正数
B 负数
C 非负数
D 非正数
(2)绝对值等于它本身的数( )
A 正数
B 负数
C 非负数
D 非正数
(3绝对值不大于3的正整数有( )
A 8个
B 7个
C 4个
D 3个
能力大擂台(第二回合)
1、 绝对值小于2的整数有________。
绝对值等于它本身的数有___________。
绝对值不大于3的负整数有__________。
2、(1)大于3.142的负整数有 个;
(2)小于2.9的正整数有 个;
(3)大于-9.5的负整数有 个.
能力大擂台(第三回合)
(1)若︱a ︱=3,则a =_____
(2)某同学学习编程以后,编了一个关于绝对值的程序,当
输入一个数值后,屏幕输出的结果总比该数的绝对值小1,某
同学输入-7后,把输出的结果再次输入,则最后屏幕输出的
结果是多少?
生活中的有理数
某车间生产一批圆形机器零件,规定直径为30毫米,从中抽取6件进行检验,比规定直径长的毫米数记做正数,比规定直径短的毫米数记做负数,检查记录如下:
选择哪个零件好些?
怎样用学过的绝对值知识来说明怎么样的零件好些?
思维大挑战
1.已知,有理数a,b在数轴上的位置如图所示,那么a, b, -a, -b的大小关系是
________________.(如图,见课件)
2、下面给出的数轴, 解答下面的问题:(见课件)
(1). 若A与B互为相反数,请问A、B分别代表什么数?
(2). 画出与点A的距离为2的点?并标出该点的数?
应用地带
3、已知| a | = 4 ,| b | = 3 且a > b,
求: a+b.
六:小结:
提问:同学们,有理数王国游玩到此先告一个段落,你们有什么收获可以和大家分享吗?七:作业:作业本、课时特训
反思:本节课设计新颖,引入活泼,学生的积极性强,选题合理,有层次,能面向全体,又能进行阶梯教学,重点、难点落实。
但在教学中也发现,学生的基础概念不扎实,对于数形结合的运用能力不够强,分类思想不明确,综合运用能力有待提高。