石大流量计实验报告
- 格式:docx
- 大小:119.11 KB
- 文档页数:14
流量计(中国石油大学流体力学实验报告)中国石油大学(华东)流量计实验报告实验日期:成绩:班级:学号:姓名:教师:同组者:实验三、流量计实验一、实验目的(填空)1.掌握、文丘利节流式流量计的工作原理及用途;2.测定孔板流量计的流量系数?,绘制流量计的3.了解两的结构及工作原理,掌握其使用方法。
二、实验装置1、在图1-3-1下方的横线上正确填写实验装置各部分的名称:本实验采用管流综合实验装置。
管流综合实验装置包括六根实验管路、电磁流量计、文丘利流量计、孔板流量计,其结构如图1-3-1示。
F1——; F2——;F3——C——; V——; K——图1-3-1 管流综合实验装置流程图1说明:本实验装置可以做流量计、沿程阻力、局部阻力、流动状态、串并联等多种管流实验。
其中V8为局部阻力实验专用阀门,V10为排气阀。
除V10外,其它阀门用于调节流量。
另外,做管流实验还用到汞-水压差计(见附录A)。
三、实验原理1.文丘利流量计文丘利管是一种常用的量测有压管道流量的装置,见图1-3-2属压差式流量计。
它包括收缩段、喉道和扩散段三部分,安装在需要测定流量的管道上。
在收缩段进口断面1-1和喉道断面2-2上设测压孔,并接上比压计,通过量测两个断面的就可计算管道的理论流量Q ,再经修正得到实际流量。
2.孔板流量计如图1-3-3,在管道上设置孔板,在流动未经孔板收缩的上游断面1-1和经孔板收缩的下游断面2-2上设测压孔,并接上比压计,通过量测两个断面的测压管水头差,可计算管道的理论流量Q ,再经修正得到实际流量。
孔板流量计也属压差式流量计,其特点是结构简单。
图1-3-2 文丘利流量计示意图图1-3-3 孔板流量计示意图3.理论流量水流从1-1断面到达2-2断面,由于过水断面的收缩,流速增大,根据恒定总流能量方程,若不考虑水头损失,速度水头的增加等于测压管水头的减小(即比压计液面高差?h),因此,通过量测到的?h建立了两断面平均流速v1和v2之间的一个关系:h?h1?h2?(z1?p1)?(z2?p2)=2?2v22g??1v122g如果假设动能修正系数?1??2?1.0,则最终得到理论流量为:Q理2式中K?,A为孔板锐孔断面面积。
流量计性能测定实验报告流量计性能测定实验报告一、引言流量计是工业生产中常用的仪表之一,用于测量液体或气体的流量。
准确测量流量对于工业生产的稳定运行至关重要。
本实验旨在通过对不同类型的流量计进行性能测定,评估其准确性和适用性。
二、实验目的1. 测定不同类型流量计的准确性。
2. 比较不同类型流量计的适用范围。
3. 分析流量计的工作原理和性能特点。
三、实验装置和方法1. 实验装置:实验装置包括液体流量计和气体流量计。
液体流量计采用电磁流量计和涡街流量计,气体流量计采用差压流量计和浮子流量计。
2. 实验方法:分别使用不同类型的流量计进行流量测量,记录测量结果。
同时,通过改变流量计的工作条件,比如流速和介质压力,观察流量计的响应情况。
四、实验结果与分析1. 电磁流量计:在不同流速和介质压力下,电磁流量计的测量结果基本稳定,准确性较高。
然而,当介质中存在杂质或气泡时,电磁流量计的测量结果可能会受到干扰。
2. 涡街流量计:涡街流量计对于流速变化较大的液体测量具有较高的准确性。
然而,在低流速下,涡街流量计的测量结果可能会出现较大误差。
3. 差压流量计:差压流量计适用于气体流量测量,对于流速变化较大的气体具有较高的准确性。
然而,差压流量计对于液体流量测量的准确性较差。
4. 浮子流量计:浮子流量计适用于液体流量测量,对于流速变化较小的液体具有较高的准确性。
然而,当流速变化较大时,浮子流量计的测量结果可能会出现较大误差。
五、实验结论1. 电磁流量计和涡街流量计适用于液体流量测量,具有较高的准确性和稳定性。
2. 差压流量计适用于气体流量测量,对于流速变化较大的气体具有较高的准确性。
3. 浮子流量计适用于液体流量测量,对于流速变化较小的液体具有较高的准确性。
4. 不同类型的流量计在不同工况下的准确性和稳定性可能存在差异,需要根据实际应用需求进行选择。
六、实验总结本实验通过对不同类型的流量计进行性能测定,评估了其准确性和适用性。
中国石油大学传感器与检测基础实验报告班级: 自动化1602 姓名: 谢清涛 学号: 1605010224---------------------------------------------------------------------------------------------------------------------------------------实验三 流量测量仪表结构课一、实验目的:1、了解各种流量仪表的结构、原理。
2、熟悉各种流量测量仪表的特点、选择、安装及使用。
二、实验内容: 一、磁翻转式物位计随管内液位升降,利用磁性的吸引,使得带有磁铁的红白两面分明的翻板或翻球产生翻转。
有液体的位置红色朝外,无液体的位置白色朝外。
1)色彩分明,观测效果好;2)可替代玻璃板或玻璃管液位计,用来检测有压容器或敞口容器内的液位; 3)可就地指示,也可附加报警及信号远传功能 4)主要用于中小容器和生产设备的液位或界面的测量。
5附近不可有强磁场。
二、浮筒(沉筒)物位计原理:筒液位计的原理利用浮筒沉浸在液体里,根据浮筒被浸的程度不同,则浮筒所受的浮力不同,只要检测出浮筒所浮力的变化,就可以知道液位的高低。
特点:1)量程由浮筒长度决定。
国产:300、500、800、1200、1600、2000mm 2)只能用于测量轻、净介质。
3)当被测介质密度变化时,必须进行密度修正。
4)精度0.5~1.0级,可测液位、界位。
三、差压式物位计利用流体静压原理,当容器内液位改变时,由液柱产生的静压也相应变化的原理而工作的。
对当被测介质有冷凝(密闭容器液位)负压侧有高度不等的液柱存在,使测量产生误差,可采用实验日期: 18.11.13 成 绩:隔离罐。
对于被测介质:腐蚀、沉淀、易结晶、粘度大时,引压管易被堵塞或腐蚀,可采用法兰式压力/差压变送器四、超声波物位计超声波物位计是一种非接触式物位测量仪表,可用于测量各种容器内的物位,也可以用于水池、水渠、水库、江河湖海水位的测量。
流量计标定实验报告流量计标定实验报告摘要:本实验旨在通过对流量计的标定实验,探究其在不同流量下的准确性和稳定性。
实验采用了标准流量计作为对照组,对比不同流量计的读数,并分析其误差和可靠性。
实验结果表明,在一定范围内,流量计的读数具有较高的准确性和稳定性。
引言:流量计是工业生产和实验室研究中常用的仪器,用于测量液体或气体通过管道的流量。
准确的流量测量对于工业生产的控制和实验研究的可靠性至关重要。
因此,流量计的标定是保证其准确性和可靠性的重要步骤。
实验方法:1. 实验仪器和材料:- 流量计:本实验使用了三种不同型号的流量计,分别为A型、B型和C型。
- 标准流量计:作为对照组,使用了一台已经标定过的标准流量计。
- 水源:使用自来水作为实验介质。
- 流量计支架和连接管道。
2. 实验步骤:a. 将标准流量计连接到流量计支架上,并将其与待测流量计并联连接。
b. 打开水源,使水通过流量计流动,并记录标准流量计和待测流量计的读数。
c. 逐渐调整水源流量,记录不同流量下的标准流量计和待测流量计的读数。
d. 重复实验三次,取平均值作为最终结果。
实验结果与讨论:在实验过程中,我们分别对A型、B型和C型流量计进行了标定实验,并与标准流量计的读数进行对比。
实验结果显示,A型流量计在低流量下的读数与标准流量计相比存在一定的偏差,但在高流量下的读数较为接近。
B型流量计在不同流量下的读数与标准流量计的读数相差较小,表现出较高的准确性和稳定性。
C型流量计在低流量下的读数与标准流量计相比存在较大的误差,但在高流量下的读数与标准流量计的读数较为接近。
通过对实验结果的分析,我们可以得出以下结论:1. 不同型号的流量计在不同流量下的准确性和稳定性存在差异。
在选择流量计时,需要根据实际需求和使用环境来进行合理选择。
2. 流量计的读数误差主要集中在低流量范围内,可能与流量计的设计原理和流体特性有关。
因此,在低流量下需要更加谨慎地使用流量计。
一、实验目的1. 了解流量计的构造、工作原理和主要特点;2. 掌握流量计的标定方法;3. 通过标定实验,了解流量计的测量误差,提高测量精度;4. 培养实验操作技能和数据处理能力。
二、实验原理流量计是一种用于测量流体流量的仪表。
本实验采用孔板流量计进行标定,其工作原理如下:当流体通过孔板时,在孔板前后产生压差,压差与流量之间的关系可以用伯努利方程进行描述。
通过测量孔板前后的压差,即可计算出流体的流量。
伯努利方程为:ρgh = 1/2ρv^2 + P/ρ其中,ρ为流体密度,g为重力加速度,h为流体高度,v为流体流速,P为流体压强。
孔板流量计的流量系数C可以表示为:C = A1/A2 √(2gh)其中,A1为孔板上游面积,A2为孔板下游面积,h为孔板前后压差。
通过测量孔板前后的压差,即可计算出流量系数C,进而计算出流量。
三、实验装置1. 实验装置:孔板流量计、U型管压差计、水泵、水箱、流量计、调节阀门;2. 实验仪器:秒表、量筒、电子秤、电子天平、游标卡尺。
四、实验步骤1. 将实验装置连接好,检查各部分连接是否牢固,确保实验安全;2. 将水箱注满水,关闭出口阀门,打开水泵,调节阀门,使流体通过孔板流量计;3. 使用U型管压差计测量孔板前后的压差,记录数据;4. 使用秒表记录流体通过孔板的时间,计算流量;5. 重复步骤3和4,进行多次实验,取平均值;6. 使用电子秤和游标卡尺测量孔板上游和下游面积,计算面积比;7. 计算流量系数C;8. 根据流量系数C和压差,计算流量;9. 对比实际流量和计算流量,分析误差。
五、实验结果与分析1. 实验数据记录如下:实验次数 | 压差 (Pa) | 流量 (m^3/s) | 面积比 | 流量系数C | 计算流量(m^3/s)------- | -------- | ---------- | ------ | ---------- | -------------1 | 1000 | 0.5 | 0.8 | 0.6 | 0.482 | 1200 | 0.6 | 0.8 | 0.7 | 0.563 | 1400 | 0.7 | 0.8 | 0.8 | 0.642. 实验结果分析:通过对比实际流量和计算流量,可以看出实验存在一定的误差。
物理观察实验报告
流量计
一、 关于流量计
流量计是用以测量管路中流体流量(单位时间内通过的流体体积)的仪
表。
二、 流量计原理(如图1)
转子流量计由两个部件组成,转子流量计一件是从下向上逐渐扩大的锥
形管;转子流量计另一件是置于锥形管中且可以沿管的中心线上下自由
移动的转子。
转子流量计当测量流体的
流量时,被测流体从锥形管下端流入,
流体的流动冲击着转子,并对它产生一
个作用力(这个力的大小随流量大小而
变化);当流量足够大时,所产生的作
用力将转子托起,并使之升高。
同时,
被测流体流经转子与锥形管壁间的环
形断面,从上端流出。
当被测流 体流
动时对转子的作用力,正好等于转子在流体中的重量时(称为显示重量),转
子受力处于平衡状态而停留在某一高度。
分析表明;转子在锥形管中的
位置高度,与所通过的流量有着相互对应的关系。
因此,观测转子在锥
形管中的位置高度,就可以求得相应的流量值。
三、 流量计的演示过程
1. 将流量计竖直放置。
2. 将流体通入 。
3. 观测读数。
四、 生活中的流量计(如图2)
流量仪表是过程自动化仪表与装置中的大类仪表
之一,它被广泛适用于冶金、电力、煤炭、化工、
石油、交通、建筑、轻纺、食品、医药、农业、环
境保护及人民日常生活等国民经济各个领域,是发展工农业生产,节约能源,改进产品质量,提高经济效益和管理水平的重要工具在国民经济中占有
重要的地位。
图1 流量计示意图 图2 水表。
流量计的标定实验报告一、引言流量计是现代工业中常用的仪器设备,用于测量液体或气体的流量。
为了保证流量计的准确性,需要进行定期的标定实验。
本报告将详细介绍流量计的标定实验过程及结果。
二、实验目的1. 确定流量计的准确性;2. 确认流量计的稳定性;3. 评估流量计在不同工况下的测量误差。
三、实验原理本次实验采用热式流量计进行标定。
热式流量计通过测量液体或气体通过传感器时产生的热传导来确定其质量流率。
热式流量计主要包括传感器、加热元件和温度传感器三部分。
四、实验步骤1. 准备工作:将所需设备和试剂准备好,确保所有设备干净无杂质。
2. 安装:将热式流量计安装到测试管道上,并连接相应管道。
3. 标定:根据不同工况设置不同参数,并记录数据。
4. 数据处理:根据记录数据进行统计和分析,得出测量误差等结果。
5. 结果分析:根据数据处理结果评估流量计的准确性和稳定性,并确定其适用范围。
五、实验结果1. 测量误差:通过数据处理得出,流量计在不同工况下的测量误差分别为±0.5%、±1%、±2%。
2. 稳定性:经过长时间测试,流量计稳定性良好,误差变化范围在±0.2%以内。
3. 准确性:经过对比测试,流量计与标准流量计的误差在可接受范围内。
六、结论本次实验结果表明,热式流量计具有较高的准确性和稳定性,在不同工况下的测量误差也在可接受范围内。
因此,在实际应用中可以放心使用。
七、建议为了保证流量计的准确性和稳定性,建议定期进行标定实验,并根据实验结果进行调整和维护。
同时,在使用过程中要注意保持设备清洁,避免杂质进入影响测量结果。
流量计性能测定实验报告-精品2020-12-12【关键字】情况、方法、系统、务必、继续、平衡、合理、掌握、了解、规律、特点、需要、工程、作用、标准、关系、调节、指导篇一:孔板流量计性能测定实验数据记录及处理篇二:实验3 流量计性能测定实验实验3 流量计性能测定实验一、实验目的⒈了解几种常用流量计的构造、工作原理和主要特点。
⒉掌握流量计的标定方法(例如标准流量计法)。
⒊了解节流式流量计流量系数C随雷诺数Re的变化规律,流量系数C的确定方法。
⒋学习合理选择坐标系的方法。
二、实验内容⒈通过实验室实物和图像,了解孔板、1/4园喷嘴、文丘里及涡轮流量计的构造及工作原理。
⒉测定节流式流量计(孔板或1/4园喷嘴或文丘里)的流量标定曲线。
⒊测定节流式流量计的雷诺数Re和流量系数C的关系。
三、实验原理流体通过节流式流量计时在流量计上、下游两取压口之间产生压强差,它与流量的关系为:式中:被测流体(水)的体积流量,m3/s;流量系数,无因次;流量计节流孔截面积,m2;流量计上、下游两取压口之间的压强差,Pa ;被测流体(水)的密度,kg/m3 。
用涡轮流量计和转子流量计作为标准流量计来测量流量VS。
每一个流量在压差计上都有一对应的读数,将压差计读数△P和流量Vs绘制成一条曲线,即流量标定曲线。
同时用上式整理数据可进一步得到C—Re关系曲线。
四、实验装置该实验与流体阻力测定实验、离心泵性能测定实验共用图1所示的实验装置流程图。
⒈本实验共有六套装置,流程为:A→B(C→D)→E→F→G→I 。
⒉以精度0.5级的涡轮流量计作为标准流量计,测取被测流量计流量(小于2m3/h流量时,用转子流量计测取)。
⒊压差测量:用第一路差压变送器直接读取。
图1 流动过程综合实验流程图⑴—离心泵;⑵—大流量调节阀;⑶—小流量调节阀;⑷—被标定流量计;⑸—转子流量计;⑹—倒U管;⑺⑻⑽—数显仪表;⑼—涡轮流量计;⑾—真空表;⑿—流量计平衡阀;⒁—光滑管平衡阀;⒃—粗糙管平衡阀;⒀—回流阀;⒂—压力表;⒄—水箱;⒅—排水阀;⒆—闸阀;⒇—截止阀;a—出口压力取压点;b—吸入压力取压点;1-1’—流量计压差;2-2’—光滑管压差;3-3’—粗糙管压差;4-4’—闸阀近点压差; 5-5’—闸阀远点压差;6-6’—截止阀近点压差;7-7’—截止阀远点压差;J-M—光滑管;K-L —粗糙管五、实验方法:⒈按下电源的绿色按钮,使数字显示仪表通电预热,调节第1路差压变送器的零点,关闭流量调节阀⑵⑶。
中国石油大学(课程名称)实验报告实验日期:成绩:班级:石油工程09-1班学号:09152115 姓名:毕文姣教师:战永平同组者:毕文姣、陈为敏、曹溪、高雪娇、崔力晨、葛辉、耿红、王宇实验名称一、实验目的(1)观察垂直井筒中出现的各种流型,掌握流型辨别方法;(2)验证垂直井筒多相管流压力分布计算模型;(3)了解自喷及气举采油的举升原理;实验目的内容。
表1 数据表图1 变化曲线二、实验原理当油井的井口压力高于原油饱和压力时,井筒内流动着的是单相液体,当自喷井的井底压力低于饱和压力时,则整个油管内部都是气-流两相流动,油井生产系统的总压降大部分是用来克服混合物在油管中流动时的重力和摩擦损失,只有当气液两相的流速很高时(如环雾流型),才考虑动能损失,在垂直井筒中,井底压力大部分消耗在克服液柱重力上,所以,总压降的通式为三、实验流程四、实验步骤(1)检查自喷井模拟器的阀门开关状态,保证所有阀门都关闭,检查稳压罐的液位,如不足(稳压罐高度3/4)请打开稳压罐进液阀门,加液使稳压罐的液位保持在稳压罐高度3/4液位;(2)打开气路阀门,保证气路通畅后打开空气压缩机,向管路供气。
(3)调整稳压罐定值器,保证稳压罐压力表压力不超过0.10MPa,打开稳压罐压力阀门,等待压力稳定后打开液路阀,向系统供液;(4)此时系统已经开始同时供应液体和气体,待液面上升至井口时,可以改变气液阀门的相对大小,观察井筒中出现的各种流型,调节到所需流型,待流型稳定后开始测量;(5)按下流体积算仪清零按钮,同时启动秒表计时,观察井底气体浮子流量计的示数,当计时到10秒时,记录井底流压,气体流量,液体累计流量和所用时间;(6)改变不同的气液流量,重复步骤4到5记录数据,一般取5组段塞流和5组泡流数据点。
(7)试验结束,首先关闭液路,再关闭空气压缩机和总电源放空后再关闭面板所有阀门,最后清理实验装置,结束实验。
(2) 回答实验讲义提出的问题,1)简述实验原理以及自喷井和气举工作原理;2)简述各流型的特征;3) 对实验数据运用奥奇斯泽斯基理论进行计算,并给出计算过程,然后对比实验所观察的现象来验证该理论。
流量计实验报告7页一、实验目的1.了解流量计的基本原理和构成;2.学习利用流量计测量流量和流速;3.掌握计算流量的方法。
二、实验原理1.流量计的分类流量计按照测量原理和作用方式的不同可以分为许多类别。
当前较为常见的流量计包括体积计、质量计、速度计和压降计等。
流量计一般由流量传感器、变送器、网络通信模块和LCD液晶显示屏等几个部分组成。
理论上,同时对流量计进行体积和重量的计量能够得到相同的结果,因为它们之间只是一个简单的比例关系。
不过由于现实中一些因素的影响,比如管道内部的摩擦、流体的黏滞度等,导致结果上可能有一些差异。
一般情况下,计算流量需要以下公式:Q=VA其中,Q为流量,V为平均流速,A为管道横截面积。
当管道为圆形时,横截面积的计算公式为:A=πr²其中,r为管道半径。
综合以上公式,我们可以推导出流量计的计算公式:三、实验过程1. 将流量计的实验装置与水泵、水槽等连接,使得水流从槽中通过流量计进入排水管,然后回流到水槽中。
2. 打开电源,将管道内的水流放行一会,等待流量计的显示屏稳定。
3. 记录显示屏上的数字,然后提高水泵的流量,再次记录数字。
4. 根据流量计的计算公式计算流量。
5. 重复以上步骤多次,加深对实验结果的认识。
四、实验结果本次实验中采用的流量计为普通流量计。
在实验中我们通过调整水泵的流量,记录流量计的数值并多次重复实验,得到了以下数据:流量流速1.68 L/s 0.01517 m/s通过计算公式:A=πr²=3.14×0.01²=0.000314故得到本次实验的流量计算结果为:6.40748×10⁻³m³/s。
本次实验使用普通流量计测量了指定水泵流量下的水流流量,并通过实验结果得到了正确的计算公式。
同时,还深入了解了流量计的分类和基本组成等知识。
流量计校核实验报告流量计校核实验报告一、引言流量计是工业生产中常用的仪器设备,用于测量流体的流量。
为了确保流量计的准确性和可靠性,需要进行校核实验。
本报告旨在详细描述流量计校核实验的过程、结果和分析,以便进一步提高流量计的测量精度。
二、实验目的本次实验的主要目的是校核流量计的测量准确性和稳定性,验证其是否符合规定的技术要求。
同时,通过实验结果的分析,找出可能存在的问题,并提出改进措施。
三、实验设备和方法1. 实验设备本次实验使用的流量计为电磁流量计,具有高精度和稳定性。
配套的控制系统和数据采集仪器也是必不可少的。
2. 实验方法(1)选择合适的流量计校核点,包括低流量、中流量和高流量三个点位。
(2)根据流量计的使用要求,确定合适的校核流体,并保证流体的稳定性和纯度。
(3)按照流量计的使用说明书,正确连接流量计和控制系统,并进行预热和调试。
(4)逐个调节流量计的校核点,记录流量计的读数和控制系统的输出信号。
(5)重复多次实验,取平均值作为最终结果。
四、实验结果经过多次实验和数据分析,得到如下结果:1. 流量计在低流量点位的测量误差较大,偏离实际流量较多。
2. 流量计在中流量点位的测量误差相对较小,基本符合要求。
3. 流量计在高流量点位的测量误差有所增加,但仍在可接受范围内。
五、结果分析1. 低流量点位的测量误差较大可能是由于流量计的灵敏度不够,需要进一步调整和改进。
2. 中流量点位的测量误差较小可能是由于流量计在此范围内的测量精度较高,但仍需注意维护和保养。
3. 高流量点位的测量误差增加可能是由于流量计的饱和现象,需要增加流量计的容量或采用其他措施来提高测量精度。
六、改进措施1. 针对低流量点位的测量误差较大问题,可以考虑更换更灵敏的流量计,或者增加流量计的校核点位,以提高整体的测量精度。
2. 对于中流量点位的测量误差较小问题,需要加强流量计的维护和保养工作,定期清洁和校准流量计,确保其性能的稳定性和可靠性。
流量计的标定实验报告
《流量计的标定实验报告》
在工业生产中,流量计是一种非常重要的仪器设备,用于测量流体的流量。
为了确保流量计的准确性和可靠性,必须进行定期的标定实验。
本文将介绍一次流量计的标定实验报告,以便更好地了解流量计的工作原理和标定方法。
实验目的:通过标定实验,验证流量计的准确性和稳定性,以及了解流量计的测量范围和误差范围。
实验仪器:流量计、流量标定装置、压力表、温度计等。
实验步骤:
1. 确定实验条件,包括流体种类、流量范围、温度、压力等参数。
2. 将流量计安装在流量标定装置上,并连接好压力表和温度计。
3. 调节流量标定装置,使流体流量逐渐增加,记录下每个流量点对应的流量计读数、压力和温度。
4. 根据实验数据,绘制流量计的标定曲线,分析流量计的准确性和稳定性。
实验结果:
通过实验数据分析,得出以下结论:
1. 流量计的测量范围为0-1000L/min,误差范围在正负2%之间。
2. 在不同流量下,流量计的读数与实际流量基本吻合,表明流量计的准确性较高。
3. 流量计在不同温度和压力下的测量误差较小,稳定性良好。
结论:流量计的标定实验结果表明,该流量计具有较高的准确性和稳定性,可以满足工业生产对流量测量的要求。
通过本次标定实验,我们更加深入地了解了流量计的工作原理和标定方法,为今后的流量计使用和维护提供了重要参考。
同时,也提醒我们在工业生产中要重视流量计的定期标定,以确保生产过程中的流量测量准确和可靠。
流量计中国石油大学流体力学实验报告摘要:本实验选用艾玛压力式流量计进行流量测试,通过改变水流量和阀门开度,得到了不同流量时压力差和阀门开度的读数,并计算了流量。
实验结果表明,压力式流量计准确度高,重复性好,是一种广泛应用的流量计。
实验目的:1、了解压力式流量计的原理和结构。
2、掌握压力式流量计的使用方法。
3、通过实验测试得到压力式流量计的特性曲线。
实验原理:压力式流量计采用差压测量原理。
差压产生器产生的差压通过压力传感器转换成电信号,由处理器进行数字转换,计算出流量大小。
压力式流量计用于液体和气体的测量,适用于高粘度的液体和气体。
压力式流量计适用于多种场合,如石油、化工、医药、冶金等行业。
实验材料和设备:压力式流量计,水源、水流量控制阀门,压力差计,数字曲线仪,电源等。
实验步骤:1、将压力式流量计接入水源。
3、打开水源和电源,调节水流量控制阀门,使流量计显示合适的读数。
4、记录不同水流量下压力差和阀门开度的读数。
5、根据数据计算流量,并绘制流量特性曲线。
实验数据:水流量(L/min)阀门开度(%)压力差(MPa)3 100 0.082.5 70 0.052 50 0.031.5 30 0.021 10 0.007表2、计算得到的流量数据水流量(L/min)流量(L/s)图1、流量特性曲线实验结果分析:根据实验结果,可以发现压力式流量计具有准确度高,重复性好,操作简便的优点。
通过实验所得流量特性曲线,可以看出流量随着阀门开度的增大而增大,而压力差则随着流量的增大而增大。
在实际应用中,可以根据所测流体的物理特性和流量要求选择相应的压力式流量计。
结论:。
流量计标定实验实验报告流量计标定实验实验报告引言:流量计是一种用于测量流体流量的仪器,广泛应用于工业生产和科学研究领域。
为了确保流量计的准确性和可靠性,进行流量计标定实验是必要的。
本实验旨在通过比较标准流量计和待测流量计的测量结果,评估待测流量计的准确性和精度。
实验设备和方法:1. 实验设备:标准流量计、待测流量计、流量调节阀、压力计、温度计、计时器等。
2. 实验方法:a) 将标准流量计和待测流量计与流量调节阀连接,确保流体流经流量计。
b) 调节流量调节阀,使流量计显示一定流量(如100L/min)。
c) 同时记录标准流量计和待测流量计的读数。
d) 重复以上步骤,分别记录不同流量下的读数。
e) 测量流体的压力和温度,并记录下来。
实验结果与数据处理:1. 流量计标定曲线:根据实验数据绘制出标准流量计和待测流量计的标定曲线。
横坐标表示流量,纵坐标表示流量计的读数。
通过比较两条曲线的偏差,可以评估待测流量计的准确性和精度。
2. 流量计的准确性评估:a) 计算标准流量计和待测流量计的相对误差。
相对误差可以通过以下公式计算:相对误差 = (待测流量计读数 - 标准流量计读数)/ 标准流量计读数× 100% b) 根据相对误差的大小评估待测流量计的准确性。
一般来说,相对误差越小,表示待测流量计越准确。
3. 流量计的精度评估:a) 计算标准流量计和待测流量计的绝对误差。
绝对误差可以通过以下公式计算:绝对误差 = 待测流量计读数 - 标准流量计读数b) 根据绝对误差的大小评估待测流量计的精度。
一般来说,绝对误差越小,表示待测流量计越精确。
讨论与结论:通过对实验数据的分析和处理,我们得出以下结论:1. 待测流量计的准确性评估结果显示相对误差在可接受范围内,表明待测流量计具有较高的准确性。
2. 待测流量计的精度评估结果显示绝对误差较小,表明待测流量计具有较高的精度。
3. 流量计的准确性和精度对实际应用非常重要。
流量计的校正实验报告流量计的校正实验报告一、引言流量计是现代工业生产中常用的一种仪器,用于测量液体或气体的流量。
准确的流量测量对于工业生产的稳定性和安全性至关重要。
然而,由于流量计的使用环境以及长期使用的磨损,其测量结果可能会存在一定的误差。
因此,进行流量计的校正实验是必要的,以确保其准确性和可靠性。
二、实验目的本次实验的目的是通过对流量计进行校正实验,研究流量计的测量误差,并提出相应的校正方法,以提高流量计的准确性。
三、实验装置和方法1. 实验装置本次实验使用的流量计为磁性涡街流量计,实验装置包括流量计、流量控制阀、压力传感器、温度传感器等。
2. 实验方法首先,将实验装置按照实验要求进行搭建,确保流量计与其他传感器的连接正确。
然后,通过调节流量控制阀,控制流体的流量。
在不同流量下,记录流量计的测量值、压力传感器的测量值以及温度传感器的测量值。
最后,根据实验数据进行分析和计算。
四、实验结果与分析通过对实验数据的处理和分析,得到了以下结果:1. 流量计的测量误差根据实验数据,我们计算出了流量计在不同流量下的测量误差。
结果显示,在较低流量下,流量计的测量误差较小,但在较高流量下,测量误差逐渐增大。
这表明流量计在高流量条件下的测量准确性较差。
2. 流量计的校正方法针对流量计的测量误差,我们提出了一种校正方法。
通过在实验过程中,同时记录流量计的测量值和标准流量计的测量值,可以得到流量计的校正曲线。
根据校正曲线,可以对流量计的测量结果进行修正,提高其准确性。
3. 流量计的温度补偿实验数据还显示,流量计的测量结果受温度的影响较大。
在不同温度下,流量计的测量误差存在较大差异。
因此,我们还提出了一种温度补偿方法,通过对流量计的测量结果进行修正,以消除温度对流量计的影响。
五、结论通过本次实验,我们对流量计的测量误差进行了研究,并提出了相应的校正方法和温度补偿方法。
这些方法可以有效提高流量计的测量准确性和可靠性。
然而,实验结果也显示,流量计的测量误差受多种因素的影响,如压力、温度等。
工程流体力学实验报告实验一流体静力学实验实验原理在重力作用下不可压缩流体静力学基本方程或(1.1)式中:z被测点在基准面的相对位置高度;p被测点的静水压强,用相对压强表示,以下同;p0水箱中液面的表面压强;γ液体容重;h被测点的液体深度。
另对装有水油(图1.2及图1.3)U型测管,应用等压面可得油的比重S0有下列关系:(1.2)据此可用仪器(不用另外尺)直接测得S0。
实验分析与讨论1.同一静止液体内的测管水头线是根什么线?测压管水头指,即静水力学实验仪显示的测管液面至基准面的垂直高度。
测压管水头线指测压管液面的连线。
实验直接观察可知,同一静止液面的测压管水头线是一根水平线。
2.当P B<0时,试根据记录数据,确定水箱内的真空区域。
,相应容器的真空区域包括以下三部分:(1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真空区域。
(2)同理,过箱顶小水杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。
(3)在测压管5中,自水面向下深度某一段水柱亦为真空区。
这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。
3.若再备一根直尺,试采用另外最简便的方法测定γ0。
最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度h和h0,由式,从而求得γ0。
4.如测压管太细,对测压管液面的读数将有何影响?设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算式中,为表面张力系数;为液体的容量;d为测压管的内径;h为毛细升高。
常温(t=20℃)的水,=7.28dyn/mm,=0.98dyn/mm。
水与玻璃的浸润角很小,可认为cosθ=1.0。
于是有(h、d单位为mm)一般来说,当玻璃测压管的内径大于10mm时,毛细影响可略而不计。
流量计流量校正实验报告
一、实验目的
本次实验旨在通过校正方法改变流量计,使其准确、简便地测量液体流量,并准确地
显示出实际流量。
二、实验原理
流量计校正仪通过测量液体流量自身的正常脉冲,来衡量液体流量,然后根据这些信号,通过运算和计算得出实际流量情况。
它只有当确认流量脉冲有效时,才能正确地显示
和读取流量数据。
三、实验设备
本次校验中使用的设备主要有:流速计、流量脉冲计、电子温度传感器、校正仪及其
他辅助设备。
四、实验流程
(1)将各个系统组件连接好,包括流量计、流量脉冲计、传感器等;
(2)将流量计校准时,使用校正仪进行校验,并确保每个部件正常工作;
(3)根据预设的脉冲设定系统脉冲信号,通过连续的脉冲算法和多次灵敏度校正,
使流量计读数准确;
(4)当系统的脉冲算法准确无误后,可以更加准确的计算流速和流量,并进行显示、记录;
(5)根据实际测量的液体流量,对流量计进行校正,使其更加准确;
(6)当流量计准确无误时,可以正确地显示和读取流量数据;
(7)在所有设备完成流量校正后,可以进行多次测试以确保校正准确无误。
五、实验结果
进行该实验后,我们得到了令人满意的结果,流量计已经经过精密检测,确保能够准
确测量液体流量,并准确地显示出实际流量情况。
六、实验结论
通过本次实验,我们发现,在流量计校验仪的帮助下,可以使流量计准确测量液体流量,并准确地显示出实际流量。
而且,在确保流量脉冲信号有效的情况下,流量计也可以
正确地读取和显示流量数据。
流量计计量实习报告一、前言随着现代科学技术的不断发展,流量计量技术在各个领域中的应用越来越广泛。
作为一名计量专业的学生,我有幸在学校组织的实习活动中,来到了一家专业从事流量计研发、生产、销售和服务的公司进行实习。
在这段时间里,我深入了解了流量计的工作原理、结构组成、操作维护以及故障处理等方面的知识,收获颇丰。
二、实习内容1. 流量计的基本原理与分类实习期间,我首先学习了流量计的基本原理和分类。
流量计主要分为体积流量计和质量流量计两大类,其中体积流量计又分为速度式、面积式和差压式等。
通过学习,我了解了各种流量计的测量原理、优缺点及适用范围。
2. 流量计的结构组成与功能在实习过程中,我参观了流量计的生产车间,了解了流量计的各个组成部分,如传感器、信号处理单元、显示仪表等,并学习了它们在流量计量过程中的作用。
此外,我还学习了流量计的校准、调试和维护方法。
3. 流量计的操作与维护在实际操作环节,我亲自参与了流量计的安装、调试和校准工作。
通过实践操作,我掌握了流量计的正确使用方法,了解了在日常使用过程中如何对流量计进行维护和保养,以保证其测量准确性和稳定性。
4. 流量计故障处理与分析在实习期间,我遇到了一些流量计的故障问题,如测量误差过大、仪表无法启动等。
在老师的指导下,我学习了如何分析故障原因、采取相应的解决措施。
通过这些实践经验,我对流量计的故障处理能力得到了很大提高。
三、实习收获通过这次实习,我对流量计计量技术有了更加深入的了解,掌握了流量计的基本原理、结构组成、操作维护和故障处理等方面的知识。
同时,实习过程中的实践操作,使我将理论知识与实际应用相结合,提高了自己的动手能力。
此外,我还学会了如何在工作中积极思考、主动解决问题,为今后的工作打下了坚实基础。
四、实习总结回顾这段时间的实习生活,我深感实践是检验真理的唯一标准。
只有通过实际操作,才能真正了解和掌握流量计计量技术。
同时,我也认识到自己在理论知识方面的不足,需要在今后的学习和工作中继续努力,不断提高自己的综合素质。
流量计性能测定实验报告.doc流量计性能是流量计在实际使用中的各种性能指标,包括测量精度、重复性、线性度、零点漂移等。
为了确保流量计能够在实际使用中达到预期效果,需要进行性能测定实验。
本文介绍了一次流量计性能测定实验并给出了实验结果和分析。
一、实验目的本次实验的目的是通过对流量计的测量精度、重复性、线性度和零点漂移等性能指标的测试,评估流量计的性能,并为实际使用提供参考。
二、实验原理本次实验采用的是标准溢流法,即在方形截面管道中进行液体流量的测量。
流量计的测量原理是基于流体运动定理,即根据质量守恒定律和动量守恒定律计算流量。
实验中使用的流量计是多点式浮子流量计,其原理是浮子随流体的流速变化而升降,通过浮子的位置变化实现流量的测量。
三、实验步骤1. 将流量计安装在实验系统中,并连接好管路。
2. 利用薄膜式生产流量计调节流量计刻度,使标准溢流法流量控制阀的开度按照规定的流量变化。
3. 开始实验前,先进行调零操作,将流量计的零点调整至真空状态,确保实验数据的准确性。
4. 开始实验,逐渐增大流量,记录流量计的读数。
四、实验结果根据实验测量数据,我们得到了流量计在不同流量下的性能指标,具体如下表所示:流量(L/min)|读数1(L/min)|读数2(L/min)|读数3(L/min)|平均值(L/min)|偏差| :--:|:--:|:--:|:--:|:--:|:--:|30|29.8|29.9|29.7|29.8|0.17%|40|39.7|39.8|39.9|39.8|0.25%|50|49.8|49.7|49.6|49.7|0.2%|60|59.6|59.5|59.8|59.6|0.17%|70|70.2|70.0|70.1|70.1|0.29%|五、实验分析流量计是一种重要的流体测量仪表,其性能的优劣直接影响到工业生产的质量和效益。
从实验数据来看,流量计的测量精度较高,偏差在0.3%以内,说明流量计在中低流量下有比较好的表现。
一、实验目的1. 熟悉流量计的基本构造、工作原理及校核方法;2. 掌握流量计校核实验的操作步骤及数据处理方法;3. 了解不同类型流量计的校核方法及误差分析。
二、实验原理流量计是一种用于测量流体流量的仪表,其校核方法主要有容积法、称量法、流速法等。
本实验采用容积法进行流量计校核,即通过测量流体在一定时间内流过固定截面积的体积,从而得到流体的流量。
三、实验装置1. 实验装置包括:流量计、计量桶、阀门、管道、导压管、压差计、计时器等;2. 实验装置连接方式:流量计连接计量桶,计量桶连接管道,管道连接阀门,导压管连接压差计,计时器连接计量桶。
四、实验步骤1. 熟悉实验装置,了解各阀门的位置及作用;2. 对装置中有关管道、导压管、压差计进行排气,使倒U形压差计处于工作状态;3. 对应每一个阀门开度,用容积法测量流量,同时记下压差计的读数;4. 按由小到大的顺序,在小流量时测量89个点,大流量时测量56个点;5. 为保证标定精度,最好再从大流量到小流量重复一次,然后取其平均值;6. 测量流量时应保证每次测量中,计量桶液位差不小于100mm或测量时间不少于40s;7. 记录实验数据。
五、数据处理1. 数据记录计量水箱规格:长 400mm;宽 300mm管径d(mm):25孔板取喉径d0(mm):15.347查出实验温度下水的物性:密度 996.2542 kg/m3 粘度 0.000958 PaS2. 数据处理(1)计算流量计实际流量Q实际:Q实际 = V实际 / t实际其中,V实际为计量桶中流过的体积,t实际为测量时间。
(2)计算流量计示值流量Q示值:Q示值 = V示值 / t示值其中,V示值为流量计显示的体积,t示值为流量计显示的时间。
(3)计算流量计的相对误差:相对误差 = (Q实际 - Q示值) / Q实际× 100%六、结果分析1. 分析流量计的相对误差,判断流量计的准确度;2. 分析流量计在不同流量下的误差变化规律;3. 分析流量计的误差来源,如仪表本身、环境因素、操作误差等。
石大流量计实验报告
实验日期:成绩:
姓名:教师:
班级:_学号:_
同组者:
实验三、流量计实验
一、实验目的
1.掌握孔板、文丘利节流式流量计的工作原理及用途。
2.测量孔板流量计的流量系数a,绘制流量计的校正曲
线。
3.了解两用式压差计的结构及工作原理,掌握两用式压
差计的使用方法。
实验装置
本实验采用管流综合实验装置。
管流综合实
验装置包括六根实验管路、电磁流量计、文丘利
流量计、孔板流量计,其结构如图1- 3-1示
稳m水箱
离心泵
F1 文丘利流量计____ ; F2 孑L板流量计;F3 电磁流量计C——量水箱:V——阀门:K——局部阻力实验管路
三、实验原理
1.文丘利流量计。
文丘利流量计是一种常用的测量有压管道流量的装置,属压差式流量计(见图1-3-2)。
它包括收缩段,喉道和扩散段三部分,安装在需要测定流量的管道上。
在收缩段进口断面1-1和喉道断面2-2上设测压孔,并接上压差计,通过测量两个断面的测压管水头差,可以计算管道的理论流量Q,再经修正即可得到实际流量。
2.孔板流量计
如图1-3-3所示,在管道上设置孔板,在流动未经孔板收缩的上游断面1-1和经孔板收缩的下游断面
2-2上设测压空孔,并接上压差计,通过测量两个断面的测压管水头差可以计算管道的理论流量Q,再经修正即可得到实际流量。
孔板流量计也属于压差式流量计,其特点是结构简单。
3.理论流量
(1-3-1)
云弘如果假设动能修正系数到的理论流量为:
Q理=——A .. 2g「h =八h
(△占
r A2 A ,
图1-3-3孔板流量计示意图
:1 = 2 =1. 0,则最终得
图1-3-2文丘利流量计示意图
扶)2_(令2
式中量2数一孔板锐孔断面面积截面面积。
失压!!量!1实粘液而造成的水辦
Q实=一:水八h
(1-3-3)
量系数。
与2近®0带来的误!现了缓变流假设是否1到了严格的满]这道因素可以说对缓变丘利设得到了严格的满足,而对于孔板流量计,因下游的收缩
其中,流量系数除反映了量粘性;包括在推倒理论流量时将断面动能2近匕游严面设置在
莽变随着所以缓变流假设下往得不到严格的满磯诺数,对于雷鶴较大量计速较量系数取喘系数基本不变。
四、实验要求
1. 有关常数:
实验装置编号4
孔板锐孔直径:d = 2.744 io-2m ;面积: A= 5.914 io-4m2;
系数:K = 2.618 _____ 10-3m2.5/s
2•实验数据记录及处理见表3-1 o
0.6以其中一组数据写出计算实例。
以第5组实验数据为例:
(1)汞柱差h' = h2 - h i =85.6-36■仁49.5(cm)
(2 )水头差h =12.6 X :h' =12.6 X
49.5=623.70(cm)
(3)
=2.618 ^X$23 70.0X1 Qi X 3600 X
=23.537/(m3/h)
(4)由于Q 实=a K V^h
所以=Q/ K 石.=15.70/23.537= 0.667
3 •绘制孔板流量计的校正曲线图
五、实验步骤
1.熟悉流管实验装置,找出本次实验的实验管路
(第4根,第6根实验管)。
2.先将进水阀门V1打开,使实验管路充满水,然
后打开排气阀门V 10,排除管内的空气,待排气
阀有水连续流出(说明空气已排尽)时关闭阀门
V 10。
△ h/ (10A- 3•再打开孔板的两个球形阀门,检查汞-水压差计
左右两汞柱液面是否在同一水平面上。
若不平,则需排气调平;
4.将两用式压差计上部的球形阀关闭,并
把V9完全打开,待水流稳定后,接通电磁流
量计的电源(接通电磁流量计前务必使管路充满
水)记录电磁流量计、压差计的读数;
5.按实验点分布规律有计划地逐次关小V9,共量
测12组不同流量及压差;
6 •实验完毕后,依次关闭V9、孔板的两个球形
阀,打开两用式压差计上部的球形阀。
六、注意事项
1 •本实验要求2-3人协同合作。
为了使读数的准
确无误,读压差计、调节阀门、测
量流量的同学要互相配合;
2•读取汞-水压差计的凸液面;
3•电磁流量计通电前,务必保证管路充满水。
4.不要启动与本实验中无关的阀门
七、问题分析
1.在实验前,有必要排尽管道和压差计中的空气吗?为什么?
答:有必要,因为如果管道中有空气,回导致水流不稳定,压差计读数不准确,导致实验误差增大,结果不准确。
2•压差计的液面高度差是否表示某两断面的测压管水头差?怎样把汞-水压差计的压差巾,换算成相应的水头差h ?
答:压差计的液面高度差不一定表示某两断面的测压管水头差。
水头差h =汞-水压差计的压差卍x< 13.6-1)
3 •文丘利流量计和孔板流量计的实际流量与理 论流量有什么差别,这种差别是由哪些因素造成 的? 答:实际中理想流量大于实际流量。
造成这种差别的原因:
1两断面测压管水头差中包括因粘性而造成的
水头损失。
似推倒理来量差将断面动能系数a 巾与“ 2
近 设量计假脑
断面设
置
在
对道 流量所以缓变
八、心得体会
通过这次实验,使我学会了如何使用文丘利 流量计和流假设往游得不量严格是满足不 4对于某确定的流量计,流量系数取决与雷诺 数,但当雷诺数较大(流速较高)时,流量系数 基本不变。
孔板压差计,并且掌握孔板流量计和文丘利节流量计
的工作原理及用途。
实验之前观看了实验录像,但感
觉效果不是很好,在见到真实的实验仪器之前,感觉
录像中所讲的内容都比较抽象,对整个实验步骤理解
就不是很到位。
但到了实验室之后,发现就容易理解了,同时又对课堂上上所学的知识进行了加深理
解。
本次实验最周目的是测量孔板流量计的流量系数a,需要通过绘制流量计的校正曲线来得到。
实验过程中,团队间良好的配合可以更高效的完成实验,一人记录数据,一人读压差, 一人控制流量,一人记录流量。
在实验过程中得到了老师详细的讲解指导,使我们能更顺利的完成实验,在此感谢老师的悉心指导!。