原子物理—磁场中的原子
- 格式:ppt
- 大小:750.50 KB
- 文档页数:42
第一章 原子的基本状况1.1 若卢瑟福散射用的α粒子是放射性物质镭'C 放射的,其动能为67.6810⨯电子伏特。
散射物质是原子序数79Z =的金箔。
试问散射角150οθ=所对应的瞄准距离b 多大?解:根据卢瑟福散射公式:20222442K Mv ctgb b Ze Zeαθπεπε==得到:2192150152212619079(1.6010) 3.97104(48.8510)(7.681010)Ze ctg ctg b K οθαπεπ---⨯⨯===⨯⨯⨯⨯⨯⨯米式中212K Mv α=是α粒子的功能。
1.2已知散射角为θ的α粒子与散射核的最短距离为220121()(1)4sinmZe r Mv θπε=+,试问上题α粒子与散射的金原子核之间的最短距离m r 多大?解:将1.1题中各量代入m r 的表达式,得:2min202121()(1)4sin Ze r Mv θπε=+ 1929619479(1.6010)1910(1)7.6810 1.6010sin 75ο--⨯⨯⨯=⨯⨯⨯+⨯⨯⨯143.0210-=⨯米1.3 若用动能为1兆电子伏特的质子射向金箔。
问质子与金箔。
问质子与金箔原子核可能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个e +电荷而质量是质子的两倍,是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大?解:当入射粒子与靶核对心碰撞时,散射角为180ο。
当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。
根据上面的分析可得:220min124p Ze Mv K r πε==,故有:2min 04p Ze r K πε=19291361979(1.6010)910 1.141010 1.6010---⨯⨯=⨯⨯=⨯⨯⨯米 由上式看出:min r 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为131.1410-⨯米。
原子光谱线在磁场中的分裂
原子光谱线的分裂是一种重要的物理现象,它是由磁场引起的。
原子光谱线的分裂是指原子光谱线在磁场中被分裂成两条或多条线,这种现象被称为磁场分裂。
磁场分裂是由于原子的电子在磁场中受到磁力的影响而发生的。
当原子的电子在磁场中受到磁力的影响时,它们的能量状态会发生变化,从而导致原子光谱线的分裂。
磁场分裂的现象可以用磁力谱仪来观察。
磁力谱仪是一种用于测量磁场的仪器,它可以测量磁场的强度和方向,从而可以观察到原子光谱线的分裂现象。
磁场分裂的现象在原子物理学中有着重要的意义。
它可以用来研究原子的能级结构,从而更好地了解原子的物理性质。
此外,磁场分裂的现象也可以用来研究原子的化学性质,从而更好地了解原子的化学性质。
总之,原子光谱线的分裂是一种重要的物理现象,它是由磁场引起的。
磁场分裂的现象在原子物理学和化学学中都有着重要的意义,它可以用来研究原子的物理性质和化学性质。
原子物理学实验原子物理学实验在众多的物理学研究领域中占据了举足轻重的地位。
实验采用直观、具体的方式,展示了原子世界的奥秘与魅力。
本文主要以原子物理学实验为载体,对实验的原理、方法和实际执行过程进行了详细的论述分析。
实验的原理原子物理学实验主要研究的是原子及其组成的物质的物理性质和行为。
实验的基本原理包括了波动理论、量子理论和电磁论等。
其中,波动理论主要对原子中的电子做出解释和预测,以揭示其行为及其与原子核的相互作用。
量子理论则试图解答围绕原子微观世界的自然规律,如电子的不确定行为等问题。
实验的方法原子物理学实验主要利用光、电、磁等方法进行原子的研究。
利用光的散射、干涉和衍射等现象,可以研究原子的结构和性质。
电磁场的应用,则可以详细探寻原子的能级分布和动力学行为。
实验操作过程原子物理学实验的操作过程复杂而精准。
科学家们需要以精确的控制和耐心等待,一步步地接近原子的秘密。
实验过程一般包括了实验装置的构建、实验条件的设定和实验数据的收集与处理等重要步骤。
首先,我们需要构建科学实验装置。
例如,如果我们要研究光的衍射特性,就需要设定好光源、分离器、探测器等重要装置。
其次,设定实验条件。
例如,我们需要设定光线的入射角度,尽可能避免环境光线的干扰,甚至控制实验室的环境温度和压强。
最后,收集和处理实验数据。
数据的收集过程需要科学家有足够的耐心,因为在很多情况下,数据的变化可能极其缓慢。
在数据处理的过程中,需要运用到适当的统计学方法,准确地揭示数据背后的物理现象。
实验研究发现原子物理学实验对人类对原子世界的理解有着重要影响。
例如,通过莱曼系、巴耳末系等光谱实验证实了玻尔的原子模型,正电子的发现则启示了反物质的存在,而测量原子的精细结构常数则极大地推动了物理学的发展。
总结通过上述的介绍,我们可以看出原子物理学实验不仅提供了解原子世界的途径,同时也丰富了我们对物质的理解。
在追求科学真理的道路上,原子物理学实验将会继续发挥着重要的作用。
第六章 磁场中的原子6.1 已知钒原子的基态是2/34F 。
(1)问钒原子束在不均匀横向磁场中将分裂为几束?(2)求基态钒原子的有效磁矩。
解:(1)原子在不均匀的磁场中将受到力的作用,力的大小与原子磁矩(因而于角动量)在磁场方向的分量成正比。
钒原子基态2/34F 之角动量量子数2/3=J ,角动量在磁场方向的分量的个数为4123212=+⨯=+J ,因此,基态钒原子束在不均匀横向磁场中将分裂为4束。
(2)J J P meg2=μ h h J J P J 215)1(=+= 按LS 耦合:52156)1(2)1()1()1(1==++++-++=J J S S L L J J gB B J h m e μμμ7746.0515215252≈=⋅⋅⋅=∴ 6.2 已知He 原子0111S P →跃迁的光谱线在磁场中分裂为三条光谱线,其间距厘米/467.0~=∆v,试计算所用磁场的感应强度。
解:裂开后的谱线同原谱线的波数之差为:mcBe g m g m v πλλ4)(1'1~1122-=-=∆ 氦原子的两个价电子之间是LS 型耦合。
对应11P 原子态,1,0,12-=M ;1,1,0===J L S ,对应01S 原子态,01=M ,211.0,0,0g g J L S =====。
mc Be vπ4/)1,0,1(~-=∆ 又因谱线间距相等:厘米/467.04/~==∆mc Be vπ。
特斯拉。
00.1467.04=⨯=∴emcB π 6.3 Li 漫线系的一条谱线)23(2/122/32P D →在弱磁场中将分裂成多少条谱线?试作出相应的能级跃迁图。
解:在弱磁场中,不考虑核磁矩。
2/323D 能级:,23,21,2===j S l54)1(2)1()1()1(123,21,21,232=++++-++=--=j j s s l l j j g M2/122P 能级:,21,21,2===j S l 32,21,211=-=g ML v)3026,3022,302,302,3022,3026(~---=∆ 所以:在弱磁场中由2/122/3223P D →跃迁产生的光谱线分裂成六条,谱线之间间隔不等。
原子物理学原子和原子核佚名【电子】就是一种最轻的带电粒子。
它也就是最早被人们辨认出的基本粒子。
拎负电,电量为,1.602189×10-19库仑。
就是电量的最轻单元。
质量为9.10953×10-28克。
常用符号e则表示。
电子在原子中,紧紧围绕于原子核外,其数目与核内的质子数成正比,亦等同于原子序数。
导线中电流的产生即为就是电子流颤抖的结果。
一安培的电流相等于每秒通过6.24×1018个电子。
利用电场和磁场,能够按照人们的建议掌控电子的运动(特别是在真空中),从而生产出来各种电子仪器和元件,例如各种电子管,电子显像管、正电子的质量和电子相等,它的电量的数值和电子相等而符号相反,即带正电。
一个电子和一个正电子相遇会发生湮没而转化为一对光子,即一对正负电子,常称作正负电子对(电子偶)。
能量少于1.02mev(兆电子伏特)的光子沿着铅板时,可以产生电子一正电子对,这个反应则表示为电子的运动质量m与静止质量m0的关系为这里v就是电子运动速度,c就是光速,这就是相对论的公式。
【原子】组成单质和化合物分子的最小粒子。
不同元素的原子具有不同的平均质量和原子结构。
原子是由带正电的原子核和围绕核运动的、与核电荷核数相等的电子所组成。
原子的质量几乎全部集中在原子核上。
在物理化学反应中,原子核不发生变化。
只有在核反应中原子核才发生变化。
【汤姆逊的原子核模型】汤姆逊的原子核模型就是最早明确提出的原子核模型,他指出:形成原子的正电荷就是均匀分布于球状原子内,原子大小乃是此正电荷球之大小,电子则埋于此正电荷中,当电子受外界鞭策时,它即以平衡位置为中心并作振动而升空光。
当a粒子沿着此原子时,a粒子将受反射,因电子质量很小,这项散射之主要原因是正电荷之斥力作用。
由电磁理论预示加速的带电物体如振动的电子等会发射电磁辐射,故根据汤姆生模型,便可了解受激原子会发射电磁辐射的性质。
在实际计算其可能发射的辐射能谱,即发现此模型所导致的结果,与实验观察到的能谱在数值上并不相符。
第四章 碱金属原子1. 已知Li 原子光谱主线系最长波长0A 6707=λ,辅线系系限波长A 3519=∞λ.求Li 原子第一激发电势和电离电势.解:主线系最长波长是原子从第一激发态跃迁至基态的光谱线的波长E h hc νλ∆==第一激发电势1eU E =∆34811976.626210310V 1.850V 1.602210 6.70710E hc U e e λ---∆⨯⨯⨯====⨯⨯⨯辅线系系限波长是原子从无穷处向第一激发态跃迁产生的 辅线系~~*2n R n νν∞=-,~~*n n νν∞→∞=192 5.648910J hc eU λ-∞==⨯2 3.526V U =电离电势:U =U 1+U 2=5.376V2. Na 原子的基态3S .已知其共振线波长为58930A ,漫线系第一条的波长为81930A ,基线系第一条的波长为184590A ,主线系的系限波长为24130A 。
试求3S 、3P 、3D 、4F 各谱项的项值. 解:主线系波数~p 22s p ,3,4,(3)()n R Rn n ν=-=-∆-∆~~p 2s ,(3)n Rn νν∞→∞==-∆系限波长:p λ∞=24130A =72.41310m -⨯~1613S 71m 4.144210m 2.41310T ν--∞-===⨯⨯共振线为主线系第一条线, 是原子从3P 到3S 跃迁产生的光谱线 共振线波长:λp1=58930A =75.89310m -⨯~61p13S 3P 71 1.696910m 5.89310mT T ν--=-==⨯⨯1616S 3P 3m 104473.2m 106969.1--⨯=⨯-=T T漫线系(第一辅线系)波数~d 22p d ,3,4,(3)()n R Rn n ν=-=-∆-∆漫线系第一条线是原子从3D 到3P 跃迁产生的光谱线 漫线系第一条光谱线的波长7d18.19310m λ-=⨯167D 3P 31~d m 102206.1m10193.81--⨯=⨯=-=T T ν1616P 3D 3m 102267.1m 102206.1--⨯=⨯-=T T基线系(柏格曼线系)波数,5,4,)()3(2f 2d ~f =∆--∆-=n n RR n ν 基线系第一条线是原子从4F 到3D 跃迁产生的光谱线 基线系第一条光谱线的波长6f1 1.845910m λ-=⨯156F 4D 31fm 104174.5m108459.1--⨯=⨯=-=T T ν 1515D 3F 4m 108496.6m 104174.5--⨯=⨯-=T T3. K 原子共振线波长为7665Å,主线系系限波长为2858Å. 已知K 原子的基态为4S. 试求4S 、4P 谱项的量子数修正项∆S 、∆P 值各为多少?K 原子的主线系波数,5,4,)()4(2P 2S ~p=∆--∆-=n n RR n ν 2S ~~p )4(,∆-==∞→∞Rn n νν 1617~m 104990.3m 10858.211---∞∞⨯=⨯==p λν 16~S 4m 104990.3-∞⨯==νT而 2S S 4)4(∆-=RT 所以 S4S 4T R =∆- 17m 100973731.1-∞⨯=≈R R 7709.14S =∆-2291.2S =∆K 原子共振线为主线系第一条线, 是原子从4P 到4S 跃迁产生的光谱线1p A 7665=λ167P 4S 41pm 103046.1m10665.7--⨯=⨯=-=T T ν 1616S 4P 4m 101944.2m 103046.1--⨯=⨯-=T T而 2P P 4)4(∆-=RT 所以 P4P 4T R =∆- 17m 100973731.1-∞⨯=≈R R7638.14P4P =-=∆T R第五章 多电子原子1. He 原子的两个电子处在2p3d 电子组态.问可能组成哪几种原子态?用原子态的符号表示之.已知电子间是LS 耦合.解:p 电子的轨道角动量和自旋角动量量子数分别为,11=l 211=s . d 电子的轨道角动量和自旋角动量量子数分别为,21=l 212=s . 因为是LS 耦合,所以.,,1,212121l l l l l l L -⋯-++=.1,2,3=L.0,1.2121=-+=S s s s s S 或而 .,,1,S L S L S L J -⋯-++=.1,0,1===J S L 原子态为11P . .0,1,2,1,1===J S L 原子态为30,1,2P ..2,0,2===J S L 原子态为12D ..1,2,3,1,2===J S L 原子态为31,2,3D ..3,0,3===J S L 原子态为13F . .2,3,4,1,3===J S L 原子态为32,3,4F .2. 已知He 原子的两个电子被分别激发到2p 和3d 轨道,其所构成的原子态为3D ,问这两电子的轨道角动量p l 1与p l 2之间的夹角,自旋角动量p s 1与p s 2之间的夹角分别为多少?(1). 解:已知原子态为3D ,电子组态为2p3d, 所以2,1,1,221====l l S L因此'1212221211212221222211113733212/)(cos cos 26)1(6)1(22)1(οθθθπ==---=-+==+==+==+=l l l l L l l l l L L l l p p p p P p p p p P L L P l l p hl l p 所以'0'0471061373180=-=οθL(2).1212122s s S s s p p P =======因为所以而'2212221222212221228109312/)(cos cos 2οθθθ=-=---=-+=s s s s S s s s s S p p p p P p p p p P 所以'0'0327028109180=-=οθS4. 试以两个价电子l 1=2和l 2=3为例说明,不论是LS 耦合还是jj 耦合都给出同样数目的可能状态. (1) LS 耦合.3,221==l l.,,1,212121l l l l l l L -⋯-++=.1,23,4,5=L .2121==s s .0,1=S.,,1,S L S L S L J -⋯-++=当S =0时,J =L , L 的5个取值对应5个单重态, 即1=L 时,1=J ,原子态为11P .2=L 时,2=J ,原子态为12D .3=L 时,3=J ,原子态为13F . 4=L 时,4=J ,原子态为14G .5=L 时,5=J ,原子态为15H .当S =1时,.1,,1-+=L L L J代入一个L 值便有一个三重态.5个L 值共有5乘3等于15个原子态,分别是:1=L 时,0,1,2=J 原子态为30,1,2P2=L 时,1,2,3=J 原子态为31,2,3D3=L 时,2,3,4=J 原子态为32,3,4F 4=L 时,3,4,5=J 原子态为33,4,5G5=L 时,4,5,6=J 原子态为34,5,6H因此,LS 耦合时共有20个可能状态. (2) jj 耦合.,...,.2527;2325;21212121j j j j j j J j j s l j s l j -++===-=+=或或或 将每个j 1、j 2 合成J 得:.1,2,3,42523.2,3,4,52723.0,1,2,3,4,52525.1,2,3,4,5,6272521212121============J j j J j j J j j J j j ,合成和,合成和,合成和,合成和4,3,2,15,4,3,25,4,3,2,1,06,5,4,3,2,1)25,23()27,23()25,25()27,25(共20个可能状态所以,无论是LS耦合还是jj耦合,都会给出20种可能状态.6.已知He原子的一个电子被激发到2p轨道,另一个电子还在1s轨道,试做出能级跃迁图来说明可能出现哪些光谱线跃迁.解:在1s2p组态的能级和1s1s基态之间存在中间激发态,电子组态为1s2s.利用LS耦合规则求出各电子组态的原子态如下:1s1s:1S01s2s:1S0、3S11s2p:1P1、3P0,1,2根据选择定则,这些原子态之间可以发生5条光谱线跃迁。