正数负数以及的意义
- 格式:docx
- 大小:1.06 MB
- 文档页数:4
正数负数基本概念与性质正数和负数是我们在数学中经常遇到的基本概念,它们在数轴上有着特定的位置和性质。
正数和负数的存在与运用在我们的日常生活中起着重要的作用。
本文将重点介绍正数和负数的基本概念、性质以及它们在实际应用中的意义。
一、正数的概念与性质正数定义为大于零的实数。
在数轴上,正数位于零的右侧。
正数具有以下性质:1. 正数与正数相加,结果仍为正数。
例如,2 + 3 = 5。
2. 正数与正数相乘,结果仍为正数。
例如,4 × 5 = 20。
3. 正数与正数相除,结果仍为正数。
例如,10 ÷ 2 = 5。
正数的概念和性质在各个领域都有广泛应用。
例如,在金融领域中,正数代表着盈利,企业追求正数来体现业绩的增长。
在物理学中,正数表示物体的位移方向与力的方向一致。
正数也常用于描述正向的进步、成绩提升等。
二、负数的概念与性质负数定义为小于零的实数。
在数轴上,负数位于零的左侧。
负数具有以下性质:1. 负数与负数相加,结果仍为负数。
例如,-2 + (-3) = -5。
2. 负数与负数相乘,结果为正数。
例如,-4 × (-5) = 20。
3. 负数与负数相除,结果为正数。
例如,-10 ÷ (-2) = 5。
负数在实际生活中也有其特殊的意义。
例如,温度的正负值就是基于负数的概念而来。
负数也用于描述债务、亏损等。
三、零的概念与性质零是数值上的一个特殊点,定义为整数部分等于零的实数。
零既不是正数也不是负数,它位于数轴的原点上。
下面是零的性质:1. 零与任何正数相加,结果为正数。
例如,0 + 3 = 3。
2. 零与任何负数相加,结果为负数。
例如,0 + (-3) = -3。
3. 零与任何数相乘,结果都为零。
例如,0 × 5 = 0。
零是数学运算中的重要元素,也具有独特的意义。
在科学测量中,零点起到基准的作用,帮助我们标定度量的起始点。
在计算机编程中,零常用于表示空值或停止的状态。
正数、负数以及0得意义一、教学目标:知识与技能:借助生活中得实例理解有理数得意义,会判断一个数就是正数还就是负数,能应用负数表示生活中具有相反意义得量。
过程与方法:1、体会负数引入得必要性,感受有理数应用得广泛性,并领悟数学知识来源生活,体会数学知识与现实世界得联系。
2、能结合具体情境出现并提出数学问题,并解释结果得合理性。
情感态度与价值观:结合负数得历史,对学生渗透数学传统文化得教育与爱国主义得教育,培养学生良好得数学情感。
二、学情分析:学生刚上初中,对初中得新鲜事物都不熟悉,因此会对初中学习得内容比较感兴趣,就是老师培养学生对数学得兴趣得关键时刻。
巧用课本素材,渗透传统文化,利用多媒体形象、直观得特点为学生构建思维想象得平台,营造良好得学习氛围,充分调动学生学习得积极性、自觉性,用以达到以快乐得形式去追求知识得目得。
三、教学重、难点:重点:体会负数引入得必要性与有理数应用得广泛性, 能应用正负数表示生活中得具有相反得意义得量。
难点:能应用正负数表示生活中得具有相反得意义得量,养成把数学应用于生活实际问题得习惯。
四、教学过程教学活动:讲授(一)温故知新1、出示图片。
师:同学们,瞧图片珠穆朗玛峰与吐鲁番盆地,大家想想高于水平面数字与低于水平面得数字该怎么写?前面一节课我们学习了正数与负数,那么大家知道什么样得数叫做正数,什么样得数叫做负数?生:正数就就是我们小学里学过得自然数,而在正数前带有“﹣”号得数叫做负数。
师:哦,大家认为她说得对吗?生:不对,0就不就是正数。
师:她回答得就是对得,不过我想问大家0、2这个数就是什么数?生:就是正数。
师 (追问)那您认为什么样得数就是正数?生:我们以前学过得数,有自然数,分数与小数,但0除外。
师:那0就是什么数?生:既不就是正数,也不就是负数。
师:回答得很好,我们要记住0既不就是正数,也不就是负数,出示:0得其她实际意义:1.温度中得0℃;2.海平面得高度;3.标准水位;4.正数与负数得界点。
六年级下册数学第一单元《负数》知识点归纳第一单元《负数》知识点一、正、负数的意义1、正数:像+1、+2、3、300、+2/7、+6.3、+26% 这样的数都是正数。
2、负数:像-1、-2、-300、-3/5、-0.68、-5%这样的数都是负数。
3、正数和负数可以用来表示两个相反意义的量。
例如:零上温度和零下温度、向东行和向西行、上车人数与下车人数、收入与支出、增加与减少等,都是互为相反意义的两个量,其中一个用正数表示,另一个就用负数表示。
4、0既不是正数,也不是负数。
它是正数与负数的分界点。
注意:除0外,整数、小数、分数、百分数都有正数和负数两种形式。
二、正、负数的读写1、正、负数的读法:“+”读作正,“-”读作负;按照从左往右的顺序读数,先读“正”或“负”,再读符号后面的数字。
读正数时,若数字前面有“+”号,读数时一定要读出“正”字,若数字前面的正号省略不写,则读数时也不读。
2、正、负数的写法:先在数的左侧写上“+”或“-”,再写数字。
写正数时,数左侧的“+”可以省略不写。
例如:+87.25读作:正八十七点二五;-20%读作:负百分之二十。
例如:正三十二写作:+32,也可写作32。
负四十八写作:-48。
三、用直线上的点表示正、负数1、正数、0、负数都可以用直线的上点表示出来。
直线上的每一个点都与一个数相对应,任何一个数都可以用直线上的点来表示。
例如:2、用直线上的点表示数时,要先确定好0的位置,并用箭头表示出正数的方向。
3、用有正数和负数的直线可以表示距离和相反的方向。
4、在直线上的点,位置越往左,表示的数就越小;位置越往右,表示的数就越大。
所有的负数都比0小,所有的正数都比0大,正数都比负数大。
提示:在数学中,可以用一条直线上的点表示数,这条直线就叫做数轴。
提示:最小的正整数是1,最大的负整数是-1,没有最大的正整数,也没有最小的负整数。
例如:-3℃和-18℃,温度越低就越冷,也说明那个数就越小。
正数负数以及0的意义首先,让我们来讨论正数的意义。
正数是大于0的数,表达了一种积极的概念。
它可以表示许多不同的事物,如物体的长度、重量、时间、金钱等。
正数是我们在日常生活中最常见的数值类型之一、我们用正数来表示增长、盈利、收入等正面的事物。
例如,正数可以用来表示银行账户的存款金额,电器使用的电量,国家的人口增长率等等。
正数在数学和科学中也有广泛的应用。
例如,正数是一种标志着方向的度量,表示向右、向上、顺时针旋转等。
与正数相对应的是负数。
负数是小于0的数,表示了一种相反的概念。
它可以表示亏损、减少、欠款等负面的事物。
负数在我们的生活中也很常见。
例如,负数可以用来表示借款金额、体温的下降、股票的跌幅等等。
负数在数学和科学中也有广泛的应用。
例如,负数可以用来表示方向的相反,比如向左、向下、逆时针旋转等。
负数还可以用来表示温度的下降,在数学中用来表示一次函数的下降趋势,以及在物理学中表示力的方向和大小等等。
接下来,我们来讨论0的意义。
0是一个特殊的数,既不是正数也不是负数。
0代表着一个不存在、空集或者无效的概念。
在数学中,0是一个非常重要的数字,它在代数、几何、计算等方面都有广泛的应用。
在代数中,0是加法和乘法的单位元素,它与任何数相加或相乘都不改变原来的数。
在几何中,0可以表示一条线的起点和终点重合,或者表示平面上一个点的位置。
在计算中,0可以表示一个数的缺失或者不存在,比如在除法中被除数为0。
此外,0还在统计学中具有重要的作用,用来表示一些变量的平均值或者总和为0。
总结起来,正数、负数和0是数学中非常重要的概念。
它们通过表示正面和负面的概念,帮助我们理解和描述世界的各个方面。
正数可以用来表示增长和盈利,负数可以表示减少和亏损,0则表示不存在或者空集。
这三个概念在数学、科学、经济、统计等领域都有广泛的应用。
正数、负数和0的意义涉及到人们生活和工作中的方方面面,对我们的认知和理解都具有重要的影响。
正数负数和零的意义正数、负数和零是基本的数学概念,它们在日常生活、科学研究和经济活动中都扮演着重要的角色。
它们的意义不仅体现在数值大小上,还反映了一系列抽象概念和真实世界中的实际问题。
本文将探讨正数、负数和零的意义,并探讨它们在不同领域中的应用。
一、正数的意义正数是大于零的数,它们代表着一种积极的态度和有价值的事物。
在日常生活中,正数常常与增长、进步和成功联系在一起。
比如我们常说的“利润增长率为正”、“体重减少了5公斤”等。
在数学领域,正数也代表了一种绝对值较大的数,它们被用于表示温度、长度、面积等物理量的正值。
在经济学中,正数表示盈利、收入和资产增长等经济指标的正面效果。
二、负数的意义负数是小于零的数,它们代表着一种消极的态度和缺失的事物。
负数在日常生活中常与借贷、亏损和损失联系在一起。
比如我们常说的“银行贷款金额为-5000元”、“股票下跌了10%”等。
在数学领域,负数被用于表示温度、海拔等物理量的负值。
在经济学中,负数表示负债、亏损和欠款等经济指标的不利影响。
三、零的意义零是一个特殊的数,它既不是正数也不是负数。
零的意义在于它与不存在、平衡和中性有关。
在数学领域,零是加法和减法的中性元素,它与任何数相加或相减都不改变原数的值。
在经济学中,零表示不存在趋势、平衡和持平,比如“经济增长率为零”、“价格没有变化”。
此外,零还在科学研究中常常用于标记起点或参考点,比如温度的零度、坐标的原点等。
四、正数、负数和零的应用正数、负数和零在不同领域中具有各自的应用。
在数学中,正数和负数被用于表示数轴上的位置和方向,有助于解决实际问题和进行精确计算。
在物理学中,正数和负数可用于表示物体的位移、加速度等。
在经济学中,正数和负数用于表示公司的盈利与亏损、国家的财政收支等重要经济指标。
在心理学中,正数和负数用于表示积极和消极情绪的程度。
在生活中,我们可以用正数表示收入、增长、温暖等积极事物,用负数表示支出、赴约、降温等消极事物。
数字的正负数认识数学中的数字分为正数、负数和零。
在日常生活和学习中,我们经常会接触到这些数字。
正负数认识是数学的基础知识,也是解决实际问题和进行进一步数学运算的重要前提。
本文将介绍正负数的定义、表示方法以及在数学和实际应用中的意义。
一、正数和负数的定义1. 正数:指大于零的数,可以是整数或小数,用“+”表示。
例如:2, 3.14。
2. 负数:指小于零的数,可以是整数或小数,用“-”表示。
例如:-5, -0.8。
二、正负数的表示方法1. 数轴表示法:数轴是一个水平直线,上面的点对应于数字。
其中,0位于数轴的中央,正数在0的右侧,负数在0的左侧。
例如,在数轴上表示正数2和负数-5可以如下所示:-5 -4 -3 -2 -1 0 1 2 3 4 5◇◇2. 符号表示法:在数学运算中,我们使用一个符号来表示正负数。
正数不加符号,负数在数值前加一个负号“-”。
例如:表示正数2和负数-5可以写成2和-5。
三、正负数的意义和应用1. 温度计:温度的正负数表示了相对于绝对零度的高低,负数表示低于绝对零度的温度,正数表示高于绝对零度的温度。
例如:水的冰点为0摄氏度,用0来表示;而冰点以下的温度则为负数,如冰点以下10摄氏度可以表示为-10℃。
2. 财务表示:正数表示收入、盈利或资产增加的情况,负数表示支出、亏损或资产减少的情况。
例如:收入1000元可以表示为+1000,支出200元可以表示为-200。
3. 坐标表示:在平面直角坐标系中,用正负数表示一个点的位置。
如横坐标为正表示点在纵轴右侧,为负表示点在纵轴左侧;纵坐标为正表示点在横轴上方,为负表示点在横轴下方。
4. 数学运算:正负数在加法、减法、乘法和除法中都有特殊的规律和性质。
例如,两个正数相加的结果仍然是正数;两个负数相加的结果仍然是负数;正数与负数相乘的结果是负数;正数除以负数的结果是负数等。
总结:正负数是数学中的基本概念,对数学运算和实际应用有着重要意义。
正数与负数的概念与运算一、正数与负数的概念正数和负数是数学中基本的概念,它们代表了不同的数值和方向。
1. 正数正数是指大于零的实数,用正号 (+) 表示。
正数表示具有增长或增加的意义,例如:1、2、3等。
2. 负数负数是指小于零的实数,用负号 (-) 表示。
负数表示具有减少或减少的意义,例如:-1、-2、-3等。
二、正数与负数的运算1. 加法运算正数与正数相加,结果仍为正数。
例如:2 + 3 = 5。
负数与负数相加,结果仍为负数。
例如:-2 + (-3) = -5。
正数与负数相加,结果的符号跟随数值较大的数。
例如:3 + (-2) = 1。
2. 减法运算正数减去正数,结果的符号可能为正数或负数,取决于相减的两个数的大小关系。
例如:5 - 2 = 3。
负数减去负数,结果的符号可能为正数或负数,取决于相减的两个数的大小关系。
例如:-5 - (-2) = -3。
正数减去负数,相当于正数与负数相加,结果的符号跟随数值较大的数。
例如:5 - (-2) = 7。
3. 乘法运算正数与正数相乘,结果仍为正数。
例如:2 × 3 = 6。
负数与负数相乘,结果仍为正数。
例如:-2 × (-3) = 6。
正数与负数相乘,结果为负数。
例如:2 × (-3) = -6。
4. 除法运算正数除以正数,结果仍为正数。
例如:6 ÷ 2 = 3。
负数除以负数,结果仍为正数。
例如:-6 ÷ (-2) = 3。
正数除以负数,结果为负数。
例如:6 ÷ (-2) = -3。
三、正数与负数的应用1.温度正数和负数在表示温度时有重要应用。
正数表示高于绝对零度的温度,而负数表示低于绝对零度的温度。
例如:摄氏度正数表示高温,负数表示低温。
2.财务正数和负数在财务领域中被广泛使用。
正数表示收入、盈利或存款,而负数表示支出、亏损或负债。
通过正数和负数的运算,可以进行财务分析和决策。
3.坐标系在数学中,坐标系用于表示点的位置。
正数负数以及的意义 Revised at 2 pm on December 25, 2020.
《正数、负数以及0的意义》教学设计教学目标
1、了解负数产生的背景是从实际需要出发的。
2、会判断一个数是正数还是负数。
3、会用正负数表示生活中常用的具有相反意义的量。
4、了解“0”在有理数分类中的作用。
5、培养学生数学应用意识,渗透对立统一的辨证思想。
学情分析
本班学生基础较差,因此在课堂设计中多从最基础的知识出发,从易到难,步步深入,启发学生思维。
重点难点
1、了解正数与负数是有实际需要产生的以及会用正负数表示生活中常用的具有相反意义的量。
2、应用正负数解决生活中的实际问题。
教学过程
【导入】引入新课
引入新课:数学是离不开数的,请同学们回答:小学学过哪些数?
学生回答:
【讲授】新课导入讲解:正数、负数以及0的意义
教师展示课件:
由计数、排序、产生数1、2、3......
由表示"空位"、“没有”产生0
由分物、测量产生分数。
问题1、实际生活中仅仅有正数和分数能够满足需要吗?
【讲授】进行新课
(一)、教师展示课件:
1、珠穆朗玛峰和吐鲁番盆地的海拔图。
2、温度计。
(二)、教师讲解正数和负数的概念。
1、把以前学过的大于零的数叫正数。
有时在前面加上“+”号。
如
+;+3;+1/2......+号可以省略。
2、我们把在以前学过的数(0除外)前面加上(—)号的数叫负数。
如—3;—;—2/3......
3、一个数前面的“+”“—”号叫他的符号,“—”读作“负”,“+”读作“正”。
如“—5”读作“负5”,“+3”读作“正3”。
4、学生思考:“一个数不是正数就是负数,对吗”
5、教师讲解“0”的含义:“0”不仅仅表示没有,有时也表示正数和负数的分界。
6、负数小史。
7、范例解析,加深理解。
8、怎样理解相反意义的量?
(1)、相反意义的量具有两个要素:一是意义相反,二是都具有数量。
(2)、与一个量成相反意义的量不止一个。
(3)、对于两个具有相反意义的量,把哪一个规定为正带有任意性。
不过习惯上把“向东”,“运进”,“上升”,“盈利”,“增加”,“收入”等规定为正,反之则为负。
9、解释图中的正数和负数的含义。
10、学生练习实际,加深认识。
请同学们编写一组具有相反意义量的数字,并说出它们的意义。
11、课堂练习:解释下列例子中负数的含义。
【活动】正负数在生活中的应用
应用举例:正负数在生活中的应用:
1、海拔的高低记法。
2、存折、海拔图片。
3、加工机器零件的误差值。
4、股票中的数字。
5、统计数字。
6、奥运中的数字。
5【活动】探究活动评论
探究活动:见教案设计“7”.
【练习】小结
小结:这节课我们学习了哪些知识?
1、正数和负数是表示一些具有相反意义的量。
2、负数的存在是有前提条件的,首先必须规定正方向。
3、“0”既不是正数也不是负数。
【活动】数学活动
数学活动:
1、要求学生课后收集更多的正数和负数的实例。
2、帮助家长记录一个月的家庭收支账目(收入为+,支出为—)。