非结晶聚合物从玻璃态向高弹态的转变
- 格式:ppt
- 大小:1.77 MB
- 文档页数:83
非晶态聚合物是一种具有高度无序结构的材料,其力学性能取决于材料的微观结构和分子链的排列方式。
非晶态聚合物的力学状态通常可以分为三种:玻璃态、高弹态和黏流态。
玻璃态是非晶态聚合物在低温下的一种力学状态,此时分子链之间的运动受到限制,材料表现出高硬度和脆性。
玻璃态的非晶态聚合物在受到外力作用时容易发生断裂,因此不适合作为结构材料。
然而,玻璃态聚合物在光学和电子领域具有广泛的应用,例如制作光学纤维和液晶显示器等。
高弹态是非晶态聚合物在较高温度下的一种力学状态,此时分子链之间的运动较为活跃,材料表现出高弹性和韧性。
高弹态的非晶态聚合物在受到外力作用时能够发生较大形变,并且能够在外力消失后恢复原状。
因此,高弹态聚合物广泛应用于制造橡胶制品、弹性体和减震材料等领域。
黏流态是非晶态聚合物在高温下的一种力学状态,此时分子链之间的运动非常活跃,材料表现出类似流体的性质。
黏流态的非晶态聚合物在受到外力作用时能够发生流动,并且能够在外力消失后保持变形后的形状。
因此,黏流态聚合物广泛应用于制造塑料制品、薄膜和涂层等领域。
非晶态聚合物的力学状态与其微观结构和分子链的排列方式密切相关。
通过改变材料的化学成分、分子量和加工条件等参数,可以调节非晶态聚合物的力学状态,从而满足不同应用场景的需求。
此外,非晶态聚合物的力学状态也与材料的老化和降解过程密切相关,因此需要关注材料的储存和使用条件,以确保材料的性能和寿命。
高分子物理作业-2-答案聚合物的力学状态及转变1. 解释名词:(1)聚合物的力学状态及转变由于高分子链之间的作用力大于主链的价键力,所以聚合物只具有固态和液态力学状态。
随着温度的升高,分子热运动能量逐渐增加,当达到某一温度时,即可发生两相间的转变。
(2)松弛过程与松弛时间松弛过程:在一定温度和外场(力场、电场、磁场等)作用下,聚合物由一种平衡态通过分子运动过渡到另一种与外界条件相适应的、新的平衡态,这个过程是一个速度过程。
松弛时间τ是用来描述松弛快慢的物理理。
在高聚物的松弛曲线上,∆x t ()变到等于∆x o 的1/e 倍时所需要的时间,即松弛时间。
(3)自由体积与等自由体积状态 分子中未被占据的体积为自由体积;在玻璃态下,由于链段运动被冻结晶,自由体积也被冻结,并保持一恒定值,自由体积“孔穴”的大小及其分布也将基本上维持固定。
因此,对任何高聚物,玻璃温度就是自由体积达到某一临界值的温度,在这临界值以下,已经没有足够的窨进行分子链的构象调整了。
因而高聚物的玻璃态可视为等自由体积状态。
(4)玻璃态与皮革态当非晶态高聚物在较低的温度下受到外力时,由于链段运动被冻结,只能使主链的键长和键角有微小的改变,因此从宏观上来说,高聚物受力变形是很小的,形变与受力和大小成正比,当外力除去后形变能立刻回复。
这种力学性质称为普弹性,非晶态高聚物处于具有普弹性的状态,称为玻璃态;部分结晶聚合物,存在玻璃化转变与高弹态,但由于晶区链段不能运动,此时玻璃化转变不再具有很大弹性的高弹态,而表现为具有一定高弹性、韧而硬的皮革态,即皮革态。
2. 试定性地绘出下列聚合物的形变—温度曲线(画在一张图上)1) 低分子玻璃态物质 2) 线性非晶态聚合物(1M )3) 线性非晶态聚合物(212,M M M 〉212,M M M 〉>1M ) 4) 晶态聚合物(1M )5) 晶态聚合物(212,M M M 〉212,M M M 〉>1M ) 6) 交联聚合物(交联度较小) 7) 交联聚合物(交联度较大)3. 判断下列聚合物(写出分子式)的Tg 的高低,阐述其理由:1) 聚乙烯、聚对苯二甲酸乙二酯、聚苯、聚二甲基硅氧烷 2) 聚氯乙烯、聚氯丁二烯、聚偏二氯乙烯、顺式1,4聚丁二烯 3) 聚乙烯、聚异丁烯、聚苯乙烯、聚乙烯基咔锉 4) 聚乙烯、聚丙烯、聚氯乙烯、聚丙烯腈5) 聚甲基乙烯基醚、聚乙基乙烯基醚、聚正丙基乙烯基醚、聚正丁基乙烯基醚1) 聚乙烯、聚对苯二甲酸乙二酯、聚苯、聚二甲基硅氧烷CH 2CH 2n聚乙烯CO C OO CH 2CH 2On聚对苯二甲酸乙二酯n聚苯Si CH 33On聚二甲基硅氧烷聚二甲基硅氧烷<聚乙烯<聚对苯二甲酸乙二酯<聚苯理由:当主链中引入苯基、联苯基、萘基和均苯甲酸二酰胺基等芳杂环以一,链上可以内旋转的单键比例相对减少,分子链的刚性增大,因此有利于玻璃化温度的提高。
塑料的几个特征温度Tg、Tm、Tf、Td(1)玻璃化温度Tg:指无定型聚合物(包括结晶型聚合物中的非结晶部分)由玻璃态向高弹态或者由后者向前者的转变温度。
是无定型聚合物大分子链段自由运动的最低温度,也是制品工作温度的上限。
(2)熔化温度Tm:对于结晶型聚合物,指大分子链结构的三维远程有序态转变为无序粘流态的温度,也称熔点。
是结晶型聚合物成型加工温度的下限。
(3)流动温度Tf:指无定型聚合物由高弹态转变为粘流态的温度。
是无定型塑料加工温度的下限。
(4)不流动温度:在一定的压力下不发生流动的最高温度。
是将一定量的塑料加入毛细管流变仪口模上端的料筒中,加热至某一温度,恒温故知新10min后,施加50MPa恒压,若该料不从口模中流出,卸压后将料温升高难度10度,保温10min后再施加同样大小的恒压,如此继续直至熔体从口模中流出为止,将此温度减出10度即是该料的不流动温度。
(5)分解温度Td:指处于粘流态的聚合物当温度进一步升高时,便会使分子链的降解加剧,升至使聚合物分子链明显降解时的温度为分解温度。
PS特征:C6H5密度:1050 kg/m³电导率:(σ) 10-16 S/m导热率:0.08杨氏模量:(E) 3000-3600 MPa拉伸强度:(σt) 46–60 MPa伸长长度:3–4%夏比冲击试验:2–5 kJ/m²玻璃转化温度:80-100°C热膨胀系数:(α) 8 * 10-5/K热容:(c) 1.3 kJ/(kg·K)吸水率:(ASTM) 0.03–0.1降解:±2000年密度 1.05 g/cm3拉伸强度 48.3MPa.弯曲强度 82.7MPa.典型收缩率 0.0045 in/in热膨胀系数 5—8 X 10-5in/(in·°c)伸长率 2—3%维卡软化点225°FPET特征:以Dupont的R~ ITE FR一530为例,其性能指标如下拉伸强度 152MPa弯曲模量(DAM) 10343MPa悬臂梁冲击强度( od) 85J/m比重 1.30-1.38热变形温度(1.8MPa) 224℃熔点254℃氧指数33% UL阻燃性 V一0级热线点燃 330 S体积电阻率 10,r ]ohm-cm介电强度 16.9Kv/mm介电常数 103Hz时3.810 Hz时3.7介质损耗 103Hz时0.01110 Hz时0.018PP是一种半结晶性材料。
名词解释构型:是对分子中的最近邻原子间的相对位置的表征,也就是指分子汇总由化学键所固定的原子在空间的几何排列。
构象:指大分子链内非化学键连接的邻近原子或原子团之间空间相对位置的具体表征或状态描述。
链柔性:高分子链在绕单键内旋转自由度,内旋转可导致高分子链构象的变化,因为伴随着状态熵增大,自发地趋向于蜷曲状态,这种特性就称为高分子链柔性。
内聚能密度:克服分子间作用力,1mol的凝聚体汽化时所需的能量为内聚能密度,表征分子间作用力的强弱。
均方末端距:众多分子链矢量末端距的均平方值,系表征线型聚合物分子链柔性的重要参数。
均方回转半径:单个高分子分子链在空间的伸展程度的一种尺度。
晶系:根据晶体的特征对称元素所进行的分类。
结晶度:将聚合物假定为由完全结晶和完全未结晶的部分组成,完全结晶部分与聚合物总量之百分比。
结晶形态:取向:在外场作用下,分子链,链段及结晶高聚物的晶片,晶带将沿着外场方向排列。
半结晶时间:Avrami指数:液晶:兼具液体和晶体的部分特性,处于过渡状态的特殊聚合物类型。
(高分子液晶:某些物质的结晶变热熔融或被溶剂溶解之后,虽然失去固体物质的刚性,而获得液态物质的流动性,却仍然部分地保存着晶态物质分子的有序排列,从而在物理性质上呈现处各向异性,形成一种兼有晶体核液体的部分性质的过渡状态,这种中间状态称为液晶态,处于这种状态的物质称为液晶。
)退火:将材料升温到接近溶点并维持一定时间的过程。
淬火:将温度升高到接近熔点的材料急速冷却到室温的过程。
同质多晶现象:由于条件变化,引起分子链构象的或堆积方式的改变,则一种高聚物可以形成几种不同的晶型。
共混相容性:两种或两种以上物质混合时,不产生相斥分离现象的能力。
添加剂分子在聚合物母体中,以分子级相混溶的性质称为相容性。
玻璃化转变:无定型物质的玻璃态和液态之间的转变。
是非晶聚合物的玻璃态与高弹态之间的转变。
玻璃化转变也发生于结晶聚合物的非晶区中。
粘流转变:高弹态与粘流态之间的转变次级转变:运动主体较小,运动级别较低,运动方式各异的热运动过程同样可以在一定温度范围内发生或被冻结,这是一类相对于玻璃化转变过程更低级别的松弛过程。
DSC法测定聚苯乙烯的玻璃化转变温度聚合物的玻璃化转变是指非晶态聚合物从玻璃态到高弹态的转变,是高分子链段开始自由运动的转变。
在发生转变时,与高分子链段运动有关的物理量,如比热、比容、介电常数、折光率等都表示出急剧的变化,玻璃化转变温度(T g)是表示玻璃化转变的非常重要的指标。
由于高聚物在高于或低于T g时,其物理力学性质有巨大差别,所以,测定高聚物的一具有重大的实用意义。
现有许多测定聚合物玻璃化转变温度的方法,如膨胀计、扭摆、扭辫、振簧、声波传播、介电松弛、核磁共振、示差扫描量热法(DSC)等。
本实验是利用DSC来测定聚合物的玻璃化转变温度T g。
一、目的与要求1、掌握DSC测定聚合物T g的实验技术;2、了解升温速度对玻璃化转变温度的影响;3、测定聚苯乙烯的玻璃化转变温度。
二、实验原理以玻璃化温度为界,高分子聚合物的物理性质随高分子链段运动自由度的变化而呈现显著的变化,在玻璃化转变时,虽然没有吸热和放热现象,但其比热容发生了突变,在DSC曲线上表现为基线向吸热方向偏移,产生了一个台阶。
热容的变化使热分析方法成为测定高分子材料玻璃化温度的一种有效手段。
当温度逐渐升高,通过高分子聚合物的玻璃化转变温度时,DSC曲线上的基线向吸热方向移动(见图)。
图中A点是开始偏离基线的点。
将转变前后的基线延长,两线之间的垂直距离为阶差ΔJ,在ΔJ/2 处可以找到C点,从C点作切线与前基线相交于B点,B 点所对应的温度值即为玻璃化转变温度T g。
三、仪器与药品1、仪器DSC Q1000(美国TA公司);Al盘。
2、药品聚苯乙烯(颗粒状)约10mg,工业级。
四、实验步骤1、开计算机,开高纯氮气, 出口压力小于0.1MPa,开DSC电源,运行桌面Instrument Explorer然后双击explorer里面的DSCQ1000图标。
2、启动制冷RCS,在control---Event---On,可听到压缩机启动的声音,大约7分钟左右,RCS90面板上右上角的制冷指示灯亮表示RCS开始给仪器制冷。
(1)玻璃化温度Tg:指无定型聚合物(包括结晶型聚合物中的非结晶部分)由玻璃态向高弹态或者由后者向前者的转变温度。
是无定型聚合物大分子链段自由运动的最低温度,也是制品工作温度的上限。
(2)熔化温度Tm:对于结晶型聚合物,指大分子链结构的三维远程有序态转变为无序粘流态的温度,也称熔点。
是结晶型聚合物成型加工温度的下限。
(3)流动温度Tf:指无定型聚合物由高弹态转变为粘流态的温度。
是无定型塑料加工温度的下限。
不流动温度:在一定的压力下不发生流动的最高温度。
是将一定量的塑料加入毛细管流变仪口模上端的料筒中,加热至某一温度,恒温故知新10min后,施加 50MPA恒压,若该料不从口模中流出,卸压后将料温升高难度10度,保温10min后再施加同样大小的恒压,如此继续直至熔体从口模中流出为止,将此温度减出10度即是该料的不流动温度。
(4)分解温度Td:指处于粘流态的聚合物当温度进一步升高时,便会使分子链的降解加剧,升至使聚合物分子链明显降解时的温度为分解温度。
1)玻璃化温度Tg:指无定型聚合物(包括结晶型聚合物中的非结晶部分)由玻璃态向高弹态或者由后者向前者的转变温度。
是无定型聚合物大分子链段自由运动的最低温度,也是制品工作温度的上限。
2)熔化温度Tm:对于结晶型聚合物,指大分子链结构的三维远程有序态转变为无序粘流态的温度,也称熔点。
是结晶型聚合物成型加工温度的下限。
(3)活动温度Tf:指无定型聚合物由高弹态转变为粘流态的温度。
是无定型塑料加工温度的下限。
(4)不活动温度:在一定的压力下不发生活动的最高温度。
是将一定量的塑料加进毛细管流变仪口模上真个料筒中,加热至某一温度,恒温故知新10min后,施加50MPA恒压,若该料不从口模中流出,卸压后将料温升高难度10度,保温10min后再施加同样大小的恒压,如此继续直至熔体从口模中流出为止,将此温度减出10度即是该料的不活动温度。
(5)分解温度 Td:指处于粘流态的聚合物当温度进一步升高时,便会使分子链的降解加剧,升至使聚合物分子链明显降解时的温度为分解温度。
第四节注塑加工的100个相关术语1.塑化:塑料在一定成型温度与背压下,经螺杆旋转剪切,达到熔融状态并具有良好的可塑性的过程。
2.热稳定性:塑料热稳定性是指塑料在爱热时性能上发生变化时的耐热程度,主要取决于材料的组成基结合键能的大小,以及流动温度与分解温度范围的宽窄。
体现热稳定性的温度有:软化点、热变形温度HDT、熔化温度(Tm)、粘流态温度(Tf)、分解温度(Td)、玻璃化温度(Tg)、脆化温度(Tx)是指线型非结晶聚合物由玻璃态(硬脆状态)向高弹态(橡胶弹性态)转变的温度。
3.热变形温度HDT:(Heat deflection temperature)塑料耐热的一种量度值。
是将塑料试样浸在一种等温适宜传热介介质中,在简支梁式的静弯曲负荷作用下,测试样弯变达到规定值时的温度,用℃表示;热变形温度显示塑胶材料在高温且受压力下,能否保持不变的外形,一般以热变形温度来表示塑胶的短期耐热性。
若考虑安全系数,短期使用之最高温度应保持低于热变形温度10℃左右,以确保不致因温度而使材料变形。
最常用的热变形测定法为ASTM D648试验法(在一标准试片的中心,例如:127×13×3mm,置放455kPa 或1820kPa负载、以2℃/min条件升温直到变形量为0.25mm时的温度)。
对非结晶塑料,HDT比Tg小10~20℃;对结晶塑料,HDT则接近于Tm。
通常加入纤维补强后,塑料的HDT会上升,因为纤维补强可以大幅提升塑料的机械强度,以致在升温的耐挠曲测试时,会呈现HDT急剧升高的现象。
1820kPa下的HDT结晶性非结晶性塑料名称HDT (℃) 塑料名称HDT (℃) 塑料名称HDT (℃) 塑料名称HDT (℃) 聚乙烯(PE) 29~126 PA-6 63~80 硬质PVC 54~79 PAR 175HDPE 43~49 PA66 62~261 聚苯乙烯(PS) 63~112 PES 205MDPE 32~41 PA610 57 ABS 66~107 GPPS 96LDPE 32 PA612 60 压克力(PMMA) 68~99 HIPS 96聚丙烯(PP) 40~152 PA11 55 PPO 100~128 PS+20~30%GF 103 均聚POM 125~136 PA12 55 聚碳酸酯(PC) 39~148 AS 88~104 共聚POM 110 PBT 60~65 H-PVC 54~74 Poly (vinyl 60~76 PI 315~360 PET 80~100 PSF 175 Polysulfone 146~2734.软化点:在塑料试样上以一定形式施以一定负荷,并按规定升温速率加热至试样变形达到规定值的温度,用℃表示。
实验五膨胀计法测定聚合物的玻璃化温度聚合物的玻璃化转变是指非晶态聚合物从玻璃态到高弹态的转变,是高分子链段开始自由运动的转变。
在发生转变时,与高分子链段运动有关的多种物理量(例如比热、比容、介电常数、折光率等)都将发生急剧变化。
显而易见,玻璃化转变是聚合物非常重要的指标,测定高聚物玻璃化温度具有重要的实际意义。
目前测定聚合物玻璃化转变温度的主要有扭摆、扭辫、振簧、声波转播、介电松弛、核磁共振和膨胀计等方法。
本实验则是利用膨胀计测定聚合物的玻璃化转变温度,即利用高聚物的比容-温度曲线上的转折点确定高聚物的玻璃化温度(T g)。
一、实验目的与要求1、掌握膨胀计法测定聚合物T g的实验基本原理和方法。
2、了解升温速度对玻璃化温度的影响。
3、测定聚苯乙烯的玻璃化转变温度。
二、实验原理当玻璃化转变时,高聚物从一种粘性液体或橡胶态转变成脆性固体。
根据热力学观点,这一转变不是热力学平衡态,而是一个松弛过程,因而玻璃态与转变的过程有关。
描述玻璃化转变的理论主要有自由体积理论、热力学理论、动力学理论等。
本实验的基本原理来源于应用最为广泛的自由体积理论。
根据自由体积理论可知:高聚物的体积由大分子己占体积和分子间的空隙,即自由体积组成。
自由体积是分子运动时必需空间。
温度越高,自由体积越大,越有利于链段中的短链作扩散运动而不断地进行构象重排。
当温度降低,自由体积减小,降至玻璃化温度以下时,自由体积减小到一临界值以下,链段的短链扩散运动受阻不能发生(即被冻结)时,就发生玻璃化转变。
图5-1高聚物的比容—温度关系曲线能够反映自由体积的变化。
图中上方的实线部分为聚合物的总体积,下方阴影区部分则是聚合物己占体积。
当温度大于α段部分。
T g时,高聚物体积的膨胀率就会增加,可以认为是自由体积被释放的结果,图中r当T<T g时,聚合物处于玻璃态,此时,聚合物的热膨胀主要由分子的振动幅度和键长的变化的贡献。
在这个α段部分。
显然,两条直线的斜率发生极大的变阶段,聚合物容积随温度线性增大,如图g化,出现转折点,这个转折点对应的温度就是玻璃化温度T g。